Review Session
8/15/22
Numbers used to find a goal:
summarizes and organizes characteristics of a data set
provide understanding of the distribution, central tendency, and variability of the data
uses tables or graphs to visualize the data
Additional details:
https://www.scribbr.com/statistics/descriptive-statistics/)
https://www.investopedia.com/terms/d/descriptive_statistics.asp
Mercury content of fish from Florida rivers or lakes (measured as mg/kg)
\[\begin{matrix} 1.230 &1.330 &0.040 &0.044 &1.200 &0.270 \\ 0.490 &0.190 &0.830 &0.810 &0.710 &0.500 \\ 0.490 &1.160 &0.050 &0.150 &0.190 &0.770 \\ 1.080 &0.980 &0.630 &0.560 &0.410 &0.730 \\ 0.590 &0.340 &0.750 &0.870 &0.560 &0.170 \\ 0.180 &0.190 &0.040 &0.490 &1.100 &0.160 \\ 0.100 &0.210 &0.860 &0.520 &0.650 &0.270 \\ 0.940 &0.400 &0.430 &0.250 &0.270 &\\ \end{matrix}\]
Bar chart
Pie chart
Histogram
Box Plot
Violin Plot
Quantitative Stats
Qualitative Stats
\[\small\begin{matrix} & Heavy & Light & Non- \\ Factors & Smoker & Smoker & smoker\\ Cancer & 20 & 9 & 5 \\ Cancerfree & 40 & 30 & 60 \\ \end{matrix}\]
Range: minimum to maximum
Quartiles values: \[x[n/4], x[n/2], x[2n/4]\]
Standard deviation: \[\sigma = \sqrt{\sum (\bar x - x)^2 / (n - 1)}\]
Standard error of the mean: \[SE = \sigma/\sqrt{n}\]
Qualitative
\[t = \frac{diff}{SE}\]
Quantitative
\[\chi^2 = \sum\frac{(obs - exp)^2}{exp}\]
\[\displaystyle{t=\frac{difference}{standard\ error}}\]
\[{\displaystyle t={\frac {{\bar {x}}-\mu _{0}}{ \frac{s}{\sqrt {n}}}} = \frac{\Delta x}{\frac{\sigma}{\sqrt{n}}}}\]
\[df = n - 1\]
\[{\displaystyle t={\frac {{\bar {X}}_{1}-{\bar {X}}_{2}}{s_{p}{\sqrt {\frac {2}{n}}}}}}={\frac {{\bar {X}}_{1}-{\bar {X}}_{2}}{\sqrt {\frac {s_{1}^{2}+s_{2}^{2}}{n}}}}\]
\[{\displaystyle s_{p}={\sqrt {\frac {s_{1}^{2}+s_{2}^{2}}{2}}}}\] \[df= 2n - 2\]
\[t = \frac{\bar x_1 - \bar x_2}{s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\]
\[s_p = \sqrt{\frac{(n_1-1)s_1^2 +(n_2-1)s_2^2}{n_1+n_2-2}}\]
\[df = n_1 + n_2 -2\]
\[t = \frac{\quad\bar x_1 - \bar x_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]
\[{\displaystyle \mathrm {d.f.} ={\frac {\left({\frac {s_{1}^{2}}{n_{1}}}+{\frac {s_{2}^{2}}{n_{2}}}\right)^{2}}{{\frac {\left(s_{1}^{2}/n_{1}\right)^{2}}{n_{1}-1}}+{\frac {\left(s_{2}^{2}/n_{2}\right)^{2}}{n_{2}-1}}}}} \]
\[\displaystyle \left[t = \frac{\Delta x}{\frac{\sigma}{\sqrt{n}}}\right] \quad \longrightarrow\quad \left[n = \left(\frac{t \sigma}{\Delta x}\right)^2\right]\] \[n = \left(\frac{t\sigma}{M}\right)^2\]
Correlation does not equal casuation
Type I and Type II error
Call:
lm(formula = evo95 ~ wks)
Residuals:
Min 1Q Median 3Q Max
-0.88969 -0.35508 -0.08585 0.39108 1.22185
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 31.45700 0.21288 147.77 <2e-16 ***
wks 0.35577 0.01432 24.84 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.5163 on 23 degrees of freedom
Multiple R-squared: 0.9641, Adjusted R-squared: 0.9625
F-statistic: 617.3 on 1 and 23 DF, p-value: < 2.2e-16
I hope this outline is helpful for you.😊
PYU GE141 2022/2: GE 141 Mathematics for daily life [6]