## Loading required package: readxl
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## Loading required package: solartime
## - Winter data excluded.
## - The counts of all passing species (not resident nor breeding) were set to zero. Abreed_and_non_breed contains the non-breeders as well.
## - White stork observations removed altogether - currently (2023) species is breeding in Israel very scarcely (<10 pairs) and only in the Golan heights.
## Very large stork numbers observed near plots are migrants.

Mediterranean Maquis

Unit is divided into 3 subunits: Judea, Carmel and Galillea. Factors are proximity to settlements and time. Sampling started in spring 2012 (pilot year), but during T0 sampling was performed only in winter of 2014, and the next spring sampling was done in T1 (2015). Therefore 2012 will not be considered as pilot here but as T0. Total 5 campaigns, 3subunits per campaign, 5 sites per subunit, with 6 plots per site (total of 450 plot-campaign combinations).

Model gma, abundance and richness

Richness done with rare species. Abundance and mean abundance done without rare species. Full models include cosine and sine of the time difference from June 21st (in radians).

richness

Explore data and plot mean-variance plot. There is a strong relationship, indicating that employing GLMs is the proper way to analyze, rather than OLS (assumption of homogeneity is violated).

## [1] "RICHNESS WITH RARE SPECIES"
richness year_ct site settlements subunit td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun monitors_name wind precipitation temperature clouds
Min. : 1.000 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9884 Min. :-0.1671 Min. :-1.0000 Length:444 Min. :-0.3289 Min. :-0.1253 Sassi Haham : 53 0 : 33 0 :119 0 : 4 0 : 32
1st Qu.: 6.000 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2710 1st Qu.: 0.5702 1st Qu.:-0.8215 Class :difftime 1st Qu.: 0.6855 1st Qu.: 0.2563 Eyal Shochat: 47 1 : 42 3 : 2 1 : 38 1 : 0
Median : 8.000 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4922 Median : 0.8140 Median :-0.5808 Mode :numeric Median : 0.8738 Median : 0.4863 Eran Banker : 30 2 : 12 NA’s:323 2 : 37 2 : 5
Mean : 8.511 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3209 Mean : 0.7098 Mean :-0.5864 NA Mean : 0.7997 Mean : 0.4836 Asaf Mayrose: 18 3 : 2 NA 3 : 18 3 : 13
3rd Qu.:11.000 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1028 3rd Qu.: 0.9413 3rd Qu.:-0.3375 NA 3rd Qu.: 0.9666 3rd Qu.: 0.7281 Ohad Sharir : 18 NA’s:355 NA NA’s:347 NA’s:394
Max. :22.000 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7134 Max. : 0.9976 Max. :-0.0688 NA Max. : 1.0000 Max. : 0.9998 (Other) : 58 NA NA NA NA
NA NA (Other) :263 NA NA NA NA NA NA NA’s :89 NA’s :89 NA’s :220 NA NA NA NA

no observation for all 4 weather variables. many NAs for sampling time of day variables.exclude from model. An extreme observation of richness>20 in Judean highlands near settlements.

##                    unit          subunit         site year year_ct settlements
## 1: Mediterranean Maquis Judean Highlands Givat Yearim 2017       5        Near
##    agriculture habitat dunes land_use          point_name       date
## 1:        <NA>    <NA>  <NA>     <NA> Givat Yearim Near 2 2017-05-04
##               datetime        td_sc     td_rad cos_td_rad sin_td_rad
## 1: 2017-05-04 07:58:00 -0.003890625 -0.8434961  0.6648554 -0.7469721
##    timediff_Jun21 monitors_name wind precipitation temperature clouds
## 1:       -49 days   Eran Banker <NA>          <NA>        <NA>   <NA>
##    h_from_sunrise  cos_hsun  sin_hsun pilot richness abundance      gma
## 1:     2.02 hours 0.8633956 0.5045276 FALSE       22        96 3.185435

richness outlier (22): consider removing Givat Yearim Near 2 in 2017 if hinders the analysis.

richness year_ct site settlements subunit td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun
richness 1.0000000 -0.0129449 0.0960807 0.4424038 -0.1850164 -0.0001437 0.0193023 -0.0203458 -0.0305757 0.0706456 -0.0040407
year_ct -0.0129449 1.0000000 -0.0460962 -0.0041782 0.0046005 -0.6240340 -0.5599811 -0.6642968 0.0244310 -0.0070326 0.0341395
site 0.0960807 -0.0460962 1.0000000 0.0038640 -0.1472070 0.0103683 0.0017250 0.0296647 -0.0105111 -0.0092740 -0.0240278
settlements 0.4424038 -0.0041782 0.0038640 1.0000000 -0.0167082 0.0029695 0.0016285 0.0037459 0.0341209 -0.0071595 0.0507160
subunit -0.1850164 0.0046005 -0.1472070 -0.0167082 1.0000000 -0.0056370 -0.0129685 -0.0136922 0.1193296 -0.1166460 0.1174210
td_sc -0.0001437 -0.6240340 0.0103683 0.0029695 -0.0056370 1.0000000 0.9788766 0.9693667 -0.1975082 0.1811635 -0.2043768
cos_td_rad 0.0193023 -0.5599811 0.0017250 0.0016285 -0.0129685 0.9788766 1.0000000 0.9008724 -0.1878186 0.1700185 -0.1970275
sin_td_rad -0.0203458 -0.6642968 0.0296647 0.0037459 -0.0136922 0.9693667 0.9008724 1.0000000 -0.2005880 0.1868900 -0.2040813
h_from_sunrise -0.0305757 0.0244310 -0.0105111 0.0341209 0.1193296 -0.1975082 -0.1878186 -0.2005880 1.0000000 -0.9598144 0.9818950
cos_hsun 0.0706456 -0.0070326 -0.0092740 -0.0071595 -0.1166460 0.1811635 0.1700185 0.1868900 -0.9598144 1.0000000 -0.8930078
sin_hsun -0.0040407 0.0341395 -0.0240278 0.0507160 0.1174210 -0.2043768 -0.1970275 -0.2040813 0.9818950 -0.8930078 1.0000000

Fit Poisson glm, check for existence of overdispersion

## [1] "Estimating overdispersion parameter phi: (Res. Dev.)/(n-p) where n=number of observations; p=number of parameters in the model."
## [1] "od = 0.950744418370608"

Overdispersion parameter is < 1. Choose Poisson.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00219227 (tol = 0.002, component 1)

mixed model failed to converge. check vif.

