Objective

Explain the objective of the original data visualization and the targetted audience.
- objective this data visualization was created to for users to find out what brands in 2020 were considered the most valuable according to the data provided

The visualization chosen had the following three main issues:

most valuable brands in 2020. (2020). Visualizing the Most Valuable Brands in the World in 2020. Retrieved April 22,2023, from howmuch.net: https://howmuch.net/articles/top-100-most-valuable-brands-2020

Code

The following code was used to fix the issues identified in the original.

library(ggplot2)
library(readr)
library(dplyr)
company_data <- read_csv("brandirectory-ranking-data-global-2020.csv")
company_data <- company_data[c(1:20),c(1,2,4)]
company_data$`Brand Value ($M)`<- as.character(company_data$`Brand Value ($M)`)
company_data$`Brand Value ($M)`<- as.numeric(company_data$`Brand Value ($M)`)
company_billion <- company_data %>% mutate(Billion_dollar = `Brand Value ($M)`/1000) 
round(company_billion$Billion_dollar,digits = 2)
##  [1] 220.79 188.51 140.52 117.07  94.49  80.79  79.80  77.52  69.04  65.08
## [11]  65.04  63.69  62.60  59.10  58.08  56.96  56.12  54.66  54.15  50.63
company_billion
## # A tibble: 20 × 4
##    Brand                      Position `Brand Value ($M)` Billion_dollar
##    <chr>                         <dbl>              <dbl>          <dbl>
##  1 Amazon                            1            220791.          221. 
##  2 Google                            2            188512.          189. 
##  3 Apple                             3            140524.          141. 
##  4 Microsoft                         4            117072.          117. 
##  5 Samsung Group                     5             94494            94.5
##  6 ICBC                              6             80791.           80.8
##  7 Facebook                          7             79804.           79.8
##  8 Walmart                           8             77520.           77.5
##  9 Ping An                           9             69041            69.0
## 10 Huawei                           10             65084.           65.1
## 11 Mercedes-Benz                    11             65041            65.0
## 12 Verizon                          12             63692.           63.7
## 13 China Construction Bank          13             62602.           62.6
## 14 AT&T                             14             59103.           59.1
## 15 Toyota                           15             58076            58.1
## 16 State Grid                       16             56965.           57.0
## 17 Disney                           17             56123.           56.1
## 18 Agricultural Bank Of China       18             54658.           54.7
## 19 WeChat                           19             54146.           54.1
## 20 Bank of China                    20             50630.           50.6

Data Reference

Reconstruction