# Load packages
# Core
library(tidyverse)
library(tidyquant)
# Source function
source("../00_scripts/simulate_accumulation.R")
Revise the code below.
symbols <- c("AAPL", "MMM", "MSFT", "AMZN", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2023-04-30")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
Revise the code for weights.
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "AMZN" "MMM" "MSFT" "TSLA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 AAPL 0.25
## 2 AMZN 0.25
## 3 MMM 0.2
## 4 MSFT 0.2
## 5 TSLA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 124 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.00688
## 2 2013-02-28 -0.00282
## 3 2013-03-28 0.0214
## 4 2013-04-30 0.0494
## 5 2013-05-31 0.103
## 6 2013-06-28 -0.0181
## 7 2013-07-31 0.0737
## 8 2013-08-30 0.0311
## 9 2013-09-30 0.0440
## 10 2013-10-31 0.0650
## # … with 114 more rows
# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.01743237
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.06093678
No need
# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(100, sims) %>%
set_names(paste("sim", 1:sims, sep = ""))
starts
## sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8 sim9 sim10 sim11 sim12 sim13
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39
## 100 100 100 100 100 100 100 100 100 100 100 100 100
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51
## 100 100 100 100 100 100 100 100 100 100 100 100
# Simulate
monte_carlo_sim_51 <- starts %>%
# Simulate
map_dfc(simulate_accumulation,
N = 240,
mean = mean_port_return,
stdev = stddev_port_return) %>%
# Add the column, month
mutate(month = seq(1:nrow(.))) %>%
# Arrange column names
select(month, everything()) %>%
set_names(c("month", names(starts))) %>%
pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 12,291 × 3
## month sim growth
## <int> <chr> <dbl>
## 1 1 sim1 100
## 2 1 sim2 100
## 3 1 sim3 100
## 4 1 sim4 100
## 5 1 sim5 100
## 6 1 sim6 100
## 7 1 sim7 100
## 8 1 sim8 100
## 9 1 sim9 100
## 10 1 sim10 100
## # … with 12,281 more rows
# Calculate the quantiles for simulated values
probs <- c(.005, .025, .25, .5, .75, .975, .995)
monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
pull(growth) %>%
# Find the quantiles
quantile(probs = probs) %>%
round(2)
## 0.5% 2.5% 25% 50% 75% 97.5% 99.5%
## 843.58 1379.15 3079.90 4941.04 9390.89 21136.37 43503.04
monte_carlo_sim_51 %>%
ggplot(aes(x = month, y = growth, col = sim)) +
geom_line() +
theme(legend.position = "none")
# Simplify the plot
sim_summary <- monte_carlo_sim_51 %>%
group_by(sim) %>%
summarise(growth = last(growth)) %>%
ungroup() %>%
summarise(max = max(growth),
median = median(growth),
min = min(growth))
sim_summary
## # A tibble: 1 × 3
## max median min
## <dbl> <dbl> <dbl>
## 1 50864. 4941. 691.
monte_carlo_sim_51 %>%
group_by(sim) %>%
filter(last(growth) == sim_summary$max |
last(growth) == sim_summary$median |
last(growth) == sim_summary$min) %>%
# Plot
ggplot(aes(month, growth, col = sim)) +
geom_line() +
theme()
Line Plot of Simulations with Max, Median, and Min
Based on the Monte Carlo simulation results, how much should you expect from your $100 investment after 20 years? What is the best-case scenario? What is the worst-case scenario? What are limitations of this simulation analysis?
My 100 dollar investment has a very wide range of expected returns but the best case scenario it will be worth over $10,000 and the worst case scenario is to small to see since the best case is so high. Some limitations of this analysis is that my companies have experienced very high growth in the past and that growth is not possible to keep going for the future.