Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.

Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.

Getting Started

Load packages

In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.

Let’s load the packages.

library(tidyverse)
library(openintro)
library(GGally)

This is the first time we’re using the GGally package. You will be using the ggpairs function from this package later in the lab.

The data

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. The result is a data frame where each row contains a different course and columns represent variables about the courses and professors. It’s called evals.

glimpse(evals)
## Rows: 463
## Columns: 23
## $ course_id     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id       <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score         <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank          <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity     <fct> minority, minority, minority, minority, not minority, no…
## $ gender        <fct> female, female, female, female, male, male, male, male, …
## $ language      <fct> english, english, english, english, english, english, en…
## $ age           <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval  <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students  <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level     <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs     <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits   <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower   <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper   <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper   <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower   <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper   <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper   <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg       <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit    <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color     <fct> color, color, color, color, color, color, color, color, …

We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:

?evals

Exploring the data

  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

Using the original research question, this study appears to be observational, since there isn’t a particular application that’s being applied to one group and not the other. The survey is based on beauty and whether it affects course evaluations. A more appropriate question can be this: Is there a relationship between beauty and course evaluation scores?

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?
evals %>%
  ggplot(aes(x=`score`)) +
  geom_histogram(bins=30)

The distribution appears skewed to the left. It indicates that students have positive scores for Professors.

  1. Excluding score, select two other variables and describe their relationship with each other using an appropriate visualization.
evals %>%
  ggplot(aes(x=`age`, y=`bty_avg`)) +
  geom_point()

Using the average beauty rating of professors and age, there doesn’t appear to be a linear relationship between each variable. The data points are scattered and there isn’t a defined center, spread or shape.

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_point()

Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

  1. Replot the scatterplot, but this time use geom_jitter as your layer. What was misleading about the initial scatterplot?
ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter()

The initial scatterplot appears to have less data points.

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?
m_bty <- lm(evals$score ~ evals$bty_avg)
summary(m_bty)
## 
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.88034    0.07614   50.96  < 2e-16 ***
## evals$bty_avg  0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05

Equation of Regression Line:

\[ \hat{y} = 3.88034 + 0.06664 \times bty\_avg\ \]

Although there is a small p-value of 5.083e-05, the Adjusted R-Squared of 0.03293 indicates that average beauty is not a statistically significant indicator. Additionally, the change in score is caused by a change in bty_avg. The slope 0.06664 indicates the estimated increase change in score for every increase of 1 in bty_avg. Because of the small slope value, beauty average doesn’t appear to be a practically significant predictor.

Add the line of the bet fit model to your plot using the following:

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter() +
  geom_smooth(method = "lm")

The blue line is the model. The shaded gray area around the line tells you about the variability you might expect in your predictions. To turn that off, use se = FALSE.

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter() +
  geom_smooth(method = "lm", se = FALSE)

  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).
ggplot(m_bty, aes(x = .fitted, y = .resid)) +
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  labs(title="Residual vs. Fitted Values Plot") +
  xlab("Fitted values") +
  ylab("Residuals")

There isn’t a discernible pattern in the residuals plot. The data points are scattered randomly and spread above and below the zero threshold. This may indicate that there is a linear relationship between score and bty_avg, and the linear model is appropriate for this data.

ggplot(data = m_bty, aes(x = .resid)) +
  geom_histogram(binwidth = 0.4) +
  xlab("Residuals")

Based on the center, shape, and spread of the histogram, it appears that the nearly normal residuals condition is not met. There appears to be a skewness to the left, and the center of the histogram appears to show the mean greater than zero.

ggplot(data = m_bty, aes(sample = .resid)) +
  stat_qq()

qqnorm(m_bty$residuals)
qqline(m_bty$residuals)

The normal probability qq plot appears to show that the nearly normal residuals condition is met.The plot appears roughly on a straight line with no discernible skewness.

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

ggplot(data = evals, aes(x = bty_f1lower, y = bty_avg)) +
  geom_point()

evals %>% 
  summarise(cor(bty_avg, bty_f1lower))
## # A tibble: 1 × 1
##   `cor(bty_avg, bty_f1lower)`
##                         <dbl>
## 1                       0.844

As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:

evals %>%
  select(contains("bty")) %>%
  ggpairs()

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07
  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.
ggplot(m_bty_gen, aes(x = .fitted, y = .resid)) +
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  labs(title="Residual vs. Fitted Values Plot") +
  xlab("Fitted values") +
  ylab("Residuals")

ggplot(data = m_bty_gen, aes(x = .resid)) +
  geom_histogram(binwidth = 0.4) +
  xlab("Residuals")

ggplot(data = m_bty_gen, aes(sample = .resid)) +
  stat_qq()

qqnorm(m_bty_gen$residuals)
qqline(m_bty_gen$residuals)

While the histogram plot still shows a skewness to the left and has a center greater than zero, the residual-fitted plot and qq plot shows that the conditions of least squares regression are reasonable.

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

The Adjusted R-Squared value minimally increased and p-value is smaller with the updated model. The low p-value may indicate that bty_avg is a significant predictor of score. The addition of gender slightly increased the slope of bty_avg, from 0.06664 to 0.07416, and slightly decreased the y-intercept, from 3.88034 to 3.74734.

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of male and female to being an indicator variable called gendermale that takes a value of \(0\) for female professors and a value of \(1\) for male professors. (Such variables are often referred to as “dummy” variables.)

