Objetivo

Fudamento Teórico

Concepto

Muchos de las situaciones de las ciencias en términos de probabilidad pueden resolverse con la distribución normal y estandarizada Z, sin embargo, exiten situaciones especiales en donde resulta necesario conocer y aplicar otras distribuciones como lo es la distribución exponencial. (Devore 2016)

De cuerdo Anderson (2018) la distribución de probabilidad exponencial se aplica a variables como las llegadas de automóviles a un centro de lavado de autos, los tiempos requeridos para cargar un camión, las distancias entre dos averías en una carretera, entre otras situaciones(Anderson, Sweeney, and Williams 2008).

Otros contextos para tratar con distribución exponencial ptiene que ver con la cantidad de tiempo que transcurre hasta que se produce algún evento específico. Por ejemplo, la cantidad de tiempo (que comienza ahora) hasta que se produzca un terremoto tiene una distribución exponencial. Otros ejemplos son la duración, en minutos, de las llamadas telefónicas de larga distancia comerciales y la cantidad de tiempo, en meses, que dura la batería de un automóvil. También se puede demostrar que el valor del cambio que se tiene en el bolsillo o en el monedero sigue una distribución exponencial aproximadamente. (openstax?) (openstax?)

Por otra parte la representación visual de la densidad de una distribución exponencial significa que hay valores de densidad altos a valores de \(x\) pequeños y viceversa, hay valores de densidad bajo a grandes valores de \(x\).

La distribución exponencial es una distribución de probabilidad continua que se utiliza para modelar el tiempo o espacio entre eventos en un proceso y tiene relación directa con la distribución discreta de Poisson.

La distribución exponencial es la distribución de probabilidad del tiempo o espacio entre dos eventos en un proceso de Poisson, donde los eventos ocurren de manera continua e independiente a una tasa constante \(\lambda\) llamado lambda.

\(\lambda\) lambda representa una tasa constante (valor constante) sobre la ocurrencia de eventos de manera continua e independiente.

En R existen las funciones estadísticas para tratar con distribución expnencial que se obervarán en este caso:

  • dexp() para densidad,

  • pexp() para probabilidad acumulada

  • qexp para devolver valores de x de acuerdo a probabilidades acumuladas. Es la inversa de pexp()

  • rexp() para generación de valores aleatorios de x.

Función de Densidad

\[ f(x) = \lambda \cdot e^{-\lambda\cdot x} \]

  • La función de densidad en R se obtiene con dexp()

  • Se requiere el valor de lambda \(\lambda\) taza constante y continua y/o valor de media.

  • Se requiere el valor de $e =

    2.718282$

  • Se requiere el valor de la variable aleatoria continua \(x\)

Función acumulada

\[ F(x) = P(X\le x) = 1 - e^{-\lambda\cdot x} \text{ si x } \ge 0 \]

La función acumulada de probabilidad en R se obtiene con pexp()

Valor esperado

\[ \frac{1}{\lambda} \]

Varianza y desviación estándar

\[ Varianza = \sigma^{2}= \frac{1}{\lambda^{2}} \]

\[ Desv.Std = \sigma = \sqrt{\sigma^{2}} \]

Descripcón

Desarrollo

Cargar librerías

library(dplyr)
library(mosaic)
library(ggplot2)  # Para gráficos
library(cowplot) #Imágenes en el mismo renglón
library(visualize)
options(scipen=999) # Notación normal

Establecer semilla para valores aleatorios

set.seed(2023)

Visualización de densidad de una distribución Exponencial

Inicializar variables

Se crea una secuencia de valooes de x desde 0 hasta 10 de saltos 0.2 en .2 para generar 50 valores continuos.

