library(TSstudio)
## Warning: package 'TSstudio' was built under R version 4.2.3
data("USgas")

ts_plot(USgas,
        title = "US Monthly Natural Gas consumption",
        Ytitle = "Billion Cubic Feet",
        Xtitle = "Year")

#: La función utilizada para crear el gráfico se llama “ts_plot”, este código genera un gráfico de series de tiempo que muestra el consumo mensual de gas natural en los Estados Unidos, con etiquetas de título y eje.

ts_info(USgas)
##  The USgas series is a ts object with 1 variable and 238 observations
##  Frequency: 12 
##  Start time: 2000 1 
##  End time: 2019 10

#: La función “ts_info” se utiliza para obtener información resumida sobre la serie de tiempo, como el número de observaciones, la frecuencia de muestreo, la fecha de inicio y finalización de los datos.

ts_decompose(USgas)

#: La función “ts_decompose” se utiliza para descomponer la serie de tiempo en tres componentes principales: tendencia, estacionalidad y residuos, este código genera la descomposición de series de tiempo de los datos de consumo mensual de gas natural en los Estados Unidos.

USgas_df <- ts_to_prophet(USgas)
head(USgas_df)
##           ds      y
## 1 2000-01-01 2510.5
## 2 2000-02-01 2330.7
## 3 2000-03-01 2050.6
## 4 2000-04-01 1783.3
## 5 2000-05-01 1632.9
## 6 2000-06-01 1513.1

#: USgas_df: son los datos que se utilizarán para mostrar los primeros datos de la tabla. La función “head” se utiliza para mostrar los primeros registros de la tabla, por defecto los primeros 6 registros, lo que permite ver rápidamente una muestra de los datos.

USgas_df$trend <- 1:nrow(USgas_df)
library(lubridate)
## Warning: package 'lubridate' was built under R version 4.2.3
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
USgas_df$seasonal <- month(USgas_df$ds, label = T)
head(USgas_df)
##           ds      y trend seasonal
## 1 2000-01-01 2510.5     1      ene
## 2 2000-02-01 2330.7     2      feb
## 3 2000-03-01 2050.6     3      mar
## 4 2000-04-01 1783.3     4      abr
## 5 2000-05-01 1632.9     5      may
## 6 2000-06-01 1513.1     6      jun

#: Este código muestra los primeros datos de la tabla que contiene información sobre el consumo mensual de gas natural en los Estados Unidos.

h <- 12 # setting a testing partition length

train <- USgas_df[1:(nrow(USgas_df) - h), ]

test <- USgas_df[(nrow(USgas_df) - h + 1):nrow(USgas_df), ]
md_trend <- lm(y ~ trend, data = train)

summary(md_trend)
## 
## Call:
## lm(formula = y ~ trend, data = train)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -547.2 -307.4 -153.2  333.1 1052.6 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1751.0074    52.6435   33.26  < 2e-16 ***
## trend          2.4489     0.4021    6.09 4.86e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 394.4 on 224 degrees of freedom
## Multiple R-squared:  0.1421, Adjusted R-squared:  0.1382 
## F-statistic: 37.09 on 1 and 224 DF,  p-value: 4.861e-09

#: El código proporciona una descripción de un modelo de regresión lineal simple utilizando los datos de la tendencia de una serie de tiempo (trend) y una variable de respuesta (y). Los resultados del modelo se resumen utilizando la función “summary”.

train$yhat <- predict(md_trend, newdata = train)

test$yhat <- predict(md_trend, newdata = test)
library(plotly)
## Warning: package 'plotly' was built under R version 4.2.3
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.2.3
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
plot_lm <- function(data, train, test, title = NULL){
  p <- plot_ly(data = data, 
               x = ~ ds, 
               y = ~ y, 
               type = "scatter",
               mode = "line",
               name = "Actual") %>%
    add_lines(x =  ~ train$ds,
              y = ~ train$yhat,
              line = list(color = "red"),
              name = "Fitted") %>%
    add_lines(x =  ~ test$ds,
              y = ~ test$yhat,
              line = list(color = "green", dash = "dot", width = 3),
              name = "Forecasted") %>%
    layout(title = title,
           xaxis = list(title = ""),
           yaxis = list(title = "Billion Cubic Feet"),
           legend = list(x = 0.05, y = 0.95))
  return(p)
}
plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Trend Component of the Series")