##                         GVIF Df GVIF^(1/(2*Df))
## settlements         3.358182  1        1.832534
## year_ct             4.602842  1        2.145423
## subunit             3.067975  2        1.323467
## cos_td_rad          5.682920  1        2.383888
## sin_td_rad          7.439447  1        2.727535
## settlements:year_ct 4.694147  1        2.166598
## year_ct:subunit     6.818978  2        1.615957

go with mixed model, attempt model selection yet.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements * year_ct + subunit * year_ct + cos_td_rad +  
##     sin_td_rad + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2156.6   2201.7  -1067.3   2134.6      433 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6883 -0.6077 -0.0944  0.6069  3.8694 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.009445 0.09719 
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              1.426120   0.212472   6.712 1.92e-11 ***
## settlementsNear          0.396739   0.060455   6.563 5.29e-11 ***
## year_ct                  0.008678   0.011209   0.774   0.4388    
## subunitCarmel            0.120959   0.094587   1.279   0.2010    
## subunitGalilee          -0.069713   0.098736  -0.706   0.4802    
## cos_td_rad               0.365554   0.146705   2.492   0.0127 *  
## sin_td_rad              -0.411212   0.174004  -2.363   0.0181 *  
## settlementsNear:year_ct -0.009369   0.010548  -0.888   0.3744    
## year_ct:subunitCarmel   -0.004854   0.012633  -0.384   0.7008    
## year_ct:subunitGalilee  -0.025797   0.014216  -1.815   0.0696 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct sbntCr sbntGl cs_td_ sn_td_ sttN:_ yr_c:C
## settlmntsNr -0.179                                                        
## year_ct     -0.228  0.466                                                 
## subunitCrml -0.345 -0.002  0.324                                          
## subunitGall -0.380  0.008  0.304  0.515                                   
## cos_td_rad  -0.917  0.009  0.042  0.111  0.149                            
## sin_td_rad   0.877 -0.011  0.101 -0.158 -0.212 -0.857                     
## sttlmntsN:_  0.151 -0.838 -0.554  0.001 -0.008 -0.009  0.011              
## yr_ct:sbntC  0.322  0.001 -0.498 -0.643 -0.360 -0.158  0.247  0.002       
## yr_ct:sbntG  0.352 -0.008 -0.440 -0.330 -0.673 -0.202  0.294  0.014  0.516
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00219227 (tol = 0.002, component 1)

perform stepwise model selection of poisson mixed model.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00276967 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00331218 (tol = 0.002, component 1)
## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + subunit * year_ct + cos_td_rad + 
##     sin_td_rad + (1 | site)
##                     npar    AIC
## <none>                   2156.6
## cos_td_rad             1 2160.9
## sin_td_rad             1 2160.2
## settlements:year_ct    1 2155.4
## year_ct:subunit        2 2156.3

remove settlements X year.

## Single term deletions
## 
## Model:
## richness ~ settlements + subunit * year_ct + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                 npar    AIC
## <none>               2155.4
## settlements        1 2268.7
## cos_td_rad         1 2159.7
## sin_td_rad         1 2158.9
## subunit:year_ct    2 2155.1

drop year X subunit.

## Single term deletions
## 
## Model:
## richness ~ settlements + subunit + year_ct + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           2155.1
## settlements    1 2268.6
## subunit        2 2162.2
## year_ct        1 2153.3
## cos_td_rad     1 2158.1
## sin_td_rad     1 2157.1

drop year.

## Single term deletions
## 
## Model:
## richness ~ settlements + subunit + cos_td_rad + sin_td_rad + 
##     (1 | site)
##             npar    AIC
## <none>           2153.3
## settlements    1 2266.8
## subunit        2 2160.3
## cos_td_rad     1 2156.1
## sin_td_rad     1 2155.3

Settlements, subunit and time of year remain. Final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + subunit + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2153.3   2182.0  -1069.6   2139.3      437 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7024 -0.6170 -0.1147  0.6142  3.9324 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.01029  0.1014  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.57413    0.19309   8.152 3.57e-16 ***
## settlementsNear  0.35218    0.03299  10.675  < 2e-16 ***
## subunitCarmel    0.09863    0.07477   1.319   0.1871    
## subunitGalilee  -0.18993    0.07519  -2.526   0.0115 *  
## cos_td_rad       0.30988    0.14275   2.171   0.0299 *  
## sin_td_rad      -0.29645    0.14822  -2.000   0.0455 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl cs_td_
## settlmntsNr -0.106                            
## subunitCrml -0.208  0.002                     
## subunitGall -0.212  0.009  0.504              
## cos_td_rad  -0.937  0.004  0.016  0.016       
## sin_td_rad   0.927 -0.006 -0.007 -0.018 -0.902
## $site
##                  (Intercept)
## Abirim          -0.081765292
## Aderet           0.056668537
## Beit Oren       -0.039180686
## Ein Yaakov      -0.022412507
## Givat Yearim    -0.078324707
## Givat Yeshayahu  0.103756948
## Goren           -0.012415542
## Iftach           0.192314597
## Kerem Maharal    0.111713024
## Kfar Shamai     -0.078372070
## Margaliot        0.009402784
## Nehusha         -0.030575156
## Nir Etzion      -0.135938432
## Ofer             0.082736130
## Ramat Raziel    -0.046440076
## Yagur           -0.014426673
## 
## with conditional variances for "site"
## $site

