\[ \int 4e^{-7x} dx \] \[ u=-7x \] \[ du=-7dx, \frac{du}{-7}=dx \] \[\int 4e^{u} \frac{du}{-7}= \frac{-4}{7} \int e^{u} du= \frac{-4}{7}e^{u} +c =\frac{-4}{7}e^{-7x} +c \]
\[\int \frac{-3150}{t^4}-220 dt=-3150 \int \frac{1}{t^4}-220 dt =-3150(\frac{t^{-3}}{-3})-220t+c\] \[ \frac{1050}{t^{3}} -220t +c \]
\[ 6530= \frac{1050}{1^{3}}-220(1) +c \] \[ 6530=1050-220+c ; c=5700 \]
\[ N(t)= \frac{1050}{t^{3}} -220t +5700 \]
Find the total area of the red rectangles in the figure below, where the equation of the line is f(x) = 2x - 9.
Find the area of the region bounded by the graphs of the given equations. y = x^2-2x-2, y = x + 2 \[ x^{2}-2x-2=x+2 \]
\[ x^{2}-3x-4=0 ; x=4, x=-1\]
\[\int_{-1}^{4} (x+2)-(x^{2} -2x-2)dx \]
\[\int_{-1}^{4} -x^{2} +3x+4 dx \] \[ \frac{-x^3}{3}+3x^{2} +4x \Biggr|_{-1}^{4} =\frac{64}{3}+ \frac{48}{2}+16-(\frac{1}{3}+\frac{3}{2}-4) =\frac{112}{6}-(\frac{-13}{6})=\frac{125}{6} =20.8333 \]
\[\int ln(9x)*x^{6} dx \] \[ \int u *dv=uv- \int v*du \]
\[u=ln(9x), du=\frac{1}{x}, v=x^{6}, \int v=\frac{x^{7}}{7} \] \[ln(9x)* \frac{x^{7}}{7} -\int \frac{1}{x} * \frac{x^{7}}{7} dx= \]
\[x^{7}ln(9x)-\frac{1}{7} \int x^{6} dx \] \[ \frac{x^{7}ln(9x)}{7} -\frac{x^{7}}{49}=\frac{7x^{7}ln(9x)-x^{7}}{49} +c \]
\[ \int_{1}^{e^{6}} \frac{1}{6x}dx=\frac{1}{6} \int_{1}^{e^{6}} \frac{1}{x} dx=\frac{1}{6}ln(x) \Biggr|_{1}^{e^{6}} =1\]