#: Este código crea una visualización gráfica de un modelo de regresión lineal ajustado y los valores pronosticados de una serie de tiempo utilizando la función “plot_lm” y los datos de la serie de tiempo “USgas_df”, los datos de entrenamiento y prueba del modelo de regresión lineal, y el título “Predicting the Trend Component of the Series”.

mape_trend <- c(mean(abs(train$y - train$yhat) / train$y),
                mean(abs(test$y - test$yhat) / test$y))

mape_trend
## [1] 0.1644088 0.1299951
md_seasonal <- lm(y ~ seasonal, data = train)

summary(md_seasonal)
## 
## Call:
## lm(formula = y ~ seasonal, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -608.98 -162.34  -50.77  148.40  566.89 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2030.88      14.43 140.747  < 2e-16 ***
## seasonal.L   -480.00      50.24  -9.554  < 2e-16 ***
## seasonal.Q   1103.83      50.17  22.000  < 2e-16 ***
## seasonal.C     72.42      50.05   1.447 0.149389    
## seasonal^4    174.60      50.07   3.487 0.000592 ***
## seasonal^5    288.01      50.13   5.745 3.13e-08 ***
## seasonal^6    -44.67      50.09  -0.892 0.373460    
## seasonal^7   -187.91      49.96  -3.762 0.000218 ***
## seasonal^8     84.95      49.84   1.705 0.089706 .  
## seasonal^9     46.16      49.78   0.927 0.354828    
## seasonal^10    77.55      49.76   1.559 0.120587    
## seasonal^11   -11.09      49.75  -0.223 0.823856    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 216.9 on 214 degrees of freedom
## Multiple R-squared:  0.7521, Adjusted R-squared:  0.7394 
## F-statistic: 59.04 on 11 and 214 DF,  p-value: < 2.2e-16

#: Este código ajusta un modelo de regresión lineal a los datos de entrenamiento de una serie de tiempo utilizando la variable “seasonal” como variable independiente y luego proporciona un resumen del modelo ajustado utilizando la función “summary”.

train$yhat <- predict(md_seasonal, newdata = train)
test$yhat <- predict(md_seasonal, newdata = test)

plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")

#: Este código utiliza el modelo de regresión lineal ajustado para hacer predicciones de los valores de la variable dependiente en los datos de entrenamiento y en los datos de prueba, y luego crea una visualización gráfica de la serie de tiempo con la función “plot_lm”.

mape_seasonal <- c(mean(abs(train$y - train$yhat) / train$y),
                   mean(abs(test$y - test$yhat) / test$y))

mape_seasonal
## [1] 0.08628973 0.21502100
md1 <- lm(y ~ seasonal + trend, data = train)

summary(md1)
## 
## Call:
## lm(formula = y ~ seasonal + trend, data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -514.73  -77.17  -17.70   85.80  336.95 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 1733.7153    17.0794 101.509  < 2e-16 ***
## seasonal.L  -498.1709    29.6354 -16.810  < 2e-16 ***
## seasonal.Q  1115.2951    29.5872  37.695  < 2e-16 ***
## seasonal.C    78.9835    29.5103   2.676  0.00802 ** 
## seasonal^4   175.6505    29.5196   5.950 1.09e-08 ***
## seasonal^5   285.0192    29.5568   9.643  < 2e-16 ***
## seasonal^6   -49.3611    29.5319  -1.671  0.09610 .  
## seasonal^7  -192.3050    29.4540  -6.529 4.77e-10 ***
## seasonal^8    81.8787    29.3835   2.787  0.00581 ** 
## seasonal^9    44.4849    29.3480   1.516  0.13106    
## seasonal^10   76.8636    29.3372   2.620  0.00943 ** 
## seasonal^11  -11.2755    29.3353  -0.384  0.70109    
## trend          2.6182     0.1305  20.065  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 127.9 on 213 degrees of freedom
## Multiple R-squared:  0.9142, Adjusted R-squared:  0.9094 
## F-statistic: 189.2 on 12 and 213 DF,  p-value: < 2.2e-16