attempt to add year, see if significant:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: 
## richness ~ year_ct + settlements + subunit + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2155.1   2187.8  -1069.5   2139.1      436 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7081 -0.6057 -0.1045  0.6211  3.9155 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.0101   0.1005  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.564548   0.193930   8.068 7.17e-16 ***
## year_ct         -0.003309   0.007103  -0.466   0.6413    
## settlementsNear  0.352159   0.032993  10.674  < 2e-16 ***
## subunitCarmel    0.098329   0.074261   1.324   0.1855    
## subunitGalilee  -0.189970   0.074713  -2.543   0.0110 *  
## cos_td_rad       0.317522   0.143565   2.212   0.0270 *  
## sin_td_rad      -0.330836   0.165319  -2.001   0.0454 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) yer_ct sttlmN sbntCr sbntGl cs_td_
## year_ct      0.105                                   
## settlmntsNr -0.105  0.002                            
## subunitCrml -0.205  0.008  0.002                     
## subunitGall -0.210  0.001  0.009  0.503              
## cos_td_rad  -0.938 -0.112  0.004  0.015  0.016       
## sin_td_rad   0.873  0.445 -0.005 -0.003 -0.016 -0.853

year not significant, rightfully dropped. center time of year variables, highly correlated with intercept.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + subunit + cos_td_rad_c + sin_td_rad_c +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   2153.3   2182.0  -1069.6   2139.3      437 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7024 -0.6170 -0.1147  0.6142  3.9323 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.01029  0.1014  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.96790    0.05667  34.724   <2e-16 ***
## settlementsNear  0.35219    0.03299  10.675   <2e-16 ***
## subunitCarmel    0.09864    0.07476   1.319   0.1870    
## subunitGalilee  -0.18992    0.07518  -2.526   0.0115 *  
## cos_td_rad_c     0.30988    0.14275   2.171   0.0299 *  
## sin_td_rad_c    -0.29645    0.14822  -2.000   0.0455 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl cs_t__
## settlmntsNr -0.344                            
## subunitCrml -0.669  0.002                     
## subunitGall -0.667  0.009  0.504              
## cos_td_rd_c -0.020  0.004  0.016  0.016       
## sin_td_rd_c  0.014 -0.006 -0.007 -0.018 -0.902
## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
Observations 444
Dependent variable richness
Type Mixed effects generalized linear model
Family poisson
Link log
AIC 2153.298
BIC 2181.969
Pseudo-R² (fixed effects) 0.276
Pseudo-R² (total) 0.337
Fixed Effects
exp(Est.) S.E. z val. p
(Intercept) 7.156 0.057 34.724 0.000
settlementsNear 1.422 0.033 10.675 0.000
subunitCarmel 1.104 0.075 1.319 0.187
subunitGalilee 0.827 0.075 -2.526 0.012
cos_td_rad_c 1.363 0.143 2.171 0.030
sin_td_rad_c 0.743 0.148 -2.000 0.045
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.101
Grouping Variables
Group # groups ICC
site 16 0.010
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

statistically significant lower richness in Galilee and far from settlements. No significant change in richness over time.

geometric mean of abundance

Explore data. Exclude time of day because of high number of NAs.

## [1] "GEOMETRIC MEAN ABUNDANCE WITHOUT RARE SPECIES"
gma year_ct site settlements subunit td_sc cos_td_rad sin_td_rad
Min. : 1.000 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9884 Min. :-0.1671 Min. :-1.0000
1st Qu.: 2.000 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2710 1st Qu.: 0.5702 1st Qu.:-0.8215
Median : 2.531 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4922 Median : 0.8140 Median :-0.5808
Mean : 2.776 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3209 Mean : 0.7098 Mean :-0.5864
3rd Qu.: 3.195 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1028 3rd Qu.: 0.9413 3rd Qu.:-0.3375
Max. :10.301 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7134 Max. : 0.9976 Max. :-0.0688
NA NA (Other) :263 NA NA NA NA NA

Fit glm, compare gamma, gaussian (poisson inappropriate because response is not discrete)

Gamma seems better than gaussian. Remove rows 213, 376, 408. Fit fixed and mixed models.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0899589 (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, : Model is nearly unidentifiable: very large eigenvalue
##  - Rescale variables?

Mixed model did not converge, use glm:

## 
## Call:
## glm(formula = gma ~ settlements * year_ct + subunit * year_ct + 
##     cos_td_rad + sin_td_rad, family = Gamma, data = P.anal)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.87772  -0.27931  -0.06567   0.16264   1.24089  
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.673142   0.079096   8.510  2.9e-16 ***
## settlementsNear         -0.034145   0.023075  -1.480 0.139672    
## year_ct                 -0.001933   0.004132  -0.468 0.640065    
## subunitCarmel           -0.039019   0.027515  -1.418 0.156885    
## subunitGalilee          -0.006441   0.030167  -0.214 0.831037    
## cos_td_rad              -0.202066   0.056826  -3.556 0.000418 ***
## sin_td_rad               0.242919   0.062810   3.868 0.000127 ***
## settlementsNear:year_ct  0.003621   0.004024   0.900 0.368696    
## year_ct:subunitCarmel    0.006057   0.004857   1.247 0.213067    
## year_ct:subunitGalilee   0.002864   0.005285   0.542 0.588095    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.1299043)
## 
##     Null deviance: 51.879  on 440  degrees of freedom
## Residual deviance: 49.261  on 431  degrees of freedom
## AIC: 1148.2
## 
## Number of Fisher Scoring iterations: 5

perform stepwise model selection of Gamma model.

