## Loading required package: readxl
## Loading required package: lubridate
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:data.table':
## 
##     hour, isoweek, mday, minute, month, quarter, second, wday, week,
##     yday, year
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
## Loading required package: solartime
## - Winter data excluded.
## - The counts of all passing species (not resident nor breeding) were set to zero. Abreed_and_non_breed contains the non-breeders as well.
## - White stork observations removed altogether - currently (2023) species is breeding in Israel very scarcely (<10 pairs) and only in the Golan heights.
## Very large stork numbers observed near plots are migrants.

Negev Highlands

Factors are proximity to settlements, habitat (slope vs. wadi but only far from settlements, near has only slope) and time. Total 5 campaigns, one of which is pilot and will be included only for temporal analysis (separate model without habitat for temporal analysis). 5 sites with 9 plots per site (3 for each habitat X proximity combination).

Model gma, abundance and richness

Richness done with rare species. Abundance and mean abundance done without rare species. Full models include cosine and sine of the time difference from June 21st (in radians).

richness

Explore data and plot mean-variance plot. There is a strong relationship, indicating that employing GLMs is the proper way to analyze, rather than OLS (assumption of homogeneity is violated).

## [1] "RICHNESS WITH RARE SPECIES"

## Overlapping points were shifted along the y-axis to make them visible.
## 
##  PIPING TO 2nd MVFACTOR
## Only the variables Passer.domesticus, Galerida.cristata, Passer.hispaniolensis, Calandrella.brachydactyla, Streptopelia.decaocto, Columba.livia, Ammomanes.deserti, Pycnonotus.xanthopygos, Spilopelia.senegalensis, Corvus.cornix, Curruca.curruca, Alectoris.chukar were included in the plot 
## (the variables with highest total abundance).
richness year_ct site settlements habitat td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun monitors_name wind precipitation temperature clouds
Min. : 1.000 Min. :0.000 Sde Boker:42 Far :134 Slope:120 Min. :-1.60673 Min. :0.004304 Min. :-1.0000 Length:210 Min. :0.2054 Min. :-0.2965 Eyal Shochat: 41 0 : 0 0 : 0 0 : 0 0 : 0
1st Qu.: 4.000 1st Qu.:2.000 Yeruham :42 Near: 76 Wadi : 60 1st Qu.:-1.22033 1st Qu.:0.177649 1st Qu.:-0.9841 Class :difftime 1st Qu.:0.7812 1st Qu.: 0.1758 Other : 4 1 : 0 3 : 0 1 : 0 1 : 0
Median : 5.000 Median :4.000 Bislach :36 NA NA’s : 30 Median :-0.76238 Median :0.375715 Median :-0.9267 Mode :numeric Median :0.9157 Median : 0.4019 Adi Domer : 0 2 : 0 NA’s:210 2 : 0 2 : 0
Mean : 5.995 Mean :4.286 Ezuz :36 NA NA Mean :-0.47336 Mean :0.440753 Mean :-0.8039 NA Mean :0.8356 Mean : 0.4129 Asaf Mayrose: 0 3 : 0 NA 3 : 0 3 : 0
3rd Qu.: 7.000 3rd Qu.:6.000 Merhav Am:36 NA NA 3rd Qu.: 0.07243 3rd Qu.:0.690173 3rd Qu.:-0.7236 NA 3rd Qu.:0.9813 3rd Qu.: 0.6242 Eliraz Dvir : 0 NA’s:210 NA NA’s:210 NA’s:210
Max. :16.000 Max. :8.000 Ashalim : 6 NA NA Max. : 2.97281 Max. :0.999407 Max. : 0.4787 NA Max. :1.0000 Max. : 0.9787 (Other) : 0 NA NA NA NA
NA NA (Other) :12 NA NA NA NA NA NA NA’s :75 NA’s :75 NA’s :165 NA NA NA NA

no observation for all 4 weather variables. many NAs for sampling time of day variables.exclude from model. some very high observations for C. brachydactyla and P. hispaniolensis. consider removing in abundance and gma analysis.

richness year_ct site settlements habitat td_sc cos_td_rad sin_td_rad h_from_sunrise cos_hsun sin_hsun
richness 1.0000000 0.1174052 -0.0518983 0.4198064 0.0673781 0.1018583 0.1138871 0.0850412 0.0381659 0.0625278 0.0776173
year_ct 0.1174052 1.0000000 -0.0195456 -0.0866957 0.0000000 -0.2769423 -0.2743588 -0.2470754 -0.2130095 0.1769441 -0.2089485
site -0.0518983 -0.0195456 1.0000000 -0.0050223 0.0000000 0.0012529 0.0254386 -0.0200397 -0.0591920 0.0649672 -0.0532192
settlements 0.4198064 -0.0866957 -0.0050223 1.0000000 -0.5062633 -0.0578505 -0.0886498 -0.0259035 0.1001375 0.0051981 0.1351982
habitat 0.0673781 0.0000000 0.0000000 -0.5062633 1.0000000 0.0215880 0.0428524 -0.0015303 0.0339170 -0.0318150 0.0277413
td_sc 0.1018583 -0.2769423 0.0012529 -0.0578505 0.0215880 1.0000000 0.9677863 0.9679062 0.0805063 -0.0915903 0.0697040
cos_td_rad 0.1138871 -0.2743588 0.0254386 -0.0886498 0.0428524 0.9677863 1.0000000 0.8777655 0.0850144 -0.0994639 0.0727109
sin_td_rad 0.0850412 -0.2470754 -0.0200397 -0.0259035 -0.0015303 0.9679062 0.8777655 1.0000000 0.0797859 -0.0800387 0.0732132
h_from_sunrise 0.0381659 -0.2130095 -0.0591920 0.1001375 0.0339170 0.0805063 0.0850144 0.0797859 1.0000000 -0.9348973 0.9913101
cos_hsun 0.0625278 0.1769441 0.0649672 0.0051981 -0.0318150 -0.0915903 -0.0994639 -0.0800387 -0.9348973 1.0000000 -0.8826232
sin_hsun 0.0776173 -0.2089485 -0.0532192 0.1351982 0.0277413 0.0697040 0.0727109 0.0732132 0.9913101 -0.8826232 1.0000000