#: Este código ajusta un modelo de regresión lineal múltiple a los datos de entrenamiento de una serie de tiempo utilizando las variables “seasonal” y “trend” como variables independientes y proporciona información resumida del modelo ajustado utilizando la función “summary”.

train$yhat <- predict(md1, newdata = train)
test$yhat <- predict(md1, newdata = test)


plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")

#: Este código se utiliza para predecir los valores de la variable dependiente utilizando el modelo de regresión lineal múltiple ajustado y para visualizar los datos de la serie temporal junto con los valores ajustados y predichos mediante la función “plot_lm”.

mape_md1 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))
mape_md1
## [1] 0.04774945 0.09143290
md2 <- lm(y ~ seasonal + trend + I(trend^2), data = train)

summary(md2)
## 
## Call:
## lm(formula = y ~ seasonal + trend + I(trend^2), data = train)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -468.47  -54.66   -2.21   63.11  294.32 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.882e+03  2.199e+01  85.568  < 2e-16 ***
## seasonal.L  -4.917e+02  2.530e+01 -19.438  < 2e-16 ***
## seasonal.Q   1.121e+03  2.525e+01  44.381  < 2e-16 ***
## seasonal.C   8.247e+01  2.518e+01   3.275  0.00123 ** 
## seasonal^4   1.763e+02  2.519e+01   6.999 3.35e-11 ***
## seasonal^5   2.835e+02  2.522e+01  11.243  < 2e-16 ***
## seasonal^6  -5.175e+01  2.520e+01  -2.054  0.04123 *  
## seasonal^7  -1.946e+02  2.513e+01  -7.741 3.97e-13 ***
## seasonal^8   8.030e+01  2.507e+01   3.203  0.00157 ** 
## seasonal^9   4.362e+01  2.504e+01   1.742  0.08293 .  
## seasonal^10  7.651e+01  2.503e+01   3.057  0.00253 ** 
## seasonal^11 -1.137e+01  2.503e+01  -0.454  0.65005    
## trend       -1.270e+00  4.472e-01  -2.840  0.00494 ** 
## I(trend^2)   1.713e-02  1.908e-03   8.977  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109.1 on 212 degrees of freedom
## Multiple R-squared:  0.9379, Adjusted R-squared:  0.9341 
## F-statistic: 246.1 on 13 and 212 DF,  p-value: < 2.2e-16

#: Este código ajusta un modelo de regresión lineal múltiple con tres variables predictoras y muestra un resumen de las estadísticas del modelo ajustado mediante la función “summary”.

train$yhat <- predict(md2, newdata = train)
test$yhat <- predict(md2, newdata = test)


plot_lm(data = USgas_df, 
        train = train, 
        test = test,
        title = "Predicting the Seasonal Component of the Series")
mape_md2 <- c(mean(abs(train$y - train$yhat) / train$y),
              mean(abs(test$y - test$yhat) / test$y))

mape_md2
## [1] 0.03688770 0.04212618

#: Este código ajusta un modelo de regresión lineal múltiple (md2) al conjunto de entrenamiento y utiliza el modelo para predecir los valores de la serie temporal en los conjuntos de entrenamiento y prueba. Luego, se traza una gráfica con los valores reales, ajustados y pronosticados de la serie temporal. Por último, se calcula el error porcentual medio absoluto (MAPE) para los conjuntos de entrenamiento y prueba.

