∫4e^−7xdx
Take the constant out: ∫a · f(x) dx = a · ∫f(x) dx
= 4 · ∫ e ^-7x dx
Apply u- substitution
= 4 · ∫ − 1/7e^u du
Take the constant out: ∫a · f(x) dx = a · ∫f(x) dx
= 4(-1/7 · ∫ e^u du)
Use the common integral: ∫ e^u du = e^u
= 4(-1/7e^u)
Substitute back u = −7x
= 4(-1/7e^-7x)
Simplify 4(-1/7e-7x):-4/7e-7x
= -4/7e^-7x
Add a constant to the solution
= -4/7e^-7x+C
dN/dt = 3150/t^4 - 220
dN/dt=−3150/t^-4−220
N(t)=∫−3150/t^-4−220dt
=−3150t^−3/−3−220t+c
N(t)=1050/t^3−220t+c
Given level of contamination after 1 day was 6530 bacteria per cubic centimeter:
6530=1050/1^3−220(1)+c
6530=830+c
c=5700
Thus:
N(t)=1050/t^3−220t+5700
Based on the above figure, the rectangles start at x = 4.5 and end at x = 8.5 We will integrate the function at these points to find the area.
∫^8.5 4.5 * 2x−9dx
= x2−9x|8.5 4.5
Area=(8.52−9(8.5))−(4.52−9(4.5))
Area=(72.25−76.5)−(20.25−40.5)
Area=(−4.25)−(−20.25)
Area of the red retangle is 16
Also: Each square in the graph has an area of 1. Each rectangle has a width of 1. Counting each rectangle left to right the areas are :
(Area=1+3+5+7)
## [1] 16
#Find area in-build function
f1 = function(x) {x + 2}
f2 = function(x) {x^2 -2*x -2}
#Find the difference between areas under the curve
area1 <- integrate(f1, -1, 4)
area2 <- integrate(f2, -1, 4)
(area <- round((area1$value - area2$value),4))
## [1] 20.8333
# plot
curve(x^2 - 2*x - 2, -5, 5, col = "green")
curve(x + 2, -5, 5, add=T, col="orange")
Number of orders (x) * Lot Size (n) = 110 C = costs
C = 8.25x + 3.75 ∗ 110/x/2
C = 8.25x + 3.75 ∗ 55/x
C = 8.25x + 206.25/x
In order to minimize costs, set derivative = zero
C′ = 8.25 − 206.25/x^2
0 = 8.25 − 206.25/x^2
206.25/x2 = 8.25
206.25 = 8.25x^2
206.25/8.25 = x^2
25 = x^2
Thus, the number of orders per year that will minimize inventory costs is 5. The lot size is 22 because 22 x 5 = 110
∫ln(9x) * x^6 * dx
∫fg′ = fg − ∫f′g
f = ln(9x)
f′ = 1/x
g′ = x^6
g = x^7/7
Substitute into formula
∫ln(9x) ∗ x^6 = ln(9x) ∗ x^7/7 − ∫1/x ∗ x^7/7
= ln(9x) ∗ x^7/7 − ∫x^6/7
= ln(9x) ∗ x^7/7 − x^7/49
= 7 ∗ ln(9x) ∗ x^7/49 − x^7/49
= (7x^7 ∗ ln(9x))−x^7/49
= x^7(7ln(9x)−1)/49 + c
∫e611/(6x)dx 1/6 * ln x from [1, e6], =
(PDF <- (1/6) * log(exp(6)) - ((1/6) * log(1)))
## [1] 1
f(x) is a probability density function on the interval [1, e6] - with the area of the curve as 1 (100% probabily for the interval)