1 Growth of US imports from China

2 Change in number of branches and deposits

Import sensitivity for each county was calculated by following Autor,Dorn, and Hanson (2013). Data period 2000 to 2007.

Counties are categorized in to three groups: 1 - lowest third sensitivity, 2 - middle third senstivitiy, 3 - top third sensitivity

County-level per capita number of branches and per capita deposits were normalized using the year 2000 values.

3 Branch openings and closings

Used SOD data to figure out if there is at least one new branch opening in a given county-year (variable open) and at least one branch closure (variable close).

Motivated by Per capita number of branches figure above, a dummy variable post was defined as period after 2010

Ran the following regression \[ Y_{c,y} = \beta \times post \times highimportsensitivity + CountyFE+YearFE \]

highimportsensitivity is a dummy variable that takes value 1 if the import sensitivity of the county is greater than the median.

3.1 Regression

## 
## ============================================================================
##                                         Dependent variable:                 
##                        -----------------------------------------------------
##                          open    log(1 + openings)  close  log(1 + closings)
##                           (1)           (2)          (3)          (4)       
## ----------------------------------------------------------------------------
## high_x                                                                      
##                         (0.000)       (0.000)      (0.000)      (0.000)     
## post                                                                        
##                         (0.000)       (0.000)      (0.000)      (0.000)     
## log(population)        0.106***      -0.626***      0.044      -0.231***    
##                         (0.038)       (0.061)      (0.035)      (0.047)     
## log(income_per_capita) 0.170***      0.435***      0.064**     0.258***     
##                         (0.026)       (0.034)      (0.026)      (0.029)     
## unemp_rate              -0.003        0.005**      0.0003      0.009***     
##                         (0.002)       (0.003)      (0.002)      (0.002)     
## high_x:post            -0.042***     -0.140***      0.008      -0.075***    
##                         (0.009)       (0.014)      (0.008)      (0.012)     
## ----------------------------------------------------------------------------
## Observations            49,662        49,662       49,662       49,662      
## R2                       0.438         0.749        0.422        0.748      
## Adjusted R2              0.405         0.735        0.388        0.733      
## ============================================================================
## Note:                                            *p<0.1; **p<0.05; ***p<0.01

3.2 Figure

4 Deposit and Branch Change from 2008 to 2019

This is similar to main results of Autor,Dorn, and Hanson (2013), but at county-level.

log(import sensitivity) is instrumented using log(iv import sensitivity) which is based on the import growth in other developed countries. (same as Autor,Dorn, and Hanson (2013))

4.1 First Stage

log-log specification has more first stage power.

4.2 Descriptive statistics

## 
## ============================================================================
## Statistic                Mean     St. Dev.   Pctl(25) Median  Pctl(75)   N  
## ----------------------------------------------------------------------------
## sod_br_change           88.679     16.795     79.000  89.476   99.000  2,691
## sod_br_pc_change        88.019     17.914     76.593  87.945  100.000  2,691
## sod_deposit_change     131.684     30.833    112.259  127.371 146.198  2,691
## sod_deposit_pc_change  129.942     27.972    113.094  127.168 143.267  2,691
## population            84,693.020 224,019.800 11,425.5 26,038  63,812.5 2,691
## income_per_capita     33,667.450  8,507.270   28,277  32,364  37,231.5 2,691
## import_sensitivity      14.490      4.775     12.757  13.565   14.949  2,691
## iv_import_sensitivity   4.646       3.372     3.169    3.924   5.153   2,691
## ----------------------------------------------------------------------------

4.3 Impact on county-level branches

The first table below regresses the change in number of branches at county level from 2008 to 2019. Column 4 uses
per capita branches change