USgas_split <- ts_split(USgas, sample.out = h)

train.ts <- USgas_split$train

test.ts <- USgas_split$test
library(forecast)
## Warning: package 'forecast' was built under R version 4.2.3
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
md3 <- tslm(train.ts ~ season + trend + I(trend^2))

summary(md3)
## 
## Call:
## tslm(formula = train.ts ~ season + trend + I(trend^2))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -468.47  -54.66   -2.21   63.11  294.32 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.635e+03  3.224e+01  81.738  < 2e-16 ***
## season2     -3.004e+02  3.540e+01  -8.487 3.69e-15 ***
## season3     -4.841e+02  3.540e+01 -13.676  < 2e-16 ***
## season4     -9.128e+02  3.540e+01 -25.787  < 2e-16 ***
## season5     -1.099e+03  3.540e+01 -31.033  < 2e-16 ***
## season6     -1.118e+03  3.540e+01 -31.588  < 2e-16 ***
## season7     -9.547e+02  3.540e+01 -26.968  < 2e-16 ***
## season8     -9.322e+02  3.541e+01 -26.329  < 2e-16 ***
## season9     -1.136e+03  3.541e+01 -32.070  < 2e-16 ***
## season10    -1.046e+03  3.541e+01 -29.532  < 2e-16 ***
## season11    -8.001e+02  3.590e+01 -22.286  < 2e-16 ***
## season12    -2.618e+02  3.590e+01  -7.293 5.95e-12 ***
## trend       -1.270e+00  4.472e-01  -2.840  0.00494 ** 
## I(trend^2)   1.713e-02  1.908e-03   8.977  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109.1 on 212 degrees of freedom
## Multiple R-squared:  0.9379, Adjusted R-squared:  0.9341 
## F-statistic: 246.1 on 13 and 212 DF,  p-value: < 2.2e-16

#: Este código ajusta un modelo de regresión lineal para una serie temporal y utiliza la función “summary” para mostrar un resumen de los resultados del ajuste, que incluyen los coeficientes estimados y su significancia estadística. Se utilizan como variables predictoras la componente de estacionalidad, la componente de tendencia y el cuadrado de la componente de tendencia.

r <- which(USgas_df$ds == as.Date("2014-01-01"))
USgas_df$s_break <- ifelse(year(USgas_df$ds) >= 2010, 1, 0)
USgas_df$s_break[r] <- 1
md3 <- tslm(USgas ~ season + trend + I(trend^2) + s_break, data = USgas_df)
summary(md3)
## 
## Call:
## tslm(formula = USgas ~ season + trend + I(trend^2) + s_break, 
##     data = USgas_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -469.25  -50.68   -2.66   63.63  275.89 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.661e+03  3.200e+01  83.164  < 2e-16 ***
## season2     -3.054e+02  3.448e+01  -8.858 2.61e-16 ***
## season3     -4.849e+02  3.448e+01 -14.062  < 2e-16 ***
## season4     -9.272e+02  3.449e+01 -26.885  < 2e-16 ***
## season5     -1.108e+03  3.449e+01 -32.114  < 2e-16 ***
## season6     -1.127e+03  3.450e+01 -32.660  < 2e-16 ***
## season7     -9.568e+02  3.450e+01 -27.730  < 2e-16 ***
## season8     -9.340e+02  3.451e+01 -27.061  < 2e-16 ***
## season9     -1.138e+03  3.452e+01 -32.972  < 2e-16 ***
## season10    -1.040e+03  3.453e+01 -30.122  < 2e-16 ***
## season11    -7.896e+02  3.497e+01 -22.577  < 2e-16 ***
## season12    -2.649e+02  3.498e+01  -7.571 9.72e-13 ***
## trend       -1.928e+00  4.479e-01  -4.304 2.51e-05 ***
## I(trend^2)   1.862e-02  1.676e-03  11.113  < 2e-16 ***
## s_break      6.060e+01  2.836e+01   2.137   0.0337 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 109 on 223 degrees of freedom
## Multiple R-squared:  0.9423, Adjusted R-squared:  0.9387 
## F-statistic: 260.3 on 14 and 223 DF,  p-value: < 2.2e-16
library(UKgrid)
## Warning: package 'UKgrid' was built under R version 4.2.3
UKdaily <- extract_grid(type = "data.frame",
                        columns = "ND",
                        aggregate = "daily")

head(UKdaily)
##    TIMESTAMP      ND
## 1 2005-04-01 1920069
## 2 2005-04-02 1674699
## 3 2005-04-03 1631352
## 4 2005-04-04 1916693
## 5 2005-04-05 1952082
## 6 2005-04-06 1964584
ts_plot(UKdaily,
        title = "The UK National Demand for Electricity",
        Ytitle = "MW",
        Xtitle = "Year")

