# Load packages
# Core
library(tidyverse)
library(tidyquant)
# time series
library(timetk)
Simulate future portfolio returns
five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”
market: “SPY”
from 2012-12-31 to 2017-12-31
symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AGG 0.25
## 2 EEM 0.25
## 3 EFA 0.2
## 4 IJS 0.2
## 5 SPY 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0204
## 2 2013-02-28 -0.00239
## 3 2013-03-28 0.0121
## 4 2013-04-30 0.0174
## 5 2013-05-31 -0.0128
## 6 2013-06-28 -0.0247
## 7 2013-07-31 0.0321
## 8 2013-08-30 -0.0224
## 9 2013-09-30 0.0511
## 10 2013-10-31 0.0301
## # ℹ 50 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899133
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347491
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
## [1] -4.439347e-03 -1.599810e-02 5.465433e-02 -7.024307e-03 -3.141452e-04
## [6] -2.912793e-02 -2.351206e-02 -2.931805e-02 -2.127070e-02 -3.445639e-02
## [11] -8.565149e-03 3.486428e-02 4.027911e-02 1.511694e-02 2.304597e-02
## [16] -1.086235e-02 2.900091e-02 7.747554e-05 3.698890e-02 -3.589995e-02
## [21] 3.865170e-02 1.192054e-03 8.748463e-03 -3.009789e-02 4.670723e-02
## [26] 7.752175e-03 3.080668e-02 -1.571742e-02 -4.984604e-03 -5.379276e-03
## [31] -2.243152e-02 7.745622e-03 -4.960711e-02 -1.441349e-02 -5.288841e-03
## [36] 2.467825e-02 -6.199894e-03 2.694201e-02 3.021866e-02 -2.614379e-02
## [41] 3.618225e-02 1.953456e-02 9.930489e-03 3.453903e-02 2.085452e-02
## [46] 6.400006e-02 2.808741e-03 -2.119638e-02 -1.013681e-02 -2.760347e-03
## [51] 8.894716e-03 1.601992e-02 1.657469e-02 2.238959e-02 1.371741e-02
## [56] -1.687561e-03 -1.088536e-02 3.349364e-02 -4.158089e-02 -7.877091e-03
## [61] 3.991034e-02 1.729740e-03 8.200688e-03 5.197183e-03 1.585171e-02
## [66] -1.281548e-03 -1.986416e-02 -4.292079e-04 -1.770394e-03 -1.773743e-02
## [71] -5.605619e-02 2.749308e-02 -1.005188e-02 -2.775557e-03 -5.806642e-03
## [76] 5.902644e-02 -4.118275e-04 -7.419323e-03 1.898437e-04 4.861186e-02
## [81] -3.164660e-02 -1.346279e-02 -1.597053e-02 -1.654437e-02 6.182225e-03
## [86] 2.870388e-03 -2.581739e-02 2.864692e-02 -1.141175e-02 -5.048957e-02
## [91] 3.211397e-02 5.160401e-02 -8.583927e-03 6.544886e-03 2.691446e-02
## [96] -5.848777e-03 2.553322e-02 1.452096e-02 -5.268857e-02 -1.509824e-02
## [101] 4.236817e-02 2.980236e-02 7.373999e-03 4.343143e-02 -1.217333e-02
## [106] -3.295748e-02 -3.077165e-04 4.476276e-02 2.342963e-04 -4.901750e-02
## [111] 1.899412e-02 5.458371e-02 -1.611390e-02 -8.474613e-03 1.733468e-02
## [116] 4.718663e-03 1.320179e-02 -3.645986e-02 -3.780402e-02 2.992457e-02
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
## returns
## <dbl>
## 1 1
## 2 0.996
## 3 0.984
## 4 1.05
## 5 0.993
## 6 1.00
## 7 0.971
## 8 0.976
## 9 0.971
## 10 0.979
## # ℹ 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
simulated_growth
## # A tibble: 121 × 1
## growth
## <dbl>
## 1 1
## 2 0.996
## 3 0.980
## 4 1.03
## 5 1.03
## 6 1.03
## 7 0.996
## 8 0.972
## 9 0.944
## 10 0.924
## # ℹ 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 3.674131
simulate_accumulation <- function(initial_value, N, mean_return, sd_return) {
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(initial_value, 1 + rnorm(N, mean_return, sd_return)))
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
select(growth)
return(simulated_growth)
}
simulate_accumulation(initial_value = 100, N = 240, mean_return = 0.005, sd_return = 0.01) %>%
tail()
## # A tibble: 6 × 1
## growth
## <dbl>
## 1 335.
## 2 340.
## 3 347.
## 4 349.
## 5 345.
## 6 342.
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")
# Create a Vector of 1's as a Starting Point
sims <- 51
starts <- rep(1, sims) %>%
set_names(paste0("sim", 1:sims))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 1 1 1 1 1 1 1 1 1 1 1 1 1
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 1 1 1 1 1 1 1 1 1 1 1 1
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(.x = .,
.f = ~simulate_accumulation(initial_value = .x, N = 120, mean_return = mean_port_return, sd_return = stddev_port_return)) %>%
# Add Column Month
mutate(month = 1:nrow(.)) %>%
select(month, everything()) %>%
# Rearrange Column Names
set_names(c("month", names(starts))) %>%
# Transform to Long Form
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 1
## 2 1 sim2 1
## 3 1 sim3 1
## 4 1 sim4 1
## 5 1 sim5 1
## 6 1 sim6 1
## 7 1 sim7 1
## 8 1 sim8 1
## 9 1 sim9 1
## 10 1 sim10 1
## # ℹ 6,161 more rows
# Find Quantiles
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup %>%
pull(growth) %>%
quantile(probs = c(0, .25, .5, .75, 1)) %>%
round(2)
## 0% 25% 50% 75% 100%
## 0.88 1.73 2.10 2.38 3.58
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5))
labs(title = "Simulating Growth of $1 Over 120 Months")
## $title
## [1] "Simulating Growth of $1 Over 120 Months"
##
## attr(,"class")
## [1] "labels"
# Step 1 Summarize data into max, median, and min of last value
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 3.58 2.10 0.880
# Step 2 Plot
monte_carlo_sim_51 %>%
# Filter for max, median, and min sim
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
ungroup() %>%
# Plot
ggplot(aes(x = month, y = growth, color = sim)) +
geom_line() +
theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5)) +
theme(plot.subtitle = element_text(hjust = 0.5))
labs(title = "Simulating Growth of $1 Over 120 Months", subtitle = "Maximum, Median, Minimum")
## $title
## [1] "Simulating Growth of $1 Over 120 Months"
##
## $subtitle
## [1] "Maximum, Median, Minimum"
##
## attr(,"class")
## [1] "labels"