# Load packages

# Core
library(tidyverse)
library(tidyquant)

# time series
library(timetk)

Goal

Simulate future portfolio returns

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

market: “SPY”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio

portfolio_returns_tbl <- asset_returns_tbl %>%
    
    tq_portfolio(assets_col = asset, 
                 returns_col = returns, 
                 weights = w_tbl, 
                 rebalance_on = "months", 
                 col_rename = "returns")

portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # … with 50 more rows

5 Simulating growth of a dollar

# Get mean portfolio return
mean_port_return <- mean(portfolio_returns_tbl$returns)
mean_port_return
## [1] 0.005899135
# Get standard deviation of portfolio returns
stddev_port_return <- sd(portfolio_returns_tbl$returns)
stddev_port_return
## [1] 0.02347492
# Construct a normal distribution
simulated_monthly_returns <- rnorm(120, mean_port_return, stddev_port_return)
simulated_monthly_returns
##   [1]  0.0138205843  0.0110005892 -0.0319146534  0.0252262932 -0.0024547563
##   [6] -0.0125211618  0.0133143452  0.0134744792 -0.0179736101  0.0115131029
##  [11]  0.0034196334  0.0383829521  0.0165065170 -0.0329336663 -0.0177576030
##  [16] -0.0287524818 -0.0002520760  0.0388882446 -0.0136402802  0.0197202746
##  [21]  0.0173451527 -0.0022404643 -0.0171986539 -0.0185998567  0.0003188318
##  [26] -0.0384928765  0.0152315659  0.0393678746 -0.0173889014  0.0198267497
##  [31] -0.0077403762  0.0335256176 -0.0011919303  0.0469267892 -0.0037296740
##  [36]  0.0150237634 -0.0230867401 -0.0162005537  0.0283317624  0.0335869275
##  [41] -0.0036552739  0.0178435442  0.0371522955  0.0231327821  0.0136848664
##  [46]  0.0175122405 -0.0135805491 -0.0149338192  0.0095172949  0.0357247028
##  [51]  0.0181830908 -0.0080478320  0.0254538564  0.0104550796 -0.0201719541
##  [56]  0.0477687814  0.0051657561 -0.0158181516  0.0114427737  0.0375410009
##  [61]  0.0071077327  0.0353512156  0.0225019370 -0.0267194028  0.0285622246
##  [66] -0.0091146088 -0.0221061921  0.0132290713  0.0231641565  0.0147830791
##  [71] -0.0040350029  0.0078307717  0.0030644625  0.0197718726  0.0195323914
##  [76]  0.0316239391  0.0434743160  0.0094466256 -0.0022578906  0.0232481028
##  [81] -0.0074541411  0.0065176906 -0.0307175502  0.0114724107 -0.0113747454
##  [86]  0.0149250394 -0.0119034144 -0.0205853096  0.0160158591 -0.0400840973
##  [91]  0.0374423169 -0.0331139770  0.0303034245 -0.0151921892 -0.0089546451
##  [96]  0.0092555822 -0.0248822001  0.0392539456 -0.0172101050 -0.0315789651
## [101]  0.0006185035  0.0051372786  0.0357364584  0.0663286169 -0.0182517069
## [106] -0.0218742728  0.0134903770  0.0120379359 -0.0047421081  0.0103636596
## [111]  0.0038659879  0.0222599530  0.0254390627  0.0283233022 -0.0226719803
## [116] -0.0044748621 -0.0080141894  0.0007966172 -0.0491117786 -0.0265170511
# Add a dollar
simulated_returns_add_1 <- tibble(returns = c(1, 1 + simulated_monthly_returns))
simulated_returns_add_1
## # A tibble: 121 × 1
##    returns
##      <dbl>
##  1   1    
##  2   1.01 
##  3   1.01 
##  4   0.968
##  5   1.03 
##  6   0.998
##  7   0.987
##  8   1.01 
##  9   1.01 
## 10   0.982
## # … with 111 more rows
# Calculate the cumulative growth of a dollar
simulated_growth <- simulated_returns_add_1 %>%
    mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
    select(growth)

simulated_growth
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1  1    
##  2  1.01 
##  3  1.02 
##  4  0.992
##  5  1.02 
##  6  1.01 
##  7  1.00 
##  8  1.02 
##  9  1.03 
## 10  1.01 
## # … with 111 more rows
# Check the compound annual growth rate
cagr <- ((simulated_growth$growth[nrow(simulated_growth)]^(1/10)) - 1) * 100
cagr
## [1] 5.896311