As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

ggplot(data = evals, aes(x = bty_avg, y = score, color = pic_color)) +
 geom_smooth(method = "lm", formula = y ~ x, se = FALSE)

  1. What is the equation of the line corresponding to those with color pictures? (Hint: For those with color pictures, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which color picture tends to have the higher course evaluation score?
m_bty_pic_color <-lm(score ~ bty_avg + pic_color, data=evals)
summary(m_bty_pic_color)
## 
## Call:
## lm(formula = score ~ bty_avg + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8892 -0.3690  0.1293  0.4023  0.9125 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.06318    0.10908  37.249  < 2e-16 ***
## bty_avg         0.05548    0.01691   3.282  0.00111 ** 
## pic_colorcolor -0.16059    0.06892  -2.330  0.02022 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5323 on 460 degrees of freedom
## Multiple R-squared:  0.04628,    Adjusted R-squared:  0.04213 
## F-statistic: 11.16 on 2 and 460 DF,  p-value: 1.848e-05

Equation of Regression Line:

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (1) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

\[ \widehat{score} = 4.06318 + (-0.16059) \times bty\_avg\ \times (1) \]

It appears that black & white pictures of a professors tends to have a higher course evaluation score than color pictures.

The decision to call the indicator variable gendermale instead of genderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel() function. Use ?relevel to learn more.)

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.
m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank) 
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

The summary statistics shows that the rankings are split into two separate variables ranktenure track and ranktenured. The third category teaching is not included. If both values are zero, then it can be concluded that teaching is 1.

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

I think number of credits will have the highest p-value. I think it would be irrelevant to the score that professors would receive.

Let’s run the model…

m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14
  1. Check your suspicions from the previous exercise. Include the model output in your response.
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

The number of credits had the second-lowest p-value, behind gendermale. This indicates that it is a statistically significant predictor of score.

  1. Interpret the coefficient associated with the ethnicity variable.

The ethnicity variable is recoded to ethnicitynot minority, which gives a value of 0 to minority professors and 1 to non-minority professors. The coefficient is 0.1234929, which means that on average, non-minority professors received a score 0.1234929 higher than minority professors, assuming that all other variables are held constant. However, this variable has a p-value of 0.11698, which indicates that it may not be a statistically significant predictor of evaluation scores.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

cls_profs has the highest p-value:

m_full2 <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full2)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14

The p-values of some variables increased and decreased. The coefficients of variables increased and decreased as well. The Adjusted R-Squared value slightly increased, from 0.1617 to 0.1634. This may indicate that cls_profs was collinear with some variables.

  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

Based on the previous models, I will remove variables that have a p-value greater than 0.05:

m_final <- lm(score ~ gender + language + age + cls_perc_eval 
              + cls_credits + bty_avg 
              + pic_color, data = evals)
summary(m_final)
## 
## Call:
## lm(formula = score ~ gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.81919 -0.32035  0.09272  0.38526  0.88213 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.967255   0.215824  18.382  < 2e-16 ***
## gendermale             0.221457   0.049937   4.435 1.16e-05 ***
## languagenon-english   -0.281933   0.098341  -2.867  0.00434 ** 
## age                   -0.005877   0.002622  -2.241  0.02551 *  
## cls_perc_eval          0.004295   0.001432   2.999  0.00286 ** 
## cls_creditsone credit  0.444392   0.100910   4.404 1.33e-05 ***
## bty_avg                0.048679   0.016974   2.868  0.00432 ** 
## pic_colorcolor        -0.216556   0.066625  -3.250  0.00124 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5014 on 455 degrees of freedom
## Multiple R-squared:  0.1631, Adjusted R-squared:  0.1502 
## F-statistic: 12.67 on 7 and 455 DF,  p-value: 6.996e-15
evals %>%
  select(gender, language, age, cls_perc_eval,
         cls_credits, bty_avg, pic_color) %>%
  ggpairs()

\[ \hat{score} = 3.967255 + 0.221457 \times gendermale(1) + (-0.281933) \times languagenon-english(1) + (-0.005877) \times age + 0.004295 \times cls\_perc\_eval + 0.444392 \times cls\_creditone-credit(1) + 0.048679 \times bty\_avg + (-0.216556) \times pic\_colorcolor(1) \]

  1. Verify that the conditions for this model are reasonable using diagnostic plots.
ggplot(m_final, aes(x = .fitted, y = .resid)) +
  geom_point() +
  geom_hline(yintercept = 0, linetype = "dashed") +
  labs(title="Residual vs. Fitted Values Plot") +
  xlab("Fitted values") +
  ylab("Residuals")

ggplot(data = m_final, aes(x = .resid)) +
  geom_histogram(binwidth = 0.4) +
  xlab("Residuals")

ggplot(data = m_final, aes(sample = .resid)) +
  stat_qq()

qqnorm(m_final$residuals)
qqline(m_final$residuals)

The residual vs.fitted plot shows data points scattered randomly around the zero threshold with no discernible pattern. This indicates that the conditions of least squares are reasonable. The histogram shows skewness to the left, with its center greater than zero. The qq plot shows a relatively straight line with no discernible skewness. Overall, I think this model meets the conditions of linearity, near normal residuals, and constant variability.

  1. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

This new information can have an impact on the conditions of least squares modeling. Since rows represents a course that could have the same professor, this would violate the assumption of independence condition, which states that no two observations in a dataset are related to each other or affect each other in any way. As a result, the scores that professors would receive can be skewed.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

Based on the final model, the characteristics of a professor and course that would be associated with a high evaluation score would be: Young male who received his education from an English-language school, has a high percentage of students who completed teaches one-credit courses, is attractive and has a black and white picture. These characteristics are based on the coefficient estimates of each variable in the final model.

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

I would not be comfortable generalizing these conclusions to apply to professors at any university. Some of the variables used are subjective and can be different in other universities sampled. Additionally, the evaluation scores could vary based on the social and cultural norms of when and where the sampling occurs. The skewness of the histogram plot indicates that this model may not be fully trusted in terms of generalizing its conclusions.