Fit Poisson glm, check for existence of overdispersion

## [1] "Estimating overdispersion parameter phi: (Res. Dev.)/(n-p) where n=number of observations; p=number of parameters in the model."
## [1] "od = 0.998947985653261"

Overdispersion parameter is approximately 1. Compare Poisson and negative binomial.

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached

## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace =
## control$trace > : iteration limit reached
##       df      AIC
## m0.po 12 811.0396
## m0.nb 13 813.0416
## [1] "poisson"

## [1] "neg bin"

negative binomial did not converge, probably because there is no overdispersion and poisson is better. remove outliers

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00312836 (tol = 0.002, component 1)

go with mixed model.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements * year_ct + habitat * year_ct + cos_td_rad +  
##     sin_td_rad + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##    811.3    840.0   -396.6    793.3      171 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8377 -0.6935 -0.0927  0.5519  3.2457 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.000318 0.01783 
## Number of obs: 180, groups:  site, 5
## 
## Fixed effects:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)              1.087557   0.336553   3.231  0.00123 **
## settlementsNear          0.262826   0.195240   1.346  0.17825   
## year_ct                 -0.005147   0.029158  -0.177  0.85988   
## habitatWadi              0.244747   0.198249   1.235  0.21700   
## cos_td_rad               0.480798   0.229260   2.097  0.03598 * 
## sin_td_rad              -0.204783   0.270718  -0.756  0.44938   
## settlementsNear:year_ct  0.067014   0.035075   1.911  0.05606 . 
## year_ct:habitatWadi      0.030698   0.036264   0.847  0.39727   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct hbttWd cs_td_ sn_td_ sttN:_
## settlmntsNr -0.501                                          
## year_ct     -0.340  0.691                                   
## habitatWadi -0.348  0.606  0.685                            
## cos_td_rad  -0.874  0.166 -0.022 -0.001                     
## sin_td_rad   0.856 -0.145  0.133  0.007 -0.891              
## sttlmntsN:_  0.430 -0.913 -0.778 -0.566 -0.111  0.097       
## yr_ct:hbttW  0.319 -0.556 -0.756 -0.912  0.002 -0.007  0.626
## optimizer (Nelder_Mead) convergence code: 0 (OK)
## Model failed to converge with max|grad| = 0.00312836 (tol = 0.002, component 1)

perform stepwise model selection of poisson mixed model.

## boundary (singular) fit: see help('isSingular')
## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + habitat * year_ct + cos_td_rad + 
##     sin_td_rad + (1 | site)
##                     npar    AIC
## <none>                   811.26
## cos_td_rad             1 813.31
## sin_td_rad             1 809.83
## settlements:year_ct    1 812.92
## year_ct:habitat        1 809.98

remove sine of time of year.

## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + habitat * year_ct + cos_td_rad + 
##     (1 | site)
##                     npar    AIC
## <none>                   809.83
## cos_td_rad             1 816.87
## settlements:year_ct    1 811.84
## year_ct:habitat        1 808.54

drop year X habitat. define model without pilot observations in which habitat is NA, to continue with model selection (otherwise throws error). Attempt also model with pilot and without habitat variable.

## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + habitat + cos_td_rad + (1 | 
##     site)
##                     npar    AIC
## <none>                   808.54
## habitat                1 831.12
## cos_td_rad             1 815.63
## settlements:year_ct    1 810.13
## Single term deletions
## 
## Model:
## richness ~ settlements * year_ct + cos_td_rad + (1 | site)
##                     npar    AIC
## <none>                   962.12
## cos_td_rad             1 970.42
## settlements:year_ct    1 960.12

interaction of settlements and year drops in both models.

## Single term deletions
## 
## Model:
## richness ~ settlements + year_ct + habitat + cos_td_rad + (1 | 
##     site)
##             npar    AIC
## <none>           810.13
## settlements    1 868.25
## year_ct        1 815.30
## habitat        1 832.86
## cos_td_rad     1 817.98
## Single term deletions
## 
## Model:
## richness ~ settlements + year_ct + cos_td_rad + (1 | site)
##             npar     AIC
## <none>            960.12
## settlements    1 1013.00
## year_ct        1  968.81
## cos_td_rad     1  968.45