constante_lambda = 1
x = seq(from = 0, to= 10, by=0.2)
# Densidad
print("Densidad")
## [1] "Densidad"
densidad <- round(dexp(x = x, rate = constante_lambda), 6)
densidad
##  [1] 1.000000 0.818731 0.670320 0.548812 0.449329 0.367879 0.301194 0.246597
##  [9] 0.201897 0.165299 0.135335 0.110803 0.090718 0.074274 0.060810 0.049787
## [17] 0.040762 0.033373 0.027324 0.022371 0.018316 0.014996 0.012277 0.010052
## [25] 0.008230 0.006738 0.005517 0.004517 0.003698 0.003028 0.002479 0.002029
## [33] 0.001662 0.001360 0.001114 0.000912 0.000747 0.000611 0.000500 0.000410
## [41] 0.000335 0.000275 0.000225 0.000184 0.000151 0.000123 0.000101 0.000083
## [49] 0.000068 0.000055 0.000045
# Acumulada
print("Probabildia Acumulada")
## [1] "Probabildia Acumulada"
acumulada <- round(pexp(q = x, rate =  constante_lambda), 6)
acumulada
##  [1] 0.000000 0.181269 0.329680 0.451188 0.550671 0.632121 0.698806 0.753403
##  [9] 0.798103 0.834701 0.864665 0.889197 0.909282 0.925726 0.939190 0.950213
## [17] 0.959238 0.966627 0.972676 0.977629 0.981684 0.985004 0.987723 0.989948
## [25] 0.991770 0.993262 0.994483 0.995483 0.996302 0.996972 0.997521 0.997971
## [33] 0.998338 0.998640 0.998886 0.999088 0.999253 0.999389 0.999500 0.999590
## [41] 0.999665 0.999725 0.999775 0.999816 0.999849 0.999877 0.999899 0.999917
## [49] 0.999932 0.999945 0.999955

Presentar los datos

datos <- data.frame(x = x, f.x = densidad, F.x = acumulada)
datos
##       x      f.x      F.x
## 1   0.0 1.000000 0.000000
## 2   0.2 0.818731 0.181269
## 3   0.4 0.670320 0.329680
## 4   0.6 0.548812 0.451188
## 5   0.8 0.449329 0.550671
## 6   1.0 0.367879 0.632121
## 7   1.2 0.301194 0.698806
## 8   1.4 0.246597 0.753403
## 9   1.6 0.201897 0.798103
## 10  1.8 0.165299 0.834701
## 11  2.0 0.135335 0.864665
## 12  2.2 0.110803 0.889197
## 13  2.4 0.090718 0.909282
## 14  2.6 0.074274 0.925726
## 15  2.8 0.060810 0.939190
## 16  3.0 0.049787 0.950213
## 17  3.2 0.040762 0.959238
## 18  3.4 0.033373 0.966627
## 19  3.6 0.027324 0.972676
## 20  3.8 0.022371 0.977629
## 21  4.0 0.018316 0.981684
## 22  4.2 0.014996 0.985004
## 23  4.4 0.012277 0.987723
## 24  4.6 0.010052 0.989948
## 25  4.8 0.008230 0.991770
## 26  5.0 0.006738 0.993262
## 27  5.2 0.005517 0.994483
## 28  5.4 0.004517 0.995483
## 29  5.6 0.003698 0.996302
## 30  5.8 0.003028 0.996972
## 31  6.0 0.002479 0.997521
## 32  6.2 0.002029 0.997971
## 33  6.4 0.001662 0.998338
## 34  6.6 0.001360 0.998640
## 35  6.8 0.001114 0.998886
## 36  7.0 0.000912 0.999088
## 37  7.2 0.000747 0.999253
## 38  7.4 0.000611 0.999389
## 39  7.6 0.000500 0.999500
## 40  7.8 0.000410 0.999590
## 41  8.0 0.000335 0.999665
## 42  8.2 0.000275 0.999725
## 43  8.4 0.000225 0.999775
## 44  8.6 0.000184 0.999816
## 45  8.8 0.000151 0.999849
## 46  9.0 0.000123 0.999877
## 47  9.2 0.000101 0.999899
## 48  9.4 0.000083 0.999917
## 49  9.6 0.000068 0.999932
## 50  9.8 0.000055 0.999945
## 51 10.0 0.000045 0.999955

Visualizar los datos

ggplot(data = datos, aes(x = x, y = f.x)) + 
  geom_point(color = 'blue') + 
  geom_line(color = 'red')

Aquí otra forma de representar curvas de densidad de una distribución exponencial (rubio?)

curve(dexp(x, rate = 1.0), from=0, to=10, col='blue')
curve(dexp(x, rate = 1.5), from=0, to=10, col='red', add=TRUE)
curve(dexp(x, rate = 2.0), from=0, to=10, col='purple', add=TRUE)
legend("topright", 
       legend=c("rate=1.0", "rate=1.5", "rate=2.0"),
       col = c("blue", "red", "purple"), 
       lty=1, cex=1.2)

Cálculo de probabilidades

Siguiendo con el ejercicio inicial de lambda = 1 con valores desde 0 hasta 10 de 0.2 en 0.2.