## 
## ======================================================================================================================================
##                                BR chg (%) BR chg (%) BR chg (%) BR percap chg (%) BR chg (%)   BR chg (%)  BR chg (%)    BR chg (%)   
##                                                    All Banks                      Small Banks Medium Banks Large Banks Contemporaneous
##                                   (1)        (2)        (3)            (4)            (5)         (6)          (7)           (8)      
## --------------------------------------------------------------------------------------------------------------------------------------
## log(income_per_capita)          8.441***   7.659***   4.287**        -1.316          5.952       -7.574      19.308       8.052***    
##                                 (2.893)    (2.937)    (2.022)        (1.983)        (5.846)     (12.421)    (13.125)       (3.048)    
## log(population)                -2.916***  -2.770***  -1.375***      -3.809***      -3.147**      2.695      -3.327***     3.138***    
##                                 (0.417)    (0.441)    (0.404)        (0.396)        (1.393)     (2.144)      (1.151)       (0.802)    
## `import_sensitivity(fit)`        -0.098                                                                                               
##                                 (0.115)                                                                                               
## `log(import_sensitivity)(fit)`             -7.306*    -5.526**      -4.961**        -2.497     -50.149***     6.765      -12.231***   
##                                            (3.844)    (2.314)        (2.281)        (6.328)     (18.341)     (7.973)       (4.039)    
## Constant                         32.243    56.834*                                  70.917     296.627**    -101.210       24.189     
##                                 (27.410)   (31.428)                                (62.105)    (135.580)    (123.366)     (32.498)    
## --------------------------------------------------------------------------------------------------------------------------------------
## State FE                                                 Y              Y                                                             
## Cond.F.Stat                      15.38      45.33      52.47                                                                          
## Observations                     2,691      2,691      2,691          2,691          2,531       1,500        1,752         2,689     
## R2                               0.059      0.060      0.171          0.245          0.012       0.003        0.016         0.051     
## Adjusted R2                      0.058      0.059      0.157          0.232          0.011       0.001        0.014         0.050     
## ======================================================================================================================================
## Note:                                                                                                      *p<0.1; **p<0.05; ***p<0.01

4.4 Impact on county-level deposits

## 
## ========================================================================================================================================
##                                BR chg (%)  BR chg (%)  BR chg (%) BR percap chg (%) BR chg (%)   BR chg (%)  BR chg (%)    BR chg (%)   
##                                                     All Banks                       Small Banks Medium Banks Large Banks Contemporaneous
##                                    (1)         (2)        (3)            (4)            (5)         (6)          (7)           (8)      
## ----------------------------------------------------------------------------------------------------------------------------------------
## log(income_per_capita)          44.295***   41.960***  33.238***      23.001***       -52.330      50.321     111.842*      23.418***   
##                                  (4.555)     (4.594)    (2.980)        (2.806)       (121.691)    (41.413)    (61.957)       (7.500)    
## log(population)                  1.517**     1.967**    4.329***        0.255          6.940       7.102        2.782       7.991***    
##                                  (0.739)     (0.765)    (0.489)        (0.461)        (5.846)     (6.918)      (5.499)       (1.600)    
## `import_sensitivity(fit)`        -0.065                                                                                                 
##                                  (0.373)                                                                                                
## `log(import_sensitivity)(fit)`             -19.864***   -7.237*        -6.832*       -67.877*   -145.410***    -14.439     -32.678***   
##                                              (6.915)    (4.366)        (4.111)       (39.537)     (46.150)    (20.450)      (10.412)    
## Constant                       -343.506*** -272.079***                                817.324      -2.772    -1,028.801*    -101.820    
##                                 (45.297)    (50.712)                                (1,307.638)  (420.694)    (601.441)     (78.840)    
## ----------------------------------------------------------------------------------------------------------------------------------------
## State FE                                                   Y              Y                                                             
## Cond.F.Stat                       15.38       45.33                                                                                     
## Observations                      2,691       2,691      2,691          2,691          2,531       1,500        1,752         2,689     
## R2                                0.117       0.116      0.243          0.184         0.0004       0.006        0.064         0.067     
## Adjusted R2                       0.116       0.115      0.230          0.170         -0.001       0.004        0.062         0.066     
## ========================================================================================================================================
## Note:                                                                                                        *p<0.1; **p<0.05; ***p<0.01