In both models settlements, year and cosine of time of year remain. Habitat remains in the model without the pilot data. Final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + year_ct + habitat + cos_td_rad + (1 |  
##     site)
##    Data: P.anal_no_pilot
## 
##      AIC      BIC   logLik deviance df.resid 
##    810.1    829.3   -399.1    798.1      174 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7883 -0.6744 -0.1446  0.5094  3.8026 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.00147  0.03834 
## Number of obs: 180, groups:  site, 5
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.09404    0.12372   8.843  < 2e-16 ***
## settlementsNear  0.59607    0.07858   7.585 3.32e-14 ***
## year_ct          0.03879    0.01446   2.682  0.00732 ** 
## habitatWadi      0.39964    0.08120   4.922 8.58e-07 ***
## cos_td_rad       0.33492    0.10539   3.178  0.00148 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct hbttWd
## settlmntsNr -0.466                     
## year_ct     -0.759  0.043              
## habitatWadi -0.405  0.623  0.011       
## cos_td_rad  -0.642  0.080  0.381  0.008
## $site
##            (Intercept)
## Bislach   -0.007261337
## Ezuz       0.023177430
## Merhav Am  0.005715354
## Sde Boker -0.032234389
## Yeruham    0.011278869
## 
## with conditional variances for "site"
## $site

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: richness ~ settlements + year_ct + cos_td_rad + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##    960.1    976.9   -475.1    950.1      205 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7447 -0.7054 -0.1618  0.6443  3.8688 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.00175  0.04183 
## Number of obs: 210, groups:  site, 8
## 
## Fixed effects:
##                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      1.31182    0.08932  14.687  < 2e-16 ***
## settlementsNear  0.42720    0.05711   7.480 7.42e-14 ***
## year_ct          0.03617    0.01101   3.287  0.00101 ** 
## cos_td_rad       0.33036    0.10143   3.257  0.00113 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct
## settlmntsNr -0.407              
## year_ct     -0.713  0.105       
## cos_td_rad  -0.701  0.109  0.286
## $site
##                  (Intercept)
## Ashalim         0.0023300013
## Bislach        -0.0096039922
## Ezuz            0.0257454807
## Mashabei Sadeh  0.0072947751
## Merhav Am       0.0057852499
## Mitzpe Ramon    0.0001246131
## Sde Boker      -0.0426170356
## Yeruham         0.0119704829
## 
## with conditional variances for "site"
## $site

Coefficients are quite similar in both models (model without pilot campaign and with habitat variable, vs. model with pilot data and without habitat variable). Prefer model with habitat variable, throw out pilot.

## Registered S3 methods overwritten by 'broom':
##   method            from  
##   tidy.glht         jtools
##   tidy.summary.glht jtools
Observations 180
Dependent variable richness
Type Mixed effects generalized linear model
Family poisson
Link log
AIC 810.132
BIC 829.290
Pseudo-R² (fixed effects) 0.309
Pseudo-R² (total) 0.315
Fixed Effects
exp(Est.) S.E. z val. p
(Intercept) 2.986 0.124 8.843 0.000
settlementsNear 1.815 0.079 7.585 0.000
year_ct 1.040 0.014 2.682 0.007
habitatWadi 1.491 0.081 4.922 0.000
cos_td_rad 1.398 0.105 3.178 0.001
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.038
Grouping Variables
Group # groups ICC
site 5 0.001
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

statistically significant higher richness near settlements and in the wadi compared to slope. significant increase in richness over time.

geometric mean of abundance

Explore data. Exclude time of day because of high number of NAs.

## [1] "GEOMETRIC MEAN ABUNDANCE WITHOUT RARE SPECIES"
gma year_ct site settlements habitat td_sc cos_td_rad sin_td_rad
Min. :1.000 Min. :0.000 Sde Boker:42 Far :134 Slope:120 Min. :-1.60673 Min. :0.004304 Min. :-1.0000
1st Qu.:1.529 1st Qu.:2.000 Yeruham :42 Near: 76 Wadi : 60 1st Qu.:-1.22033 1st Qu.:0.177649 1st Qu.:-0.9841
Median :2.000 Median :4.000 Bislach :36 NA NA’s : 30 Median :-0.76238 Median :0.375715 Median :-0.9267
Mean :2.223 Mean :4.286 Ezuz :36 NA NA Mean :-0.47336 Mean :0.440753 Mean :-0.8039
3rd Qu.:2.640 3rd Qu.:6.000 Merhav Am:36 NA NA 3rd Qu.: 0.07243 3rd Qu.:0.690173 3rd Qu.:-0.7236
Max. :6.258 Max. :8.000 Ashalim : 6 NA NA Max. : 2.97281 Max. :0.999407 Max. : 0.4787
NA NA (Other) :12 NA NA NA NA NA

Fit glm, compare gamma, gaussian (poisson inappropriate because response is not discrete)

Gamma seems better than gaussian. Remove rows 121, 133 and 33. Fit fixed and mixed models.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.0102318 (tol = 0.002, component 1)

Mixed model did not converge, use glm:

## 
## Call:
## glm(formula = gma ~ settlements * year_ct + habitat * year_ct + 
##     cos_td_rad + sin_td_rad + site, family = Gamma, data = P.anal)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.70693  -0.26208  -0.02656   0.17541   0.76620  
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.6332093  0.1133520   5.586 9.39e-08 ***
## settlementsNear         -0.1916040  0.0648771  -2.953  0.00360 ** 
## year_ct                 -0.0003538  0.0098713  -0.036  0.97146    
## habitatWadi             -0.1572311  0.0702246  -2.239  0.02649 *  
## cos_td_rad              -0.1007308  0.0832628  -1.210  0.22809    
## sin_td_rad               0.0677847  0.0822054   0.825  0.41080    
## siteEzuz                -0.1129750  0.0340624  -3.317  0.00112 ** 
## siteMerhav Am           -0.0179475  0.0378792  -0.474  0.63626    
## siteSde Boker            0.0154967  0.0379448   0.408  0.68351    
## siteYeruham              0.0356482  0.0389215   0.916  0.36106    
## settlementsNear:year_ct  0.0145032  0.0119441   1.214  0.22638    
## year_ct:habitatWadi      0.0324498  0.0134723   2.409  0.01711 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.1020244)
## 
##     Null deviance: 24.208  on 176  degrees of freedom
## Residual deviance: 16.777  on 165  degrees of freedom
##   (30 observations deleted due to missingness)
## AIC: 365.46
## 
## Number of Fisher Scoring iterations: 5

perform stepwise model selection of Gaussian model.