## Start:  AIC=1148.24
## gma ~ settlements * year_ct + subunit * year_ct + cos_td_rad + 
##     sin_td_rad
## 
##                       Df Deviance    AIC
## - year_ct:subunit      2   49.463 1145.8
## - settlements:year_ct  1   49.366 1147.0
## <none>                     49.261 1148.2
## - cos_td_rad           1   51.015 1159.7
## - sin_td_rad           1   51.211 1161.2
## 
## Step:  AIC=1146.08
## gma ~ settlements + year_ct + subunit + cos_td_rad + sin_td_rad + 
##     settlements:year_ct
## 
##                       Df Deviance    AIC
## - subunit              2   49.633 1143.4
## - settlements:year_ct  1   49.567 1144.9
## <none>                     49.463 1146.1
## - cos_td_rad           1   51.130 1156.9
## - sin_td_rad           1   51.322 1158.4
## 
## Step:  AIC=1143.62
## gma ~ settlements + year_ct + cos_td_rad + sin_td_rad + settlements:year_ct
## 
##                       Df Deviance    AIC
## - settlements:year_ct  1   49.740 1142.5
## <none>                     49.633 1143.6
## - cos_td_rad           1   51.282 1154.4
## - sin_td_rad           1   51.487 1156.0
## 
## Step:  AIC=1142.59
## gma ~ settlements + year_ct + cos_td_rad + sin_td_rad
## 
##               Df Deviance    AIC
## - year_ct      1   49.880 1141.7
## - settlements  1   49.977 1142.4
## <none>             49.740 1142.6
## - cos_td_rad   1   51.383 1153.4
## - sin_td_rad   1   51.586 1155.0
## 
## Step:  AIC=1141.85
## gma ~ settlements + cos_td_rad + sin_td_rad
## 
##               Df Deviance    AIC
## - settlements  1   50.116 1141.7
## <none>             49.880 1141.8
## - cos_td_rad   1   51.448 1152.1
## - sin_td_rad   1   51.631 1153.5
## 
## Step:  AIC=1141.98
## gma ~ cos_td_rad + sin_td_rad

Only time of year remains. This is the final model:

## 
## Call:
## glm(formula = gma ~ cos_td_rad + sin_td_rad, family = Gamma, 
##     data = P.anal)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.90336  -0.27930  -0.06894   0.16177   1.23098  
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.62188    0.07242   8.587  < 2e-16 ***
## cos_td_rad  -0.18869    0.05612  -3.362 0.000841 ***
## sin_td_rad   0.20456    0.05681   3.601 0.000354 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.1293445)
## 
##     Null deviance: 51.879  on 440  degrees of freedom
## Residual deviance: 50.116  on 438  degrees of freedom
## AIC: 1142
## 
## Number of Fisher Scoring iterations: 5

Not a great fit. None of the factors of interest (year, subunit, settlements) are significant.

Observations 441
Dependent variable gma
Type Generalized linear model
Family Gamma
Link inverse
χ²(2) 1.76
Pseudo-R² (Cragg-Uhler) 0.04
Pseudo-R² (McFadden) 0.01
AIC 1141.98
BIC 1158.33
Est. S.E. t val. p
(Intercept) 0.62 0.07 8.59 0.00
cos_td_rad -0.19 0.06 -3.36 0.00
sin_td_rad 0.20 0.06 3.60 0.00
Standard errors: MLE

abundance

Explore data

## [1] "ABUNDANCE WITHOUT RARE SPECIES"
abundance year_ct site settlements subunit td_sc cos_td_rad sin_td_rad
Min. : 2.00 Min. :0.0 Nir Etzion : 31 Far :224 Judean Highlands:149 Min. :-1.9884 Min. :-0.1671 Min. :-1.0000
1st Qu.: 16.00 1st Qu.:3.0 Ein Yaakov : 30 Near:220 Carmel :150 1st Qu.:-0.2710 1st Qu.: 0.5702 1st Qu.:-0.8215
Median : 25.50 Median :5.0 Givat Yearim : 30 NA Galilee :145 Median : 0.4922 Median : 0.8140 Median :-0.5808
Mean : 33.23 Mean :4.8 Givat Yeshayahu: 30 NA NA Mean : 0.3209 Mean : 0.7098 Mean :-0.5864
3rd Qu.: 38.00 3rd Qu.:7.0 Goren : 30 NA NA 3rd Qu.: 1.1028 3rd Qu.: 0.9413 3rd Qu.:-0.3375
Max. :345.00 Max. :9.0 Kerem Maharal : 30 NA NA Max. : 1.7134 Max. : 0.9976 Max. :-0.0688
NA NA (Other) :263 NA NA NA NA NA

Some outliers with total abundance >100. Examine:

##              subunit             point_name            datetime monitors_name
##  1: Judean Highlands    Givat Yearim Near 1 2017-05-04 08:33:00   Eran Banker
##  2: Judean Highlands  Givat Yeshayahu Far 2 2017-04-20 10:20:00   Eran Banker
##  3: Judean Highlands  Givat Yeshayahu Far 3 2017-04-20 10:55:00   Eran Banker
##  4: Judean Highlands Givat Yeshayahu Near 1 2017-04-20 06:25:00   Eran Banker
##  5: Judean Highlands Givat Yeshayahu Near 2 2017-04-20 06:50:00   Eran Banker
##  6: Judean Highlands Givat Yeshayahu Near 3 2017-04-20 07:15:00   Eran Banker
##  7: Judean Highlands    Ramat Raziel Near 3 2017-05-16 07:15:00   Eran Banker
##  8: Judean Highlands          Aderet Near 2 2019-05-26 06:52:00   Eran Banker
##  9:           Carmel       Beit Oren Near 1 2019-04-19 07:49:00         Other
## 10:           Carmel       Beit Oren Near 3 2019-04-19 07:35:00         Other
## 11:           Carmel    Kerem Maharal Far 2 2019-05-07 08:01:00   Sassi Haham
## 12:           Carmel   Kerem Maharal Near 2 2019-05-07 08:34:00   Sassi Haham
## 13:           Carmel   Kerem Maharal Near 3 2021-04-17 07:41:00   Eliraz Dvir
## 14:           Carmel      Nir Etzion Far 11 2021-04-23 07:24:00   Eliraz Dvir
##     richness       gma abundance
##  1:       13  4.343684       112
##  2:       14  5.504450       194
##  3:        9  5.768372       118
##  4:       16  7.879133       177
##  5:       15  6.681847       139
##  6:       16  9.098580       221
##  7:       16  3.761509       105
##  8:       15  5.408017       106
##  9:        6  5.682233       130
## 10:       10  7.338970       254
## 11:        7  3.351723       103
## 12:       11  4.404296       134
## 13:       11 10.301194       345
## 14:       11  2.664203       122

Exclude 5 plots with high abundance (>150) to improve model fit.