¿cuál es la probabilidad a la izquierda cuando x sea 0.5 o menor?

\(f(x\le0.5)\)

Entonces :

prob = round(pexp(q = 0.5, rate = constante_lambda), 6)
paste("La probabilida área bajo la curva es ...", prob, " aproximadamente " , prob * 100, "%")
## [1] "La probabilida área bajo la curva es ... 0.393469  aproximadamente  39.3469 %"

Visualización de área bajo la curva

Usando la función visualize.exp() de la librería visualize

visualize.exp(stat = 0.5, theta = constante_lambda, section = "lower")

¿cuál es la probabilidad del intervalo entre 0.5 y 2?

\(P(0.5 \le X \le 2)\)

prob = round(pexp(q = 2, rate = constante_lambda) - pexp(q = 0.5, rate = constante_lambda), 6)
paste("La probabilida área bajo la curva es ...", prob, " aproximadamente " , prob * 100, "%")
## [1] "La probabilida área bajo la curva es ... 0.471195  aproximadamente  47.1195 %"

Visualización de área bajo la curva

Nuevamente usando la función visualize.exp() de la librería visualize

visualize.exp(stat = c(0.5, 2), theta = constante_lambda, section = "bounded")

¿cuál es la probabilidad del a partir de 2 hacia la derecha?

\(P(X \ge 2)\)

prob = round(pexp(q = 2, rate = constante_lambda, lower.tail = FALSE), 6)
paste("La probabilida área bajo la curva es ...", prob, " aproximadamente " , prob * 100, "%")
## [1] "La probabilida área bajo la curva es ... 0.135335  aproximadamente  13.5335 %"

Visualización de área bajo la curva

Nuevamente usando la función visualize.exp() de la librería visualize

visualize.exp(stat = 2, theta = constante_lambda, section = "upper")

Valor esperado

De acuerdo a la fórmula arriba presentada:

VE = 1 / constante_lambda
paste ("El valor esperado es ...", VE)
## [1] "El valor esperado es ... 1"

Varianza y desviación

De acuerdo a la fórmula arriba presentada:

varianza = round(1 / constante_lambda^2, 6)
desv.std = round(sqrt(varianza), 6)
paste("Varianza = ", varianza, "Desv.Std = ", desv.std)
## [1] "Varianza =  1 Desv.Std =  1"

Valor de x a partir de q

qexp(p = 0.393469, rate = constante_lambda)
## [1] 0.4999994
print("Muy cercano al valor de x = 0.5")
## [1] "Muy cercano al valor de x = 0.5"

Valores aleatorios

aleatorios = rexp(n = 20, rate = constante_lambda)
aleatorios
##  [1] 0.80600371 1.27762725 3.54952691 0.74598022 0.79634198 1.82973500
##  [7] 0.09887679 0.41803167 0.25630344 0.92874515 0.42590882 0.26170375
## [13] 0.49289887 2.14772908 0.51505897 0.32718421 0.44872219 1.16060466
## [19] 0.63014444 0.38236298

Interpretacion

Primero, se establece una semilla aleatoria. Luego, se define una secuencia de valores x de 0 a 10 con un salto de 0,2 para generar 50 valores continuos y se calcula la densidad y la probabilidad acumulada correspondientes a la distribución exponencial. Después se presenta y visualiza los datos con gráficos de densidad y una curva de densidad de una distribución exponencial. A continuación, se calculan varias probabilidades y se visualizan áreas bajo la curva utilizando la función visualize.exp() de la librería visualize. Finalmente, se calcula el valor esperado, la varianza y la desviación estándar de la distribución exponencial.

En resumen, el código es una introducción al manejo de distribuciones exponenciales con tasa de parámetro 1 y a la función visualize.exp() para la visualización de áreas bajo la curva de la distribución exponencial.

Bibliografía

Anderson, David R., Dennis J. Sweeney, and Thomas A. Williams. 2008. Estadística Para Administración y Economía. 10th ed. Australia • Brasil • Corea • España • Estados Unidos • Japón • México • Reino Unido • Singapur: Cengage Learning,.
Devore, Jay L. 2016. Fundamentos de Probabilidad y Estadística. Primera Edición. CENGAGE.