Opciones para congresos

Parentalidad transformacional según convivencia

Hipótesis: Las percepciones de lxs adolescentes de la parentalidad de sus familias difieren si conviven o no con su madre/padre.

Estimaciones

Los p-valores se obtuvieron con el test de U de Mann-Whitney.

base <- data.frame(cbind(T1[c(1:3,154)],
                         LTm_ii=rowMeans(T1[c(88,92,96,100)]),
                         LTm_mi=rowMeans(T1[c(89,93,97,101)]),
                         LTm_ei=rowMeans(T1[c(90,94,98,102)]),
                         LTm_ci=rowMeans(T1[c(91,95,99,103)]),
                         LTm_LT=rowMeans(T1[88:103]),
                         LTp_ii=rowMeans(T1[c(104,108,112,116)]),
                         LTp_mi=rowMeans(T1[c(105,109,113,117)]),
                         LTp_ei=rowMeans(T1[c(106,110,114,118)]),
                         LTp_ci=rowMeans(T1[c(107,111,115,119)]),
                         LTp_LT=rowMeans(T1[104:119])))
base <- base[complete.cases(base),]

base$padre <- ifelse(base$familia_T1=="ambos"|base$familia_T1=="padre",1,0)
base$madre <- ifelse(base$familia_T1=="ambos"|base$familia_T1=="madre",1,0)



tabla <- data.frame(Variable=c("Influencia idealizada (madre)",
                               "Motivación inspiracional (madre)",
                               "Estimulación intelectual (madre)",
                               "Consideración individualizada (madre)",
                               "Parentalidad transformacional (madre)",
                               "Influencia idealizada (padre)",
                               "Motivación inspiracional (padre)",
                               "Estimulación intelectual (padre)",
                               "Consideración individualizada (padre)",
                               "Parentalidad transformacional (padre)"),
                    `Convive - No convive`=round(c(diff(as.data.frame(emmeans(lm(LTm_ii~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_mi~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ei~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ci~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_LT~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ii~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_mi~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ei~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ci~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_LT~padre, data=base), pairwise ~ padre)$emmeans)$emmean)),2),
                    p=round(c(wilcox.test(LTm_ii~madre, data=base)$p.value,
                        wilcox.test(LTm_mi~madre, data=base)$p.value,
                        wilcox.test(LTm_ei~madre, data=base)$p.value,
                        wilcox.test(LTm_ci~madre, data=base)$p.value,
                        wilcox.test(LTm_LT~madre, data=base)$p.value,
                        wilcox.test(LTp_ii~padre, data=base)$p.value,
                        wilcox.test(LTp_mi~padre, data=base)$p.value,
                        wilcox.test(LTp_ei~padre, data=base)$p.value,
                        wilcox.test(LTp_ci~padre, data=base)$p.value,
                        wilcox.test(LTp_LT~padre, data=base)$p.value),3),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("r","c","c"),
      caption = "Diferencias en LT y sus dimensiones según convivencia") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)%>%
  row_spec(6:10, bold = T, color = "black", background = "darkorange")
Diferencias en LT y sus dimensiones según convivencia
Variable Convive - No convive p
Influencia idealizada (madre) 0.03 0.645
Motivación inspiracional (madre) -0.09 0.354
Estimulación intelectual (madre) -0.01 0.938
Consideración individualizada (madre) 0.01 0.507
Parentalidad transformacional (madre) -0.01 0.938
Influencia idealizada (padre) 0.95 0.000
Motivación inspiracional (padre) 0.69 0.000
Estimulación intelectual (padre) 0.66 0.000
Consideración individualizada (padre) 0.88 0.000
Parentalidad transformacional (padre) 0.80 0.000