PHI>1, hence choose negative binomial. Fit fixed and mixed models. Choose mixed model if possible, otherwise choose a model with fixed-effects only.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00382071 (tol = 0.002, component 1)

mixed model converged. Perform stepwise model selection of mixed model.

## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + subunit * year_ct + cos_td_rad + 
##     sin_td_rad + (1 | site)
##                     npar    AIC
## <none>                   3766.9
## cos_td_rad             1 3799.4
## sin_td_rad             1 3806.0
## settlements:year_ct    1 3765.5
## year_ct:subunit        2 3773.0

drop settlements X year because \(\Delta AIC<2\)

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00338774 (tol = 0.002, component 1)
## Single term deletions
## 
## Model:
## abundance ~ settlements + subunit * year_ct + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                 npar    AIC
## <none>               3765.5
## settlements        1 3832.2
## cos_td_rad         1 3798.1
## sin_td_rad         1 3804.7
## subunit:year_ct    2 3771.5

subunit, settlement, year, subunit X year and time of year remain. The final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.1798)  ( log )
## Formula: 
## abundance ~ settlements + subunit * year_ct + cos_td_rad + sin_td_rad +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3765.5   3810.5  -1871.7   3743.5      433 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5234 -0.7191 -0.2314  0.3733  7.0049 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02306  0.1519  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             0.950424   0.370957   2.562   0.0104 *  
## settlementsNear         0.467853   0.056287   8.312  < 2e-16 ***
## subunitCarmel           0.157585   0.167980   0.938   0.3482    
## subunitGalilee          0.056810   0.168782   0.337   0.7364    
## year_ct                 0.007430   0.019263   0.386   0.6997    
## cos_td_rad              1.542164   0.254486   6.060 1.36e-09 ***
## sin_td_rad             -1.954247   0.303854  -6.432 1.26e-10 ***
## subunitCarmel:year_ct  -0.003339   0.024747  -0.135   0.8927    
## subunitGalilee:year_ct -0.065088   0.025284  -2.574   0.0100 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl yer_ct cs_td_ sn_td_ sbnC:_
## settlmntsNr -0.125                                                 
## subunitCrml -0.412  0.027                                          
## subunitGall -0.438  0.044  0.571                                   
## year_ct     -0.228  0.033  0.467  0.453                            
## cos_td_rad  -0.924  0.038  0.164  0.184  0.058                     
## sin_td_rad   0.881 -0.036 -0.210 -0.248  0.108 -0.853              
## sbntCrml:y_  0.379 -0.027 -0.712 -0.456 -0.651 -0.178  0.262       
## sbntGll:yr_  0.411 -0.033 -0.442 -0.722 -0.641 -0.218  0.293  0.619
## $site
##                  (Intercept)
## Abirim          -0.102757905
## Aderet           0.154367270
## Beit Oren        0.076805586
## Ein Yaakov       0.054580098
## Givat Yearim    -0.194333521
## Givat Yeshayahu  0.228820719
## Goren           -0.058941715
## Iftach           0.112072542
## Kerem Maharal    0.195872158
## Kfar Shamai     -0.009153433
## Margaliot        0.006079901
## Nehusha         -0.065768490
## Nir Etzion      -0.124436590
## Ofer            -0.059810496
## Ramat Raziel    -0.121861390
## Yagur           -0.087359448
## 
## with conditional variances for "site"
## $site

Not a great fit, high residuals. center time of year variables, highly correlated with intercept.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.1798)  ( log )
## Formula: abundance ~ settlements + subunit * year_ct + cos_td_rad_c +  
##     sin_td_rad_c + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3765.5   3810.5  -1871.7   3743.5      433 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5234 -0.7191 -0.2314  0.3733  7.0049 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02306  0.1519  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)             3.190985   0.128752  24.784  < 2e-16 ***
## settlementsNear         0.467853   0.056287   8.312  < 2e-16 ***
## subunitCarmel           0.157587   0.167980   0.938    0.348    
## subunitGalilee          0.056815   0.168782   0.337    0.736    
## year_ct                 0.007431   0.019263   0.386    0.700    
## cos_td_rad_c            1.542160   0.254480   6.060 1.36e-09 ***
## sin_td_rad_c           -1.954244   0.303845  -6.432 1.26e-10 ***
## subunitCarmel:year_ct  -0.003339   0.024747  -0.135    0.893    
## subunitGalilee:year_ct -0.065089   0.025284  -2.574    0.010 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl yer_ct cs_t__ sn_t__ sbnC:_
## settlmntsNr -0.257                                                 
## subunitCrml -0.667  0.027                                          
## subunitGall -0.661  0.044  0.571                                   
## year_ct     -0.725  0.033  0.467  0.453                            
## cos_td_rd_c -0.079  0.038  0.164  0.184  0.058                     
## sin_td_rd_c -0.042 -0.036 -0.210 -0.248  0.108 -0.853              
## sbntCrml:y_  0.479 -0.027 -0.712 -0.456 -0.651 -0.178  0.262       
## sbntGll:yr_  0.474 -0.033 -0.442 -0.722 -0.641 -0.218  0.293  0.619