#: En el primer bloque de código se crea una variable de ruptura (s_break) en la serie de tiempo USgas_df, en el segundo bloque de código se extraen los datos de la red eléctrica del Reino Unido mediante la librería UKgrid. Finalmente, se grafica la serie de tiempo de la demanda nacional de electricidad del Reino Unido mediante ts_plot().

ts_heatmap(UKdaily[which(year(UKdaily$TIMESTAMP) >= 2016),],
           title = "UK the Daily National Grid Demand Heatmap")

#: Este código genera un heatmap de una serie de tiempo de demanda de electricidad en el Reino Unido, utilizando la función “ts_heatmap” del paquete “UKgrid”.

library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
UKdaily <- UKdaily %>%
  mutate(wday = wday(TIMESTAMP, label = TRUE),
         month = month(TIMESTAMP, label = TRUE),
         lag365 = dplyr::lag(ND, 365)) %>%
  filter(!is.na(lag365)) %>%
  arrange(TIMESTAMP)
str(UKdaily)
## 'data.frame':    4939 obs. of  5 variables:
##  $ TIMESTAMP: Date, format: "2006-04-01" "2006-04-02" ...
##  $ ND       : int  1718405 1691341 1960325 2023886 2026204 2008422 1981175 1770440 1749715 2012865 ...
##  $ wday     : Ord.factor w/ 7 levels "dom\\."<"lun\\."<..: 7 1 2 3 4 5 6 7 1 2 ...
##  $ month    : Ord.factor w/ 12 levels "ene"<"feb"<"mar"<..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ lag365   : int  1920069 1674699 1631352 1916693 1952082 1964584 1990895 2003982 1811436 1684720 ...
start_date <- min(UKdaily$TIMESTAMP)


UK_ts <- ts(UKdaily$ND, 
            start = c(year(start_date), yday(start_date)),
            frequency = 365)
ts_cor(UK_ts, lag.max = 365 * 4)

#: Este código define una serie de tiempo a partir de los datos de demanda eléctrica diaria en el Reino Unido y utiliza la función ts_cor() para calcular la autocorrelación de la serie de tiempo para diferentes valores de retraso (lags).

h <-  365
UKpartitions <- ts_split(UK_ts, sample.out = h)
train_ts <- UKpartitions$train
test_ts <- UKpartitions$test

train_df <- UKdaily[1:(nrow(UKdaily) - h), ]
test_df <- UKdaily[(nrow(UKdaily) - h + 1):nrow(UKdaily), ]
md_tslm1 <- tslm(train_ts ~ season + trend)
fc_tslm1 <- forecast(md_tslm1, h = h)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm1,
              test = test_ts)
accuracy(fc_tslm1, test_ts)
##                         ME     RMSE       MAE        MPE     MAPE      MASE
## Training set -9.030002e-12 121551.4 100439.64 -0.5721337 6.294111 0.8418677
## Test set     -1.740215e+04 123156.6  96785.27 -1.8735336 7.160573 0.8112374
##                   ACF1 Theil's U
## Training set 0.5277884        NA
## Test set     0.5106681  1.071899

#: El código realiza un modelo de series de tiempo lineal utilizando la función tslm de la librería forecast. Luego, se realiza una predicción con la función forecast y se evalúa el rendimiento del modelo utilizando la función accuracy y test_forecast. El modelo se entrena en el conjunto de datos train_ts y se pronostica un horizonte de tiempo h. Finalmente, se evalúa la precisión de la predicción comparando los valores pronosticados con los valores reales en el conjunto de datos test_ts.

md_tslm2 <- tslm(train_ts ~ season + trend + wday, data = train_df)
fc_tslm2 <- forecast(md_tslm2, h = h, newdata = test_df)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm2,
              test = test_ts)
accuracy(fc_tslm2, test_ts)
##                         ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -9.812170e-13 70245.98 52146.79 -0.1738708 3.167605 0.4370853
## Test set     -1.764563e+04 80711.71 65373.21 -1.3715505 4.682071 0.5479470
##                   ACF1 Theil's U
## Training set 0.7513664        NA
## Test set     0.6075598   0.68445

