1. We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features. 400
  1. Generate a data set with n = 500 and p = 2, such that the observations belong to two classes with a quadratic decision boundary between them. For instance, you can do this as follows
x1=runif (500) - 0.5
x2=runif (500) - 0.5
y=1*(x1^2-x2^2 > 0)
  1. Plot the observations, colored according to their class labels. Your plot should display X1 on the x-axis, and X2 on the yaxis.
plot(x1[y == 0], x2[y == 0], col = "red", xlab = "X1", ylab = "X2")
points(x1[y == 1], x2[y == 1], )
  1. Fit a logistic regression model to the data, using X1 and X2 as predictors.
lm.fit = glm(y ~ x1 + x2, family = binomial)
summary(lm.fit)
## glm(formula = y ~ x1 + x2, family = binomial)
## (Intercept) -0.06401    0.08985  -0.712    0.476
## x1          -0.03169    0.32131  -0.099    0.921
## x2          -0.37902    0.30517  -1.242    0.214
## Number of Fisher Scoring iterations: 3
  1. Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear.
data = data.frame(x1 = x1, x2 = x2, y = y)
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.50, 1, 0)
plot(data.pos$x1, data.pos$x2, xlab = "X1", ylab = "X2")
points(data.neg$x1, data.neg$x2, col = "red")
  1. Now fit a logistic regression model to the data using non-linear functions of X1 and X2 as predictors (e.g. X21 , X1×X2, log(X2), and so forth).
lm.fit = glm(y ~ poly(x1, 2) + poly(x2, 2) + I(x1 * x2), data = data, family = binomial)
  1. Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be obviously non-linear. If it is not,then repeat (a)-(e) until you come up with an example in which the predicted class labels are obviously non-linear.
lm.prob = predict(lm.fit, data, type = "response")
lm.pred = ifelse(lm.prob > 0.5, 1, 0)
plot(data.pos$x1, data.pos$x2, xlab = "X1", ylab = "X2")
points(data.neg$x1, data.neg$x2, col = "red")
  1. Comment on your results cross validation would have been a better option however this method still worked.
  1. In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.
  1. Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.
library(ISLR)
gas.med = median(Auto$mpg)
new.var = ifelse(Auto$mpg > gas.med, 1, 0)
Auto$mpglevel = as.factor(new.var)
  1. Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results. Note you will need to fit the classifier without the gas mileage variable to produce sensible results.
library(e1071)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "linear"
summary(tune.out)
## - sampling method: 10-fold cross validation 
## - Detailed performance results:
##    cost      error dispersion
## 1 1e-02 0.07397436 0.06863413
## 2 1e+02 0.03294872 0.02898463
  1. Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and cost. Comment on your results.
set.seed(21)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.1, 
    1, 5, 10), degree = c(2, 3, 4)))
summary(tune.out)
## - sampling method: 10-fold cross validation 
## - Detailed performance results:
##    cost degree     error dispersion
## 1   0.1      2 0.5587821 0.04538579
## 2   1.0      2 0.5587821 0.04538579
## 3   5.0      2 0.5587821 0.04538579
## 4  10.0      2 0.5435897 0.05611162
## 5   0.1      3 0.5587821 0.04538579
## 6   1.0      3 0.5587821 0.04538579
## 7   5.0      3 0.5587821 0.04538579
## 8  10.0      3 0.5587821 0.04538579
## 9   0.1      4 0.5587821 0.04538579
## 10  1.0      4 0.5587821 0.04538579
## 11  5.0      4 0.5587821 0.04538579
## 12 10.0      4 0.5587821 0.04538579
set.seed(463)
tune.out = tune(svm, mpglevel ~ ., data = Auto, kernel = "radial", ranges = list(cost = c(0.1, 
    1, 5, 10), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## - Detailed performance results:
##    cost gamma      error dispersion
## 1   0.1 1e-02 0.09429487 0.04814900
## 2   1.0 1e-02 0.07897436 0.03875105
## 3   5.0 1e-02 0.05352564 0.02532795
## 4  10.0 1e-02 0.02551282 0.02417610
## 5   0.1 1e-01 0.07891026 0.03847631
## 6   1.0 1e-01 0.05602564 0.02881876
## 7   5.0 1e-01 0.03826923 0.03252085
## 8  10.0 1e-01 0.03320513 0.02964746
## 9   0.1 1e+00 0.57660256 0.05479863
## 10  1.0 1e+00 0.06628205 0.02996211
## 11  5.0 1e+00 0.06115385 0.02733573
## 12 10.0 1e+00 0.06115385 0.02733573
## 13  0.1 5e+00 0.57660256 0.05479863
## 14  1.0 5e+00 0.51538462 0.06642516
## 15  5.0 5e+00 0.50775641 0.07152757
## 16 10.0 5e+00 0.50775641 0.07152757
## 17  0.1 1e+01 0.57660256 0.05479863
## 18  1.0 1e+01 0.53833333 0.05640443
## 19  5.0 1e+01 0.53070513 0.05708644
## 20 10.0 1e+01 0.53070513 0.05708644
## 21  0.1 1e+02 0.57660256 0.05479863
## 22  1.0 1e+02 0.57660256 0.05479863
## 23  5.0 1e+02 0.57660256 0.05479863
## 24 10.0 1e+02 0.57660256 0.05479863
  1. Make some plots to back up your assertions in (b) and (c). Hint: In the lab, we used the plot() function for svm objects only in cases with p = 2. When p > 2, you can use the plot() function to create plots displaying pairs of variables at a time. Essentially, instead of typing
svm.linear = svm(mpglevel ~ ., data = Auto, kernel = "linear", cost = 1)
svm.radial = svm(mpglevel ~ ., data = Auto, kernel = "radial", cost = 10, gamma = 0.01)
plotpairs = function(fit) {
    for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
        plot(fit, Auto, as.formula(paste("mpg~", name, sep = "")))
    }
}
plotpairs(svm.linear)
plotpairs(svm.poly)
plotpairs(svm.radial)