only one level of the interaction term subunit X year is significant, and this too is marginal. subunit and year terms are not significant. \(\Delta AIC\) was 2.1. remove interaction term to simplify model.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.115)  ( log )
## Formula: abundance ~ settlements + subunit + year_ct + cos_td_rad_c +  
##     sin_td_rad_c + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3771.4   3808.3  -1876.7   3753.4      435 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5374 -0.7305 -0.2353  0.3665  7.6820 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02485  0.1577  
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      3.29178    0.11263  29.225  < 2e-16 ***
## settlementsNear  0.46421    0.05677   8.176 2.93e-16 ***
## subunitCarmel    0.14116    0.12125   1.164   0.2443    
## subunitGalilee  -0.24899    0.12007  -2.074   0.0381 *  
## year_ct         -0.01258    0.01372  -0.917   0.3593    
## cos_td_rad_c     1.42120    0.25068   5.669 1.43e-08 ***
## sin_td_rad_c    -1.77544    0.29378  -6.043 1.51e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl yer_ct cs_t__
## settlmntsNr -0.276                                   
## subunitCrml -0.546  0.011                            
## subunitGall -0.551  0.028  0.506                     
## year_ct     -0.589  0.014  0.006 -0.004              
## cos_td_rd_c  0.051  0.032  0.048  0.040 -0.155       
## sin_td_rd_c -0.263 -0.027 -0.026 -0.056  0.508 -0.845
## Single term deletions
## 
## Model:
## abundance ~ settlements + subunit + year_ct + cos_td_rad_c + 
##     sin_td_rad_c + (1 | site)
##              npar    AIC
## <none>            3771.4
## settlements     1 3835.9
## subunit         2 3775.7
## year_ct         1 3770.2
## cos_td_rad_c    1 3799.6
## sin_td_rad_c    1 3805.7

drop year.

## Single term deletions
## 
## Model:
## abundance ~ settlements + subunit + cos_td_rad_c + sin_td_rad_c + 
##     (1 | site)
##              npar    AIC
## <none>            3770.2
## settlements     1 3834.9
## subunit         2 3774.5
## cos_td_rad_c    1 3797.6
## sin_td_rad_c    1 3808.5

final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(3.1104)  ( log )
## Formula: abundance ~ settlements + subunit + cos_td_rad_c + sin_td_rad_c +  
##     (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##   3770.2   3803.0  -1877.1   3754.2      436 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.5344 -0.7403 -0.2430  0.3884  7.5406 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.02529  0.159   
## Number of obs: 444, groups:  site, 16
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      3.23126    0.09149  35.316  < 2e-16 ***
## settlementsNear  0.46494    0.05681   8.185 2.73e-16 ***
## subunitCarmel    0.14175    0.12198   1.162   0.2452    
## subunitGalilee  -0.24955    0.12079  -2.066   0.0388 *  
## cos_td_rad_c     1.38684    0.24778   5.597 2.18e-08 ***
## sin_td_rad_c    -1.63989    0.25301  -6.482 9.08e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN sbntCr sbntGl cs_t__
## settlmntsNr -0.331                            
## subunitCrml -0.672  0.011                     
## subunitGall -0.685  0.028  0.506              
## cos_td_rd_c -0.050  0.034  0.049  0.041       
## sin_td_rd_c  0.053 -0.040 -0.034 -0.063 -0.900
## $site
##                 (Intercept)
## Abirim          -0.15062404
## Aderet           0.15414583
## Beit Oren        0.07560413
## Ein Yaakov       0.06292471
## Givat Yearim    -0.18382923
## Givat Yeshayahu  0.24855515
## Goren           -0.04946051
## Iftach           0.10818494
## Kerem Maharal    0.19785111
## Kfar Shamai     -0.02325790
## Margaliot        0.05424765
## Nehusha         -0.09644283
## Nir Etzion      -0.14968633
## Ofer            -0.04582119
## Ramat Raziel    -0.12115394
## Yagur           -0.07683652
## 
## with conditional variances for "site"
## $site

Interpretation of abundance model:

Observations 444
Dependent variable abundance
Type Mixed effects generalized linear model
Family Negative Binomial(3.1104)
Link log
AIC 3770.248
BIC 3803.015
Pseudo-R² (fixed effects) 0.674
Pseudo-R² (total) 0.820
Fixed Effects
Est. S.E. z val. p
(Intercept) 3.231 0.091 35.316 0.000
settlementsNear 0.465 0.057 8.185 0.000
subunitCarmel 0.142 0.122 1.162 0.245
subunitGalilee -0.250 0.121 -2.066 0.039
cos_td_rad_c 1.387 0.248 5.597 0.000
sin_td_rad_c -1.640 0.253 -6.482 0.000
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.159
Grouping Variables
Group # groups ICC
site 16 0.065
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

significantly lower abundance in Galilee subunit and far from settlements. No significant temporal trend.

community analysis using package MVabund

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Turdus.merula, Streptopelia.decaocto, Passer.domesticus, Pycnonotus.xanthopygos, Columba.livia, Parus.major, Apus.apus, Garrulus.glandarius, Cinnyris.osea, Spilopelia.senegalensis, Merops.apiaster were included in the plot 
## (the variables with highest total abundance).

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR
## Only the variables Curruca.melanocephala, Turdus.merula, Streptopelia.decaocto, Passer.domesticus, Pycnonotus.xanthopygos, Columba.livia, Parus.major, Apus.apus, Garrulus.glandarius, Cinnyris.osea, Spilopelia.senegalensis, Merops.apiaster were included in the plot 
## (the variables with highest total abundance).