## Start:  AIC=365.46
## gma ~ settlements * year_ct + habitat * year_ct + cos_td_rad + 
##     sin_td_rad + site
## 
##                       Df Deviance    AIC
## - sin_td_rad           1   16.851 364.18
## - settlements:year_ct  1   16.928 364.94
## - cos_td_rad           1   16.932 364.97
## <none>                     16.777 365.46
## - year_ct:habitat      1   17.373 369.30
## - site                 4   19.281 382.00
## 
## Step:  AIC=364.24
## gma ~ settlements + year_ct + habitat + cos_td_rad + site + settlements:year_ct + 
##     year_ct:habitat
## 
##                       Df Deviance    AIC
## - cos_td_rad           1   16.951 363.23
## - settlements:year_ct  1   16.982 363.53
## <none>                     16.851 364.24
## - year_ct:habitat      1   17.450 368.12
## - site                 4   19.351 380.79
## 
## Step:  AIC=363.31
## gma ~ settlements + year_ct + habitat + site + settlements:year_ct + 
##     year_ct:habitat
## 
##                       Df Deviance    AIC
## - settlements:year_ct  1   17.084 362.63
## <none>                     16.951 363.31
## - year_ct:habitat      1   17.562 367.37
## - site                 4   19.352 379.12
## 
## Step:  AIC=362.72
## gma ~ settlements + year_ct + habitat + site + year_ct:habitat
## 
##                   Df Deviance    AIC
## <none>                 17.084 362.72
## - year_ct:habitat  1   17.575 365.57
## - site             4   19.532 378.92
## - settlements      1   19.069 380.35

Settlements, year, habitat, year X habitat and site remain. This is the final model:

## 
## Call:
## glm(formula = gma ~ settlements + year_ct + habitat + site + 
##     year_ct:habitat, family = Gamma, data = P.anal_no_pilot)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -0.81409  -0.27678  -0.05694   0.17422   1.04883  
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.430465   0.043909   9.803  < 2e-16 ***
## settlementsNear     -0.092062   0.028266  -3.257  0.00136 ** 
## year_ct              0.011044   0.006127   1.803  0.07322 .  
## habitatWadi         -0.080421   0.061639  -1.305  0.19374    
## siteEzuz            -0.084487   0.033626  -2.513  0.01291 *  
## siteMerhav Am       -0.001550   0.037091  -0.042  0.96672    
## siteSde Boker        0.056872   0.039657   1.434  0.15337    
## siteYeruham          0.064972   0.040023   1.623  0.10636    
## year_ct:habitatWadi  0.018978   0.011769   1.612  0.10870    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for Gamma family taken to be 0.1244957)
## 
##     Null deviance: 26.615  on 179  degrees of freedom
## Residual deviance: 19.963  on 171  degrees of freedom
## AIC: 399.1
## 
## Number of Fisher Scoring iterations: 5

habitat and habitat X year are not significant, year is almost significant. compare model without habitat variable.

## Single term deletions
## 
## Model:
## gma ~ settlements + year_ct + (1 | site)
##             npar    AIC
## <none>           436.07
## settlements    1 472.50
## year_ct        1 445.17
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Gamma  ( inverse )
## Formula: gma ~ settlements + year_ct + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##    436.1    452.7   -213.0    426.1      202 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6711 -0.6637 -0.0455  0.5364  3.6409 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  site     (Intercept) 0.002339 0.04836 
##  Residual             0.111967 0.33461 
## Number of obs: 207, groups:  site, 8
## 
## Fixed effects:
##                  Estimate Std. Error t value Pr(>|z|)    
## (Intercept)      0.495065   0.038716  12.787  < 2e-16 ***
## settlementsNear -0.130597   0.019932  -6.552 5.68e-11 ***
## year_ct          0.014193   0.004249   3.341 0.000836 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN
## settlmntsNr -0.312       
## year_ct     -0.226  0.087

year comes out significant when excluding habitat variable and including pilot, and the coefficients are similar. use mixed model without habitat to display temporal and settlement effects.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Gamma  ( inverse )
## Formula: gma ~ settlements + year_ct + (1 | site)
##    Data: P.anal
## 
##      AIC      BIC   logLik deviance df.resid 
##    436.1    452.7   -213.0    426.1      202 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6711 -0.6637 -0.0455  0.5364  3.6409 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  site     (Intercept) 0.002339 0.04836 
##  Residual             0.111967 0.33461 
## Number of obs: 207, groups:  site, 8
## 
## Fixed effects:
##                  Estimate Std. Error t value Pr(>|z|)    
## (Intercept)      0.495065   0.038716  12.787  < 2e-16 ***
## settlementsNear -0.130597   0.019932  -6.552 5.68e-11 ***
## year_ct          0.014193   0.004249   3.341 0.000836 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN
## settlmntsNr -0.312       
## year_ct     -0.226  0.087
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

Very significant temporal decrease in gma as well as lower gma far from settlements.