#: Este código se ajusta un modelo de regresión lineal múltiple a los datos de entrenamiento train_df y se utiliza para hacer una predicción de la variable objetivo train_ts en los datos de prueba test_df. Luego se evalúa el desempeño del modelo a través de diferentes medidas de precisión usando la función test_forecast y la función accuracy.

md_tslm3 <- tslm(train_ts ~ season + trend + wday + month + lag365, data = train_df)
fc_tslm3 <- forecast(md_tslm3, h = h, newdata = test_df)
test_forecast(actual = UK_ts,
              forecast.obj = fc_tslm3,
              test = test_ts)
accuracy(fc_tslm3, test_ts) 
##                         ME     RMSE      MAE        MPE     MAPE      MASE
## Training set -1.175109e-11 69904.92 52006.75 -0.1717563 3.163385 0.4359116
## Test set     -1.754061e+04 81783.55 65957.66 -1.3613252 4.722083 0.5528457
##                   ACF1 Theil's U
## Training set 0.7500146        NA
## Test set     0.6094666 0.6925767

#: Este código se utiliza para realizar un modelo de series de tiempo usando tslm. El modelo md_tslm3 incluye términos para la estacionalidad (season), la tendencia (trend), el día de la semana (wday), el mes (month) y el valor del retraso 365 (lag365). Luego, se genera una predicción utilizando el modelo y los datos de prueba (test_df) y se calcula la precisión de la predicción utilizando la función accuracy y se compara con los datos de prueba (test_ts).

summary(md_tslm3)$coefficients %>% tail(1)
##           Estimate Std. Error   t value     Pr(>|t|)
## lag365 -0.06038328 0.01545495 -3.907051 9.490321e-05
anova(md_tslm3)
## Analysis of Variance Table
## 
## Response: train_ts
##             Df     Sum Sq    Mean Sq    F value    Pr(>F)    
## season     364 1.4279e+14 3.9227e+11    73.5348 < 2.2e-16 ***
## trend        1 7.2634e+13 7.2634e+13 13615.7078 < 2.2e-16 ***
## wday         6 4.5009e+13 7.5016e+12  1406.2214 < 2.2e-16 ***
## month       11 1.3721e+11 1.2473e+10     2.3382  0.007266 ** 
## lag365       1 8.1432e+10 8.1432e+10    15.2650  9.49e-05 ***
## Residuals 4190 2.2352e+13 5.3345e+09                         
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
final_md <- tslm(UK_ts ~ season + trend + wday + month + lag365, 
                 data = UKdaily)
checkresiduals(final_md)

## 
##  Breusch-Godfrey test for serial correlation of order up to 730
## 
## data:  Residuals from Linear regression model
## LM test = 3301.1, df = 730, p-value < 2.2e-16

#: El código checkresiduals(final_md) se utiliza para verificar la normalidad e independencia de los residuos de un modelo de series temporales. En este caso, final_md es el modelo que se está evaluando.

UK_fc_df <- data.frame(date = seq.Date(from = max(UKdaily$TIMESTAMP) + days(1), 
                                       by = "day", 
                                       length.out = h))
UK_fc_df$wday <- factor(lubridate::wday(UK_fc_df$date, label = TRUE), ordered = FALSE)

UK_fc_df$month <- factor(month(UK_fc_df$date, label = TRUE), ordered = FALSE)

UK_fc_df$lag365 <- tail(UKdaily$ND, h)
UKgrid_fc <- forecast(final_md, h = h, newdata = UK_fc_df)
plot_forecast(UKgrid_fc,
              title = "The UK National Demand for Electricity Forecast",
              Ytitle = "MW",
              Xtitle = "Year")

#: Este codigo muestra una gráfica del pronóstico de la demanda nacional de electricidad en el Reino Unido (UKgrid_fc), con el eje Y etiquetado en “MW” y el eje X en “Year”.