Estimaciones sin los casos de Padre en los que puntuaron todo 1

base2 <- data.frame(cbind(T1[rowSums(T1[104:119],na.rm=T)>16,c(1:3,154)],
                         LTm_ii=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(88,92,96,100)]),
                         LTm_mi=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(89,93,97,101)]),
                         LTm_ei=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(90,94,98,102)]),
                         LTm_ci=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(91,95,99,103)]),
                         LTm_LT=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,88:103]),
                         LTp_ii=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(104,108,112,116)]),
                         LTp_mi=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(105,109,113,117)]),
                         LTp_ei=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(106,110,114,118)]),
                         LTp_ci=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,c(107,111,115,119)]),
                         LTp_LT=rowMeans(T1[rowSums(T1[104:119],na.rm=T)>16,104:119])))
base2 <- base2[complete.cases(base2),]

base2$padre <- ifelse(base2$familia_T1=="ambos"|base2$familia_T1=="padre",1,0)
base2$madre <- ifelse(base2$familia_T1=="ambos"|base2$familia_T1=="madre",1,0)



tabla <- data.frame(Variable=c("Influencia idealizada (madre)",
                               "Motivación inspiracional (madre)",
                               "Estimulación intelectual (madre)",
                               "Consideración individualizada (madre)",
                               "Parentalidad transformacional (madre)",
                               "Influencia idealizada (padre)",
                               "Motivación inspiracional (padre)",
                               "Estimulación intelectual (padre)",
                               "Consideración individualizada (padre)",
                               "Parentalidad transformacional (padre)"),
                    `Convive - No convive`=round(c(diff(as.data.frame(emmeans(lm(LTm_ii~madre, data=base2), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_mi~madre, data=base2), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ei~madre, data=base2), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ci~madre, data=base2), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_LT~madre, data=base2), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ii~padre, data=base2), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_mi~padre, data=base2), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ei~padre, data=base2), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ci~padre, data=base2), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_LT~padre, data=base2), pairwise ~ padre)$emmeans)$emmean)),2),
                    p=round(c(wilcox.test(LTm_ii~madre, data=base2)$p.value,
                        wilcox.test(LTm_mi~madre, data=base2)$p.value,
                        wilcox.test(LTm_ei~madre, data=base2)$p.value,
                        wilcox.test(LTm_ci~madre, data=base2)$p.value,
                        wilcox.test(LTm_LT~madre, data=base2)$p.value,
                        wilcox.test(LTp_ii~padre, data=base2)$p.value,
                        wilcox.test(LTp_mi~padre, data=base2)$p.value,
                        wilcox.test(LTp_ei~padre, data=base2)$p.value,
                        wilcox.test(LTp_ci~padre, data=base2)$p.value,
                        wilcox.test(LTp_LT~padre, data=base2)$p.value),3),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("r","c","c"),
      caption = "Diferencias en LT y sus dimensiones según convivencia") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)%>%
  row_spec(6:10, bold = T, color = "black", background = "darkorange")
Diferencias en LT y sus dimensiones según convivencia
Variable Convive - No convive p
Influencia idealizada (madre) 0.04 0.660
Motivación inspiracional (madre) -0.09 0.363
Estimulación intelectual (madre) -0.01 0.934
Consideración individualizada (madre) 0.02 0.491
Parentalidad transformacional (madre) -0.01 0.951
Influencia idealizada (padre) 0.80 0.000
Motivación inspiracional (padre) 0.52 0.000
Estimulación intelectual (padre) 0.50 0.000
Consideración individualizada (padre) 0.72 0.000
Parentalidad transformacional (padre) 0.64 0.000

Gráficos

base_grafico <- data.frame("Variable"= c(rep("IIm",nrow(base)),
                                         rep("MIm",nrow(base)),
                                         rep("EIm",nrow(base)),
                                         rep("CIm",nrow(base)),
                                         rep("LTm",nrow(base))),
                           "Puntaje"=c(base$LTm_ii, 
                                       base$LTm_mi, 
                                       base$LTm_ei, 
                                       base$LTm_ci, 
                                       base$LTm_LT),
                           "Madre"=rep(base$madre,5))



ggplot(base_grafico, aes(x=Variable, y=Puntaje, color=as.factor(Madre)))+
  geom_point(alpha=0.15, size=2.25,pch = 20, position = position_jitterdodge(jitter.width = .35))+
  geom_boxplot(aes(fill = as.factor(Madre),color=as.factor(Madre)), alpha=0.5,outlier.shape = NA, lwd=1)+
  theme_minimal()+
  ylab("Puntaje")+
  ggtitle("Maternidad transformacional según convivencia")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Convivencia", labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Convivencia",  labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))