abundance

Explore data

## [1] "ABUNDANCE WITHOUT RARE SPECIES"
abundance year_ct site settlements habitat td_sc cos_td_rad sin_td_rad
Min. : 1.0 Min. :0.000 Sde Boker:42 Far :134 Slope:120 Min. :-1.60673 Min. :0.004304 Min. :-1.0000
1st Qu.: 7.0 1st Qu.:2.000 Yeruham :42 Near: 76 Wadi : 60 1st Qu.:-1.22033 1st Qu.:0.177649 1st Qu.:-0.9841
Median : 14.0 Median :4.000 Bislach :36 NA NA’s : 30 Median :-0.76238 Median :0.375715 Median :-0.9267
Mean : 19.9 Mean :4.286 Ezuz :36 NA NA Mean :-0.47336 Mean :0.440753 Mean :-0.8039
3rd Qu.: 26.0 3rd Qu.:6.000 Merhav Am:36 NA NA 3rd Qu.: 0.07243 3rd Qu.:0.690173 3rd Qu.:-0.7236
Max. :189.0 Max. :8.000 Ashalim : 6 NA NA Max. : 2.97281 Max. :0.999407 Max. : 0.4787
NA NA (Other) :12 NA NA NA NA NA

4 outliers with total abundance >70. Examine:

##               unit subunit    site year year_ct settlements agriculture habitat
## 1: Negev Highlands    <NA>    Ezuz 2014       2         Far        <NA>    Wadi
## 2: Negev Highlands    <NA> Bislach 2018       6         Far        <NA>   Slope
## 3: Negev Highlands    <NA>    Ezuz 2018       6        Near        <NA>   Slope
## 4: Negev Highlands    <NA> Bislach 2020       8        Near        <NA>   Slope
##    dunes land_use           point_name                date            datetime
## 1:  <NA>     <NA>      Ezuz Far Wadi 6 2014-04-14 00:00:00                <NA>
## 2:  <NA>     <NA>  Bislach Far Slope 1 2018-03-30 00:00:00 2018-03-30 08:59:00
## 3:  <NA>     <NA>    Ezuz Near Slope 2 2018-04-06 00:00:00 2018-04-06 09:13:00
## 4:  <NA>     <NA> Bislach Near Slope 6 2020-04-06 03:00:00 2020-04-06 11:06:40
##        td_sc    td_rad cos_td_rad sin_td_rad timediff_Jun21 monitors_name wind
## 1: -0.767146 -1.187780  0.3737197 -0.9275417   -69.000 days          <NA> <NA>
## 2: -1.339587 -1.445993  0.1244793 -0.9922222   -84.000 days          <NA> <NA>
## 3: -1.072448 -1.325494  0.2428497 -0.9700639   -77.000 days          <NA> <NA>
## 4: -1.029515 -1.306128  0.2615893 -0.9651793   -75.875 days  Eyal Shochat <NA>
##    precipitation temperature clouds h_from_sunrise  cos_hsun  sin_hsun pilot
## 1:          <NA>        <NA>   <NA>       NA hours        NA        NA FALSE
## 2:          <NA>        <NA>   <NA>     2.35 hours 0.8166416 0.5771452 FALSE
## 3:          <NA>        <NA>   <NA>     2.70 hours 0.7604060 0.6494480 FALSE
## 4:          <NA>        <NA>   <NA>     1.64 hours 0.9092361 0.4162808 FALSE
##    richness abundance      gma
## 1:        5        87 5.378269
## 2:        5       189 4.919019
## 3:        8        89 4.314174
## 4:        8       110 2.306143

Exclude points with abundance>100.

PHI>1, hence choose negative binomial. Fit fixed and mixed models. Choose mixed model if possible, otherwise choose a model with fixed-effects only.

Mixed model converged.

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(2.1123)  ( log )
## Formula: abundance ~ settlements * year_ct + habitat * year_ct + cos_td_rad +  
##     sin_td_rad + (1 | site)
##    Data: P.anal_no_pilot
## 
##      AIC      BIC   logLik deviance df.resid 
##   1396.1   1428.0   -688.1   1376.1      170 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2857 -0.7267 -0.2570  0.3103 13.4944 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.06924  0.2631  
## Number of obs: 180, groups:  site, 5
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              2.96294    0.62563   4.736 2.18e-06 ***
## settlementsNear          0.42891    0.33469   1.282    0.200    
## year_ct                 -0.01201    0.04997  -0.240    0.810    
## habitatWadi              0.40277    0.33848   1.190    0.234    
## cos_td_rad              -0.24369    0.45523  -0.535    0.592    
## sin_td_rad               0.28716    0.49505   0.580    0.562    
## settlementsNear:year_ct  0.07502    0.06108   1.228    0.219    
## year_ct:habitatWadi     -0.05994    0.06186  -0.969    0.333    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct hbttWd cs_td_ sn_td_ sttN:_
## settlmntsNr -0.394                                          
## year_ct     -0.320  0.669                                   
## habitatWadi -0.254  0.575  0.676                            
## cos_td_rad  -0.880  0.101  0.023 -0.045                     
## sin_td_rad   0.850 -0.075  0.141  0.079 -0.885              
## sttlmntsN:_  0.359 -0.914 -0.736 -0.532 -0.089  0.056       
## yr_ct:hbttW  0.258 -0.534 -0.741 -0.911  0.014 -0.056  0.583

model selection of mixed model.

## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00387969 (tol = 0.002, component 1)
## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + habitat * year_ct + cos_td_rad + 
##     sin_td_rad + (1 | site)
##                     npar    AIC
## <none>                   1396.1
## cos_td_rad             1 1394.4
## sin_td_rad             1 1394.5
## settlements:year_ct    1 1395.6
## year_ct:habitat        1 1395.0

drop interaction habitat X year.

## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + habitat + cos_td_rad + sin_td_rad + 
##     (1 | site)
##                     npar    AIC
## <none>                   1395.0
## habitat                1 1393.6
## cos_td_rad             1 1393.3
## sin_td_rad             1 1393.3
## settlements:year_ct    1 1397.9

drop sine of time of year.

## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + habitat + cos_td_rad + (1 | 
##     site)
##                     npar    AIC
## <none>                   1393.3
## habitat                1 1391.8
## cos_td_rad             1 1391.3
## settlements:year_ct    1 1395.9

drop cosine of time of year.

## Single term deletions
## 
## Model:
## abundance ~ settlements * year_ct + habitat + (1 | site)
##                     npar    AIC
## <none>                   1391.3
## habitat                1 1389.8
## settlements:year_ct    1 1394.0

Settlement, year, settlement X year remain. The final model:

## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: Negative Binomial(2.097)  ( log )
## Formula: abundance ~ settlements * year_ct + habitat + (1 | site)
##    Data: P.anal_no_pilot
## 
##      AIC      BIC   logLik deviance df.resid 
##   1391.3   1413.7   -688.7   1377.3      173 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.2825 -0.7062 -0.2602  0.2931 13.9972 
## 
## Random effects:
##  Groups Name        Variance Std.Dev.
##  site   (Intercept) 0.06869  0.2621  
## Number of obs: 180, groups:  site, 5
## 
## Fixed effects:
##                         Estimate Std. Error z value Pr(>|z|)    
## (Intercept)              2.81742    0.21948  12.837   <2e-16 ***
## settlementsNear          0.27514    0.28359   0.970   0.3320    
## year_ct                 -0.04903    0.03067  -1.599   0.1099    
## habitatWadi              0.09773    0.13960   0.700   0.4839    
## settlementsNear:year_ct  0.10622    0.04948   2.147   0.0318 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) sttlmN yer_ct hbttWd
## settlmntsNr -0.551                     
## year_ct     -0.715  0.547              
## habitatWadi -0.367  0.291  0.056       
## sttlmntsN:_  0.441 -0.878 -0.614 -0.040
## $site
##           (Intercept)
## Bislach    0.29802232
## Ezuz       0.18942049
## Merhav Am  0.04368878
## Sde Boker -0.35239474
## Yeruham   -0.17589115
## 
## with conditional variances for "site"
## $site

Interpretation of abundance model:

Observations 180
Dependent variable abundance
Type Mixed effects generalized linear model
Family Negative Binomial(2.097)
Link log
AIC 1391.339
BIC 1413.690
Pseudo-R² (fixed effects) 0.546
Pseudo-R² (total) 0.807
Fixed Effects
Est. S.E. z val. p
(Intercept) 2.817 0.219 12.837 0.000
settlementsNear 0.275 0.284 0.970 0.332
year_ct -0.049 0.031 -1.599 0.110
habitatWadi 0.098 0.140 0.700 0.484
settlementsNear:year_ct 0.106 0.049 2.147 0.032
Random Effects
Group Parameter Std. Dev.
site (Intercept) 0.262
Grouping Variables
Group # groups ICC
site 5 0.111
## Confidence intervals for merMod models is an experimental feature. The
## intervals reflect only the variance of the fixed effects, not the random
## effects.

significantly higher abundance in wadi compared to slope. significant interaction between settlement proximity and year: higher abundance near settlements and increasing with time; lower abundance far from settlements and decreasing with time. No interaction of year with habitat (both wadi and slope are decreasing). This was meant to examine climate change, assuming wadi may decrease faster

community analysis using package MVabund

##       nb       po 
## 198.9584 296.4435
## [1] "POISSON"

## [1] "NEGATIVE BINOMIAL"

negative binomial model is better than poisson according to residuals and AIC comparison.

##       nb       po      nb1 
## 198.9584 296.4435 197.4497

The addition of the explanatory variable ‘site’ is improving the AIC of the model. stepwise selection of model:

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements * year_ct + habitat * year_ct + cos_td_rad + 
##     sin_td_rad + site
##                      Df    AIC
## <none>                  7700.5
## cos_td_rad           39 7708.3
## sin_td_rad           39 7689.4
## site                156 7759.4
## settlements:year_ct  39 7676.4
## year_ct:habitat      39 7675.1

drop interaction of habitat with year.

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements * year_ct + habitat + cos_td_rad + 
##     sin_td_rad + site
##                      Df    AIC
## <none>                  7675.1
## habitat              39 7775.8
## cos_td_rad           39 7685.4
## sin_td_rad           39 7664.4
## site                156 7736.2
## settlements:year_ct  39 7642.1

drop interaction of settlements with year.

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements + year_ct + habitat + cos_td_rad + 
##     sin_td_rad + site
##              Df    AIC
## <none>          7642.1
## settlements  39 8058.1
## year_ct      39 7702.8
## habitat      39 7738.4
## cos_td_rad   39 7658.7
## sin_td_rad   39 7636.4
## site        156 7699.7

drop sinus of time of year.

