# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899134
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.0234749
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1] -0.0074036290 -0.0392647701 -0.0245822701  0.0233605155  0.0129797489
##   [6]  0.0105201875  0.0031873046 -0.0104116835  0.0147742889 -0.0252898046
##  [11]  0.0415514005  0.0115759023  0.0333351674 -0.0249587302 -0.0012459779
##  [16]  0.0062158512  0.0106608033  0.0212370392 -0.0066497357  0.0300463216
##  [21]  0.0403141740 -0.0049745591 -0.0274650253 -0.0056551154  0.0773448237
##  [26]  0.0232182251  0.0061103945  0.0487800860  0.0274412633  0.0241793724
##  [31]  0.0108143508 -0.0111513335 -0.0050390445  0.0009220917  0.0170469625
##  [36] -0.0288226806 -0.0363270229  0.0497469796  0.0144851209  0.0080070328
##  [41] -0.0218755840  0.0387438427 -0.0045946208  0.0307514023  0.0094730040
##  [46] -0.0106596245  0.0071316580 -0.0072363474 -0.0287518528  0.0175662238
##  [51]  0.0230188410 -0.0340756779  0.0074220440  0.0506415801  0.0606863302
##  [56]  0.0258373058  0.0280661019  0.0031390401  0.0321917949 -0.0049335972
##  [61]  0.0140750047 -0.0418618242  0.0419053843  0.0437511450 -0.0167560962
##  [66]  0.0135880507 -0.0031547881  0.0241039403 -0.0250406265  0.0082389651
##  [71]  0.0141753425  0.0143918418  0.0271777670  0.0261127272  0.0167509081
##  [76]  0.0224148632 -0.0153801444  0.0202163303 -0.0181837712 -0.0158399811
##  [81]  0.0098546407  0.0413090251  0.0086686548 -0.0289821293  0.0366679444
##  [86] -0.0142046607  0.0068093929 -0.0154395585 -0.0198971682 -0.0189047312
##  [91] -0.0376102018  0.0167024062  0.0095828738 -0.0113422813 -0.0094381911
##  [96]  0.0254827560 -0.0053706960  0.0323724023  0.0033947184 -0.0288522857
## [101]  0.0517912209 -0.0310799482  0.0592058232 -0.0347703412  0.0242387876
## [106]  0.0201767772  0.0130577119 -0.0349938980  0.0170026479 -0.0503195903
## [111] -0.0051118895  0.0594034295  0.0052906368  0.0112452450 -0.0125150792
## [116]  0.0377109426 -0.0034064284 -0.0040746566  0.0078980695  0.0355433724
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   0.993
##  3   0.961
##  4   0.975
##  5   1.02 
##  6   1.01 
##  7   1.01 
##  8   1.00 
##  9   0.990
## 10   1.01 
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.993
##  3  0.954
##  4  0.930
##  5  0.952
##  6  0.964
##  7  0.974
##  8  0.978
##  9  0.967
## 10  0.982
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 8.412802

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {
    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
}
simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  0.998
##  3  0.997
##  4  1.02 
##  5  1.02 
##  6  1.04 
##  7  0.991
##  8  1.05 
##  9  1.04 
## 10  1.05 
## # … with 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))
starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%
    # Add column month
    mutate(month = seq(1:nrow(.))) %>%
    
    # Rearrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Find quantiles 
monte_carlo_sim_51 %>%
    
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    
    
    quantile(probs = c(0, .25, .5, .75, 1)) %>%
    round(2)
##   0%  25%  50%  75% 100% 
## 1.13 1.56 1.84 2.16 3.04

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Simulating Growth of 1$ over 120 months")

# Simplify the plot
sim_summary <- monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.04   1.84  1.13
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%
    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none") +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme(plot.subtitle = element_text(hjust = 0.5)) +
    
    labs(title = "simulating Growth of $1 over 120 months",
         subtitle = "Maximum, Median, and Minimum Simulation")