6 Simulation function

simulate_accumulation <- function(init_value, N, mean, stdev) {
    tibble(returns = c(init_value, 1 + rnorm(N, mean, stdev))) %>%
        mutate(growth = accumulate(returns, function(x, y) x*y)) %>%
        select(growth)
}
simulate_accumulation(1, 120, mean_port_return, stddev_port_return)
## # A tibble: 121 × 1
##    growth
##     <dbl>
##  1   1   
##  2   1.05
##  3   1.05
##  4   1.03
##  5   1.07
##  6   1.08
##  7   1.08
##  8   1.12
##  9   1.11
## 10   1.17
## # … with 111 more rows
# Save the function
dump(list = c("simulate_accumulation"), file = "../00_scripts/simulate_accumulation.R")

7 Running multiple simulations

# Create a vector of 1s as a starting point
sims <- 51
starts <- rep(1, sims) %>%
    set_names(paste("sim", 1:sims, sep = ""))
starts
##  sim1  sim2  sim3  sim4  sim5  sim6  sim7  sim8  sim9 sim10 sim11 sim12 sim13 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim14 sim15 sim16 sim17 sim18 sim19 sim20 sim21 sim22 sim23 sim24 sim25 sim26 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim27 sim28 sim29 sim30 sim31 sim32 sim33 sim34 sim35 sim36 sim37 sim38 sim39 
##     1     1     1     1     1     1     1     1     1     1     1     1     1 
## sim40 sim41 sim42 sim43 sim44 sim45 sim46 sim47 sim48 sim49 sim50 sim51 
##     1     1     1     1     1     1     1     1     1     1     1     1
# Simulate
monte_carlo_sim_51 <- starts %>%
    # Simulate
    map_dfc(simulate_accumulation,
            N     = 120,
            mean  = mean_port_return,
            stdev = stddev_port_return) %>%
    # Add the column, month
    mutate(month = seq(1:nrow(.))) %>%
    # Arrange column names
    select(month, everything()) %>%
    set_names(c("month", names(starts))) %>%
    pivot_longer(cols = -month, names_to = "sim", values_to = "growth")
monte_carlo_sim_51
## # A tibble: 6,171 × 3
##    month sim   growth
##    <int> <chr>  <dbl>
##  1     1 sim1       1
##  2     1 sim2       1
##  3     1 sim3       1
##  4     1 sim4       1
##  5     1 sim5       1
##  6     1 sim6       1
##  7     1 sim7       1
##  8     1 sim8       1
##  9     1 sim9       1
## 10     1 sim10      1
## # … with 6,161 more rows
# Calculate the quantiles for simulated values
probs <- c(.005, .025, .25, .5, .75, .975, .995)
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    pull(growth) %>%
    # Find the quantiles
    quantile(probs = probs) %>%
    round(2)
##  0.5%  2.5%   25%   50%   75% 97.5% 99.5% 
##  1.13  1.28  1.63  1.93  2.37  3.38  3.72

8 Visualizing simulations with ggplot

monte_carlo_sim_51 %>%
    ggplot(aes(x = month, y = growth, col = sim)) +
    geom_line() +
    theme(legend.position = "none")

# Simplify the plot
sim_summary <- monte_carlo_sim_51 %>%
    group_by(sim) %>%
    summarise(growth = last(growth)) %>%
    ungroup() %>%
    summarise(max = max(growth),
              median = median(growth),
              min = min(growth))
sim_summary
## # A tibble: 1 × 3
##     max median   min
##   <dbl>  <dbl> <dbl>
## 1  3.82   1.93  1.09
monte_carlo_sim_51 %>%
    group_by(sim) %>%
    filter(last(growth) == sim_summary$max |
           last(growth) == sim_summary$median |
           last(growth) == sim_summary$min) %>%
    # Plot
    ggplot(aes(month, growth, col = sim)) +
    geom_line() +
    theme()