# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0044245195 -0.0309927137  0.0052535432 -0.0190720415  0.0155897661
##   [6] -0.0224240084  0.0265818393  0.0223257801  0.0094310628 -0.0053815828
##  [11] -0.0274730254 -0.0118800032  0.0552887724  0.0513274558  0.0168912176
##  [16]  0.0171768566  0.0327074973  0.0116272477 -0.0167974405 -0.0716023564
##  [21]  0.0219162043 -0.0217105194 -0.0043704903  0.0115717926  0.0116637240
##  [26]  0.0494616465 -0.0188555636  0.0189422312 -0.0097492411  0.0290566713
##  [31]  0.0019985356  0.0156409704  0.0181847909  0.0011361076  0.0315515137
##  [36] -0.0048765164 -0.0112859812  0.0366860173 -0.0232484020  0.0065739732
##  [41] -0.0201088153 -0.0069954974  0.0288092504  0.0147513392 -0.0431788281
##  [46]  0.0103251284  0.0712530065  0.0146643048 -0.0014773843  0.0067849349
##  [51]  0.0410206338  0.0115687958 -0.0092733738  0.0214806731  0.0181300340
##  [56] -0.0387215330 -0.0138597285  0.0220891251  0.0287846527 -0.0434312152
##  [61]  0.0339729475  0.0204613639  0.0199244016 -0.0351223823  0.0116158341
##  [66]  0.0106718516 -0.0318129364 -0.0213967702 -0.0457373905  0.0124548859
##  [71]  0.0044771077  0.0192677314  0.0225788544  0.0371163420  0.0242596457
##  [76]  0.0360396618 -0.0389348322 -0.0150326275 -0.0140708367 -0.0027611867
##  [81]  0.0213296149 -0.0162028522  0.0343545974  0.0331537396  0.0308665585
##  [86] -0.0033418665 -0.0016675594 -0.0281255882 -0.0004308493 -0.0038728205
##  [91] -0.0111243559 -0.0242771916  0.0179275600  0.0241356491  0.0022421867
##  [96] -0.0066561332  0.0169233129  0.0052390806 -0.0046637251 -0.0064706493
## [101] -0.0222340280  0.0298302978 -0.0085828586 -0.0300533635 -0.0319592704
## [106] -0.0603150085  0.0359239840  0.0425025721  0.0268544393 -0.0002641858
## [111]  0.0203574323  0.0079712733  0.0186030940  0.0144262323  0.0042495652
## [116] -0.0242541771  0.0393186990 -0.0328176863  0.0293424890  0.0020115225
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.996
##  3   0.969
##  4   1.01 
##  5   0.981
##  6   1.02 
##  7   0.978
##  8   1.03 
##  9   1.02 
## 10   1.01 
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.996
##  3  0.965
##  4  0.970
##  5  0.951
##  6  0.966
##  7  0.944
##  8  0.970
##  9  0.991
## 10  1.00 
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 4.875563

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {

    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)

}

simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.02 
##  3  1.03 
##  4  1.01 
##  5  1.00 
##  6  0.983
##  7  0.986
##  8  1.04 
##  9  1.07 
## 10  1.09 
## # … with 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))

starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%

    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%

    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%

    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%

    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")

monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Calculate the quantiles for simulated values

probs <- c(.005, .025, .25, .5, .75, .975, .995)

monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%

    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.27  1.27  1.61  1.98  2.41  3.40  4.07

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%

    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

# Simplify the plot

sim_summary <- monte_carlo_sim_51 %>%

    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%

    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))

sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  4.29   1.98  1.27
monte_carlo_sim_51 %>%

    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%

    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()