There are few observations with counts of >60. Examine these:

##              point_name            datetime             SciName monitors_name
## 1:  Kerem Maharal Far 2 2019-05-07 08:01:00     Merops apiaster   Sassi Haham
## 2: Kerem Maharal Near 2 2019-05-07 08:34:00     Merops apiaster   Sassi Haham
## 3: Kerem Maharal Near 3 2021-04-17 07:41:00     Chloris chloris   Eliraz Dvir
## 4: Kerem Maharal Near 3 2021-04-17 07:41:00 Garrulus glandarius   Eliraz Dvir
## 5:     Beit Oren Near 3 2019-04-19 07:35:00     Curruca curruca         Other
## 6:     Beit Oren Near 1 2019-04-19 07:49:00     Curruca curruca         Other
##    notes rad_0_20 rad_20_100 rad_100_250 rad_over_250
## 1:  <NA>        0         30          40            0
## 2:  <NA>        0         30          40            0
## 3:              0         80           0            0
## 4:              0          0         150            0
## 5:  <NA>       12         30         100            0
## 6:  <NA>       14         35          50            0

G. glandarius observation seems highly irregular. Remove altogether, might be a mistake. C. curruca observations are due to migration waves, this species is breeding mainly in the far North. Convert to presence observation (count=1).

start model specification:

##        nb        po 
##  806.7111 1215.6466
## [1] "POISSON"

## [1] "NEGATIVE BINOMIAL"

negative binomial model is better than poisson according to residuals and AIC comparison.

##        nb        po       nb1 
##  806.7111 1215.6466  800.2988

The addition of the explanatory variable ‘site’ is improving the AIC of the model. Prefer to exclude site, for simplification. stepwise selection of model:

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements * year_ct + subunit * year_ct + cos_td_rad + 
##     sin_td_rad
##                     Df   AIC
## <none>                 25815
## cos_td_rad          32 25930
## sin_td_rad          32 25970
## settlements:year_ct 32 25793
## year_ct:subunit     64 25849

drop settlements X year.

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements + subunit * year_ct + cos_td_rad + 
##     sin_td_rad
##                 Df   AIC
## <none>             25793
## settlements     32 26629
## cos_td_rad      32 25907
## sin_td_rad      32 25950
## subunit:year_ct 64 25839

final model includes settlements, year, subunit, subunit X year, sampling time of year.