## Single term deletions
## 
## Model:
## spp_no_rare ~ settlements + year_ct + habitat + cos_td_rad + 
##     site
##              Df    AIC
## <none>          7636.4
## settlements  39 8058.7
## year_ct      39 7714.1
## habitat      39 7731.1
## cos_td_rad   39 7737.6
## site        156 7711.9

final model includes settlements, year, habitat, sampling time of year and site.

## 
## Test statistics:
##                 wald value Pr(>wald)   
## (Intercept)         12.861     0.011 * 
## settlementsNear     16.894     0.012 * 
## year_ct             10.736     0.012 * 
## habitatWadi         11.160     0.010 **
## cos_td_rad          11.730     0.010 **
## siteEzuz             7.993     0.012 * 
## siteMerhav Am        6.561     0.075 . 
## siteSde Boker        7.684     0.013 * 
## siteYeruham         10.249     0.011 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Test statistic:  30.62, p-value: 0.012 
## Arguments:
##  Test statistics calculated assuming response assumed to be uncorrelated 
##  P-value calculated using 999 resampling iterations via pit.trap resampling (to account for correlation in testing).
## Analysis of Deviance Table
## 
## Model: spp_no_rare ~ settlements + year_ct + habitat + cos_td_rad + site
## 
## Multivariate test:
##             Res.Df Df.diff   Dev Pr(>Dev)    
## (Intercept)    179                           
## settlements    178       1 437.9    0.001 ***
## year_ct        177       1 153.3    0.001 ***
## habitat        176       1 156.2    0.001 ***
## cos_td_rad     175       1 229.3    0.001 ***
## site           171       4 394.5    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Univariate Tests:
##             Acridotheres.tristis          Alectoris.chukar         
##                              Dev Pr(>Dev)              Dev Pr(>Dev)
## (Intercept)                                                        
## settlements               25.066    0.002            1.939    0.928
## year_ct                   17.001    0.009             3.26    0.910
## habitat                    2.583    0.975            7.393    0.355
## cos_td_rad                 0.034    1.000            1.479    0.993
## site                        5.56    0.982             4.68    0.982
##             Ammomanes.deserti          Ammoperdix.heyi         
##                           Dev Pr(>Dev)             Dev Pr(>Dev)
## (Intercept)                                                    
## settlements            72.645    0.001           1.785    0.934
## year_ct                 0.001    1.000           0.968    0.999
## habitat                  7.15    0.382           1.317    0.989
## cos_td_rad             16.791    0.008           0.641    1.000
## site                   10.819    0.740            6.94    0.982
##             Anthus.campestris          Apus.pallidus          Argya.squamiceps
##                           Dev Pr(>Dev)           Dev Pr(>Dev)              Dev
## (Intercept)                                                                   
## settlements             1.017    0.978         1.932    0.928            2.074
## year_ct                18.314    0.006         2.542    0.960            0.494
## habitat                 0.198    1.000          0.14    1.000            1.402
## cos_td_rad              5.274    0.503        11.261    0.075            3.334
## site                    11.07    0.713         7.803    0.976            3.194
##                      Burhinus.oedicnemus          Calandrella.brachydactyla
##             Pr(>Dev)                 Dev Pr(>Dev)                       Dev
## (Intercept)                                                                
## settlements    0.920               4.775    0.615                     2.996
## year_ct        1.000               0.003    1.000                     4.466
## habitat        0.989                   0    1.000                      2.41
## cos_td_rad     0.850               0.071    1.000                     43.79
## site           0.982               2.508    0.982                    24.241
##                      Cercotrichas.galactotes          Chloris.chloris         
##             Pr(>Dev)                     Dev Pr(>Dev)             Dev Pr(>Dev)
## (Intercept)                                                                   
## settlements    0.835                   0.429    0.993           0.013    1.000
## year_ct        0.745                   0.982    0.999           0.391    1.000
## habitat        0.975                   4.157    0.834           8.734    0.227
## cos_td_rad     0.001                   8.494    0.189           0.061    1.000
## site           0.013                   8.673    0.939           6.185    0.982
##             Cinnyris.osea          Columba.livia          Corvus.cornix
##                       Dev Pr(>Dev)           Dev Pr(>Dev)           Dev
## (Intercept)                                                            
## settlements         8.599    0.149        11.995    0.024        43.436
## year_ct               0.1    1.000         2.429    0.961         2.032
## habitat            14.283    0.021         0.989    0.996         9.322
## cos_td_rad          9.594    0.132         1.549    0.993         0.029
## site                5.555    0.982         7.587    0.976         9.386
##                      Corvus.ruficollis          Curruca.curruca         
##             Pr(>Dev)               Dev Pr(>Dev)             Dev Pr(>Dev)
## (Intercept)                                                             
## settlements    0.001             1.546    0.939           9.682    0.079
## year_ct        0.984             2.221    0.973           7.173    0.337
## habitat        0.186             0.267    1.000           4.226    0.825
## cos_td_rad     1.000             0.198    1.000          19.845    0.003
## site           0.887             6.049    0.982           8.731    0.939
##             Emberiza.caesia          Falco.tinnunculus         
##                         Dev Pr(>Dev)               Dev Pr(>Dev)
## (Intercept)                                                    
## settlements            6.78    0.334             0.942    0.978
## year_ct               23.49    0.003             1.132    0.999
## habitat                1.04    0.996              1.68    0.988
## cos_td_rad            8.796    0.178             0.176    1.000
## site                  5.245    0.982             5.671    0.982
##             Galerida.cristata          Hirundo.rustica          Iduna.pallida
##                           Dev Pr(>Dev)             Dev Pr(>Dev)           Dev
## (Intercept)                                                                  
