Un solo factor.
Dos razones de bloqueo.
lote <-
c(
rep("L1", 1),
rep("L2", 1),
rep("L3", 1),
rep("L4", 1),
rep("L5", 1)
)
genotipo <-
c(
rep("gA", 5),
rep("gB", 5),
rep("gC", 5),
rep("gD", 5),
rep("gE", 5)
)
prov <- c("A", "E", "C", "B", "D",
"C", "B", "A", "D", "E",
"B", "C", "D", "E", "A",
"D", "A", "E", "C", "B",
"E", "D", "B", "A", "C")
biom <- c(42, 45, 41, 56, 47, 47,
54, 46, 52, 49, 55, 52,
57, 49, 45, 51, 44, 47,
50, 54, 44, 50, 48, 43,
46)
data <- data.frame(
lote, genotipo, prov, biom
)
head(data)
library(lattice)
bwplot(biom ~ genotipo | prov + lote,
data)
\[y_{ijk} = \mu + \tau_i +\beta_j + \delta_k + \epsilon_{ijk}\] \[i=1,\dots,p\\ j=1,\dots,p\\ k=1,\dots,p\\\]
tbl = matrix(data$prov, 5)
colnames(tbl) = unique(data$genotipo)
rownames(tbl) = unique(data$lote)
tbl
## gA gB gC gD gE
## L1 "A" "C" "B" "D" "E"
## L2 "E" "B" "C" "A" "D"
## L3 "C" "A" "D" "E" "B"
## L4 "B" "D" "E" "C" "A"
## L5 "D" "E" "A" "B" "C"
\[H_o = \mu_{Bg1} = \mu_{Bg2} =\mu_{Bg3} =\mu_{Bg4} =\mu_{Bg5}\]
mod <- lm(biom ~ lote + genotipo + prov,
data)
anova(mod)
# Unicamente se interpreta el valor de genotipo.
bwplot(biom ~ genotipo | prov,
data)
library(ggplot2)
ggplot(data)+
aes(x=prov,
y= biom,
fill=genotipo)+
geom_col(
color='black',
position = 'dodge')
res_mod = mod$residuals
#1. Normalidad
shapiro.test(res_mod)
##
## Shapiro-Wilk normality test
##
## data: res_mod
## W = 0.97691, p-value = 0.8178
#Se cumple el supuesto de normalidad.
#2. Igualdad de varianzas.
bartlett.test(res_mod,
genotipo)
##
## Bartlett test of homogeneity of variances
##
## data: res_mod and genotipo
## Bartlett's K-squared = 5.9223, df = 4, p-value = 0.205
#Se cumple el supuesto (varianzas iguales)
# install.packages("TukeyC")
library(TukeyC)
## Warning: package 'TukeyC' was built under R version 4.2.3
tt = TukeyC(mod, 'genotipo')
plot(tt, lwd =2, cex=2)