## 
## Test statistics:
##                        wald value Pr(>wald)    
## (Intercept)                15.681     0.001 ***
## settlementsNear            29.720     0.001 ***
## subunitCarmel              12.075     0.001 ***
## subunitGalilee              8.457     0.010 ** 
## year_ct                     7.356     0.022 *  
## cos_td_rad                 13.144     0.001 ***
## sin_td_rad                 14.543     0.001 ***
## subunitCarmel:year_ct       8.126     0.002 ** 
## subunitGalilee:year_ct      8.569     0.002 ** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  42.28, p-value: 0.001 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ settlements + subunit * year_ct + cos_td_rad + sin_td_rad
## 
## Multivariate test:
##                 Res.Df Df.diff   Dev Pr(>Dev)   
## (Intercept)        443                          
## settlements        442       1 798.7     0.01 **
## subunit            440       2 472.0     0.01 **
## year_ct            439       1 183.1     0.01 **
## cos_td_rad         438       1  67.0     0.01 **
## sin_td_rad         437       1 192.9     0.01 **
## subunit:year_ct    435       2 174.0     0.01 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##                 Acridotheres.tristis          Alectoris.chukar         
##                                  Dev Pr(>Dev)              Dev Pr(>Dev)
## (Intercept)                                                            
## settlements                   79.707     0.01           38.366     0.01
## subunit                       39.138     0.01           10.607     0.11
## year_ct                       29.844     0.01            9.298     0.13
## cos_td_rad                     3.002     0.98            2.276     0.99
## sin_td_rad                      5.64     0.40            0.596     1.00
## subunit:year_ct                8.217     0.42            2.436     1.00
##                 Apus.apus          Bubulcus.ibis          Carduelis.carduelis
##                       Dev Pr(>Dev)           Dev Pr(>Dev)                 Dev
## (Intercept)                                                                  
## settlements         2.336     0.83         0.848     0.89                8.13
## subunit             8.999     0.24        11.606     0.09              21.019
## year_ct            12.567     0.04         5.949     0.44               6.527
## cos_td_rad          0.182     1.00         5.318     0.62               0.389
## sin_td_rad          20.69     0.01          0.59     1.00                1.61
## subunit:year_ct     5.421     0.86         0.513     1.00              12.307
##                          Cecropis.daurica          Chloris.chloris         
##                 Pr(>Dev)              Dev Pr(>Dev)             Dev Pr(>Dev)
## (Intercept)                                                                
## settlements         0.16           33.414     0.01           30.55     0.01
## subunit             0.01            1.066     0.94           0.613     0.94
## year_ct             0.33            1.257     0.98           5.072     0.54
## cos_td_rad          1.00            0.127     1.00           0.072     1.00
## sin_td_rad          0.98            3.044     0.90           0.112     1.00
## subunit:year_ct     0.14             0.41     1.00          20.167     0.02
##                 Cinnyris.osea          Circaetus.gallicus         
##                           Dev Pr(>Dev)                Dev Pr(>Dev)
## (Intercept)                                                       
## settlements            41.948     0.01              1.493     0.84
## subunit                17.867     0.01             12.886     0.05
## year_ct                 3.939     0.67              2.786     0.89
## cos_td_rad              1.651     1.00              0.159     1.00
## sin_td_rad               2.01     0.96              2.586     0.92
## subunit:year_ct        12.677     0.14              0.613     1.00
##                 Clamator.glandarius          Columba.livia         
##                                 Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                        
## settlements                   0.518     0.91         6.276     0.26
## subunit                      12.124     0.09        19.317     0.01
## year_ct                       0.336     1.00        20.916     0.01
## cos_td_rad                    0.853     1.00          0.01     1.00
## sin_td_rad                    0.216     1.00        11.564     0.05
## subunit:year_ct               3.244     0.99         2.764     1.00
##                 Corvus.cornix          Corvus.monedula          Curruca.curruca
##                           Dev Pr(>Dev)             Dev Pr(>Dev)             Dev
## (Intercept)                                                                    
## settlements            22.932     0.01           0.428     0.91            1.46
## subunit                47.477     0.01          22.714     0.01           5.615
## year_ct                 0.695     1.00           0.301     1.00          18.262
## cos_td_rad              1.013     1.00           0.184     1.00          19.292
## sin_td_rad              0.157     1.00           0.053     1.00           9.842
## subunit:year_ct         7.109     0.63           5.316     0.88           0.076
##                          Curruca.melanocephala          Dendrocopos.syriacus
##                 Pr(>Dev)                   Dev Pr(>Dev)                  Dev
## (Intercept)                                                                 
## settlements         0.84                 21.24     0.01                9.285
## subunit             0.60                41.067     0.01                3.648
## year_ct             0.02                 0.747     1.00                0.002
## cos_td_rad          0.01                   0.3     1.00                1.417
## sin_td_rad          0.10                 0.429     1.00                 3.35
## subunit:year_ct     1.00                 9.877     0.23                0.232
##                          Falco.tinnunculus          Garrulus.glandarius
##                 Pr(>Dev)               Dev Pr(>Dev)                 Dev
## (Intercept)                                                            
## settlements         0.12             1.849     0.84               3.502
## subunit             0.86             9.122     0.24              24.625
## year_ct             1.00             0.543     1.00               4.924
## cos_td_rad          1.00             0.078     1.00               1.156
## sin_td_rad          0.88             0.641     1.00               1.081
## subunit:year_ct     1.00             5.248     0.90               5.242
##                          Hirundo.rustica          Iduna.pallida         
##                 Pr(>Dev)             Dev Pr(>Dev)           Dev Pr(>Dev)
## (Intercept)                                                             
## settlements         0.56            2.62     0.78         0.097     0.91
## subunit             0.01           3.962     0.86         1.537     0.94
## year_ct             0.54           0.561     1.00         7.746     0.26
## cos_td_rad          1.00           0.052     1.00         0.555     1.00
## sin_td_rad          0.99           0.115     1.00        18.574     0.01
## subunit:year_ct     0.90           20.45     0.02          1.56     1.00
##                 Merops.apiaster          Parus.major          Passer.domesticus
##                             Dev Pr(>Dev)         Dev Pr(>Dev)               Dev
## (Intercept)                                                                    
## settlements               0.328     0.91       3.908     0.56           166.539
## subunit                   7.149     0.44      25.606     0.01            21.305
## year_ct                   4.191     0.62       0.176     1.00             1.781
## cos_td_rad                 0.02     1.00       3.376     0.95             0.485
## sin_td_rad               35.395     0.01       7.701     0.19             2.962
## subunit:year_ct           3.013     0.99       6.652     0.72             2.283
##                          Prinia.gracilis          Psittacula.krameri         
##                 Pr(>Dev)             Dev Pr(>Dev)                Dev Pr(>Dev)
## (Intercept)                                                                  
## settlements         0.01          48.787     0.01             15.594     0.01
## subunit             0.01           1.864     0.94             14.393     0.04
## year_ct             0.98          16.036     0.02              1.082     0.98
## cos_td_rad          1.00           0.633     1.00              0.793     1.00
## sin_td_rad          0.90           1.004     0.99              1.724     0.98
## subunit:year_ct     1.00          13.996     0.07              3.863     0.97
##                 Pycnonotus.xanthopygos          Spilopelia.senegalensis
##                                    Dev Pr(>Dev)                     Dev
## (Intercept)                                                            
## settlements                     45.339     0.01                 157.013
## subunit                          25.29     0.01                  27.046
## year_ct                           2.87     0.87                   2.224
## cos_td_rad                      11.394     0.01                   0.333
## sin_td_rad                       0.499     1.00                   0.603
## subunit:year_ct                   3.75     0.97                   4.692
##                          Streptopelia.decaocto          Streptopelia.turtur
##                 Pr(>Dev)                   Dev Pr(>Dev)                 Dev
## (Intercept)                                                                
## settlements         0.01                 1.955     0.84               1.175
## subunit             0.01                12.168     0.09               6.566
## year_ct             0.93                 0.068     1.00              18.089
## cos_td_rad          1.00                 6.672     0.35               3.045
## sin_td_rad          1.00                14.008     0.02               1.847
## subunit:year_ct     0.90                 1.683     1.00               1.887
##                          Troglodytes.troglodytes          Turdus.merula
##                 Pr(>Dev)                     Dev Pr(>Dev)           Dev
## (Intercept)                                                            
## settlements         0.84                  26.472     0.01         3.926
## subunit             0.47                   4.411     0.77         2.142
## year_ct             0.02                   0.576     1.00         3.137
## cos_td_rad          0.98                    0.48     1.00         0.347
## sin_td_rad          0.97                  10.786     0.05         33.19
## subunit:year_ct     1.00                   5.003     0.90         1.539
##                          Vanellus.spinosus         
##                 Pr(>Dev)               Dev Pr(>Dev)
## (Intercept)                                        
## settlements         0.56            20.629     0.01
## subunit             0.94             9.058     0.24
## year_ct             0.85             0.554     1.00
## cos_td_rad          1.00             1.337     1.00
## sin_td_rad          0.01             0.243     1.00
## subunit:year_ct     1.00             1.766     1.00
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 99 iterations via PIT-trap resampling.

Factors settlements, year, subunit, subunit X year, time of year and site have a statistically significant effect on community composition. settlements X year nearly significant.

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [[1]]

## 
## [[2]]

## 
## [[3]]

## [[1]]

## 
## [[2]]

## 
## [[3]]

Significant negative temporal effect on graceful prinia, European turtle dove and barn swallow; positive effect on common myna. Significant effect of settlement proximity: most of the synanthrope / invasive species are near settlements.