  1. This problem involves the OJ data set which is part of the ISLR2 package.
  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
library(ISLR)
set.seed(9004)
train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
  1. Fit a support vector classifier to the training data using cost = 0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.
library(e1071)
svm.linear = svm(Purchase ~ ., kernel = "linear", data = OJ.train, cost = 0.01)
summary(svm.linear)
## svm(formula = Purchase ~ ., data = OJ.train, kernel = "linear", cost = 0.01)
## Number of Support Vectors:  442
## Number of Classes:  2 
##  CH MM
  1. What are the training and test error rates?
train.pred = predict(svm.linear, OJ.train)
table(OJ.train$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 432  51
##   MM  80 237
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 146  24
##   MM  22  78
  1. Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10.
set.seed(1554)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "linear", ranges = list(cost = 10^seq(-2, 
    1, by = 0.25)))
summary(tune.out)
## Parameter tuning of 'svm':
## - best parameters:
##      cost
##  3.162278
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.16750 0.03395258
## 2   0.01778279 0.16875 0.02960973
## 3   0.03162278 0.16625 0.02638523
## 4   0.05623413 0.16875 0.03076005
## 5   0.10000000 0.16875 0.02901748
## 6   0.17782794 0.16750 0.02838231
## 7   0.31622777 0.17000 0.02898755
## 8   0.56234133 0.16875 0.02841288
## 9   1.00000000 0.16500 0.03106892
## 10  1.77827941 0.16500 0.03106892
## 11  3.16227766 0.16250 0.03118048
## 12  5.62341325 0.16375 0.02664713
## 13 10.00000000 0.16750 0.02581989
  1. Compute the training and test error rates using this new value for cost.
set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
test.pred = predict(svm.linear, OJ.test)
table(OJ.test$Purchase, test.pred)
  1. Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.
set.seed(410)
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial")
summary(svm.radial)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
test.pred = predict(svm.radial, OJ.test)
table(OJ.test$Purchase, test.pred)
set.seed(755)
tune.out = tune(svm, Purchase ~ ., data = OJ.train, kernel = "radial", ranges = list(cost = 10^seq(-2, 
    1, by = 0.25)))
summary(tune.out)
##     test.pred
##       CH  MM
##   CH 139  15
##   MM  25  91
## - best parameters:
##       cost
##  0.3162278
## 
## - best performance: 0.1675 
## 
## - Detailed performance results:
##           cost   error dispersion
## 1   0.01000000 0.39625 0.06615691
## 2   0.01778279 0.39625 0.06615691
## 3   0.03162278 0.35375 0.09754807
## 4   0.05623413 0.20000 0.04249183
## 5   0.10000000 0.17750 0.04073969
## 6   0.17782794 0.17125 0.03120831
## 7   0.31622777 0.16750 0.04216370
## 8   0.56234133 0.16750 0.03782269
## 9   1.00000000 0.17250 0.03670453
## 10  1.77827941 0.17750 0.03374743
## 11  3.16227766 0.18000 0.04005205
## 12  5.62341325 0.18000 0.03446012
## 13 10.00000000 0.18625 0.04427267
svm.radial = svm(Purchase ~ ., data = OJ.train, kernel = "radial", cost = tune.out$best.parameters$cost)
train.pred = predict(svm.radial, OJ.train)
table(OJ.train$Purchase, train.pred)
  1. Overall, which approach seems to give the best results on this data? the linear basis gave me the best results