## settlements             4.027    0.696           0.086    1.000         0.743
## year_ct                 1.291    0.999           0.581    1.000          0.27
## habitat                 0.113    1.000           9.084    0.203         0.929
## cos_td_rad              0.846    1.000           0.166    1.000        10.247
## site                    26.79    0.005           8.422    0.939        17.256
##                      Lanius.excubitor          Oenanthe.isabellina         
##             Pr(>Dev)              Dev Pr(>Dev)                 Dev Pr(>Dev)
## (Intercept)                                                                
## settlements    0.980            7.882    0.199               2.612    0.851
## year_ct        1.000            5.333    0.623               0.161    1.000
## habitat        0.996            5.152    0.664               2.592    0.975
## cos_td_rad     0.097            5.659    0.454              18.829    0.004
## site           0.117           12.503    0.526              13.169    0.458
##             Oenanthe.lugens          Oenanthe.melanura         
##                         Dev Pr(>Dev)               Dev Pr(>Dev)
## (Intercept)                                                    
## settlements           4.482    0.619             0.037    1.000
## year_ct               1.177    0.999            11.719    0.062
## habitat               0.244    1.000             2.607    0.975
## cos_td_rad            8.944    0.172             0.332    1.000
## site                 13.385    0.445            13.697    0.411
##             Onychognathus.tristramii          Passer.domesticus         
##                                  Dev Pr(>Dev)               Dev Pr(>Dev)
## (Intercept)                                                             
## settlements                    0.023    1.000            40.498    0.001
## year_ct                        0.029    1.000             0.445    1.000
## habitat                        0.042    1.000             2.275    0.975
## cos_td_rad                     2.007    0.975             7.875    0.224
## site                          16.317    0.160            21.282    0.034
##             Passer.hispaniolensis          Prinia.gracilis         
##                               Dev Pr(>Dev)             Dev Pr(>Dev)
## (Intercept)                                                        
## settlements                 1.197    0.970           5.385    0.510
## year_ct                      0.19    1.000           0.831    1.000
## habitat                     6.505    0.481          14.901    0.018
## cos_td_rad                  1.588    0.993           0.778    1.000
## site                        6.942    0.982          10.422    0.786
##             Pterocles.orientalis          Ptyonoprogne.fuligula         
##                              Dev Pr(>Dev)                   Dev Pr(>Dev)
## (Intercept)                                                             
## settlements                5.913    0.476                 0.326    0.997
## year_ct                    2.634    0.960                 3.571    0.887
## habitat                    0.213    1.000                 1.548    0.989
## cos_td_rad                 7.544    0.224                 4.519    0.642
## site                      13.269    0.451                15.971    0.177
##             Pycnonotus.xanthopygos          Rhodospiza.obsoleta         
##                                Dev Pr(>Dev)                 Dev Pr(>Dev)
## (Intercept)                                                             
## settlements                 37.902    0.001               0.846    0.980
## year_ct                      4.919    0.684               0.675    1.000
## habitat                      7.501    0.355               2.672    0.975
## cos_td_rad                    3.18    0.868               1.222    0.995
## site                         4.735    0.982               6.614    0.982
##             Scotocerca.inquieta          Spilopelia.senegalensis         
##                             Dev Pr(>Dev)                     Dev Pr(>Dev)
## (Intercept)                                                              
## settlements              27.175    0.001                  70.028    0.001
## year_ct                   8.743    0.182                   0.149    1.000
## habitat                   1.574    0.989                    5.32    0.660
## cos_td_rad                9.006    0.172                    0.26    1.000
## site                      6.276    0.982                  12.849    0.502
##             Streptopelia.decaocto          Streptopelia.turtur         
##                               Dev Pr(>Dev)                 Dev Pr(>Dev)
## (Intercept)                                                            
## settlements                 9.087    0.109               0.028    1.000
## year_ct                     13.97    0.023               0.726    1.000
## habitat                      21.3    0.001                 2.8    0.967
## cos_td_rad                  2.814    0.899               7.758    0.224
## site                        9.447    0.885               12.84    0.502
##             Sylvia.atricapilla          Upupa.epops          Vanellus.spinosus
##                            Dev Pr(>Dev)         Dev Pr(>Dev)               Dev
## (Intercept)                                                                   
## settlements              5.909    0.476       0.092    1.000             15.94
## year_ct                  7.501    0.295       0.628    1.000             0.762
## habitat                  1.022    0.996       0.548    0.996                 0
## cos_td_rad               3.897    0.744       0.404    1.000             0.017
## site                     7.051    0.978       0.314    0.994             5.042
##                     
##             Pr(>Dev)
## (Intercept)         
## settlements    0.003
## year_ct        1.000
## habitat        1.000
## cos_td_rad     1.000
## site           0.982
## Arguments:
##  Test statistics calculated assuming uncorrelated response (for faster computation) 
## P-value calculated using 999 iterations via PIT-trap resampling.

All factors (settlements, year, time of year and site) have a statistically significant effect on community composition.

## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## [[1]]

## 
## [[2]]

## 
## [[3]]

## [[1]]

## 
## [[2]]

## 
## [[3]]

## [[1]]

## 
## [[2]]

## 
## [[3]]

Significant negative temporal effect on house sparrow and positive effect on common myna. Significant effect of settlement proximity: synanthrope / invasive species near settlements, endangered and / or batha specialists far from settlements.