par(mar=c(5,4,3,4))
# get summary and structure
summary(co2) # gives us the 6 num. summary (mean, min, max, etc.) for the variable 'x'
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 313.2 323.5 335.2 337.1 350.3 366.8
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 313 324 335 337 350 367
str(co2) # we have a time-series; [1 var and 468 obs] from 1959 to 1998
## Time-Series [1:468] from 1959 to 1998: 315 316 316 318 318 ...
#> Time-Series [1:468] from 1959 to 1998: 315 316 316 318 318 ...
temp.data <-as.data.frame(co2) # let me change the data set to be the same as typical
names(temp.data) <- c("co2")
# plot histogram
with(temp.data, hist(co2, col= 'black', border= 'red', # set optional parameters
main= "Histogram of Mauna Loa CO2 Concentrations",
xlab= "CO2 (ppm)", xlim= c(300,380), ylim= c(0,80)))
Figure 10.1: Histogram of Mauna Loa carbon dioxide concentrations
between 1959 and 1997.
with(temp.data, t.test(co2, mu = 338))
##
## One Sample t-test
##
## data: co2
## t = -1.3681, df = 467, p-value = 0.1719
## alternative hypothesis: true mean is not equal to 338
## 95 percent confidence interval:
## 335.6941 338.4130
## sample estimates:
## mean of x
## 337.0535
#>
#> One Sample t-test
#>
#> data: co2
#> t = -1, df = 467, p-value = 0.2
#> alternative hypothesis: true mean is not equal to 338
#> 95 percent confidence interval:
#> 336 338
#> sample estimates:
#> mean of x
#> 337