library(plm)
library(knitr)
library(stringr)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.3. https://CRAN.R-project.org/package=stargazer
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plm':
##
## between, lag, lead
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
—- Data —-
df <- load('Ozone_Drought_Final.RData')
df2 <- combinedAir.final %>%
mutate(month = as.numeric(month))
df3 <- read.csv("region_code.csv")
df2$State.Code = as.numeric(df2$State.Code)
df4 <- df2 %>%
merge(df3, by = "State.Code")
— State per Region —
# Northeast
ne <- df4 %>%
filter(noaa_region == "northeast")
table(ne$State.Name)
##
## Connecticut Delaware Maine Maryland Massachusetts
## 45237 36522 72052 81900 80822
## New Hampshire New Jersey New York Pennsylvania Rhode Island
## 54437 92562 204367 266427 12291
## Vermont
## 13608
# Northern Rockies
nr <- df4 %>%
filter(noaa_region == "northern_rockies")
table(nr$State.Name)
##
## Montana Nebraska North Dakota South Dakota Wyoming
## 27445 20570 53715 29065 96111
# Northwest
nw <- df4 %>%
filter(noaa_region == "northwest")
table(nw$State.Name)
##
## Idaho Oregon Washington
## 16726 29932 58680
# Ohio Valley
ov <- df4 %>%
filter(noaa_region == "ohio_valley")
table(ov$State.Name)
##
## Illinois Indiana Kentucky Missouri Ohio
## 222933 159538 145986 108163 210218
## Tennessee West Virginia
## 122048 37594
# South
sth <- df4 %>%
filter(noaa_region == "south")
table(sth$State.Name)
##
## Arkansas Kansas Louisiana Mississippi Oklahoma Texas
## 49622 59176 168012 49329 141245 484102
# Southeast
se <- df4 %>%
filter(noaa_region == "southeast")
table(se$State.Name)
##
## Alabama Florida Georgia North Carolina South Carolina
## 110697 373548 98400 183364 107455
## Virginia
## 108927
# Southwest
sw <- df4 %>%
filter(noaa_region == "southwest")
table(sw$State.Name)
##
## Arizona Colorado New Mexico Utah
## 256448 185357 146628 95097
# Upper Midwest
uw <- df4 %>%
filter(noaa_region == "upper_midwest")
table(uw$State.Name)
##
## Iowa Michigan Minnesota Wisconsin
## 76215 110141 61660 134339
# West
wst <- df4 %>%
filter(noaa_region == "west")
table(wst$State.Name)
##
## California Nevada
## 1142955 147761