base_grafico <- data.frame("Variable"= c(rep("IIp",nrow(base)),
                                         rep("MIp",nrow(base)),
                                         rep("EIp",nrow(base)),
                                         rep("CIp",nrow(base)),
                                         rep("LTp",nrow(base))),
                           "Puntaje"=c(base$LTp_ii, 
                                       base$LTp_mi, 
                                       base$LTp_ei, 
                                       base$LTp_ci, 
                                       base$LTp_LT),
                           "Padre"=rep(base$padre,5))



ggplot(base_grafico, aes(x=Variable, y=Puntaje, color=as.factor(Padre)))+
  geom_point(alpha=0.15, size=2.25,pch = 20, position = position_jitterdodge(jitter.width = .35))+
  geom_boxplot(aes(fill = as.factor(Padre),color=as.factor(Padre)), alpha=0.5,outlier.shape = NA, lwd=1)+
  theme_minimal()+
  ylab("Puntaje")+
  ggtitle("Paternidad transformacional según convivencia")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Convivencia", labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Convivencia",  labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))

Gráfico de paternidad sin considerar los casos de todo 1

base_grafico <- data.frame("Variable"= c(rep("IIp",nrow(base2)),
                                         rep("MIp",nrow(base2)),
                                         rep("EIp",nrow(base2)),
                                         rep("CIp",nrow(base2)),
                                         rep("LTp",nrow(base2))),
                           "Puntaje"=c(base2$LTp_ii, 
                                       base2$LTp_mi, 
                                       base2$LTp_ei, 
                                       base2$LTp_ci, 
                                       base2$LTp_LT),
                           "Padre"=rep(base2$padre,5))



ggplot(base_grafico, aes(x=Variable, y=Puntaje, color=as.factor(Padre)))+
  geom_point(alpha=0.15, size=2.25,pch = 20, position = position_jitterdodge(jitter.width = .35))+
  geom_boxplot(aes(fill = as.factor(Padre),color=as.factor(Padre)), alpha=0.5,outlier.shape = NA, lwd=1)+
  theme_minimal()+
  ylab("Puntaje")+
  ggtitle("Paternidad transformacional según convivencia")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Convivencia", labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Convivencia",  labels=c("No", "Sí"),values=c("#f08f56","#10b0bc"))

Convivencia “cruzada”

Predicción del nivel de LT de la madre a partir de la convivencia con el padre y del LT del padre a partir de la convivencia con la madre

base <- data.frame(cbind(T1[c(1:3,154)],
                         LTm_ii=rowMeans(T1[c(88,92,96,100)]),
                         LTm_mi=rowMeans(T1[c(89,93,97,101)]),
                         LTm_ei=rowMeans(T1[c(90,94,98,102)]),
                         LTm_ci=rowMeans(T1[c(91,95,99,103)]),
                         LTm_LT=rowMeans(T1[88:103]),
                         LTp_ii=rowMeans(T1[c(104,108,112,116)]),
                         LTp_mi=rowMeans(T1[c(105,109,113,117)]),
                         LTp_ei=rowMeans(T1[c(106,110,114,118)]),
                         LTp_ci=rowMeans(T1[c(107,111,115,119)]),
                         LTp_LT=rowMeans(T1[104:119])))
base <- base[complete.cases(base),]

base$padre <- ifelse(base$familia_T1=="ambos"|base$familia_T1=="padre",1,0)
base$madre <- ifelse(base$familia_T1=="ambos"|base$familia_T1=="madre",1,0)



tabla <- data.frame(Variable=c("Influencia idealizada (madre)",
                               "Motivación inspiracional (madre)",
                               "Estimulación intelectual (madre)",
                               "Consideración individualizada (madre)",
                               "Parentalidad transformacional (madre)",
                               "Influencia idealizada (padre)",
                               "Motivación inspiracional (padre)",
                               "Estimulación intelectual (padre)",
                               "Consideración individualizada (padre)",
                               "Parentalidad transformacional (padre)"),
                    `Convive - No convive`=round(c(diff(as.data.frame(emmeans(lm(LTm_ii~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_mi~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ei~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_ci~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTm_LT~padre, data=base), pairwise ~ padre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ii~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_mi~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ei~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_ci~madre, data=base), pairwise ~ madre)$emmeans)$emmean),
                                           diff(as.data.frame(emmeans(lm(LTp_LT~madre, data=base), pairwise ~ madre)$emmeans)$emmean)),2),
                    p=round(c(wilcox.test(LTm_ii~padre, data=base)$p.value,
                        wilcox.test(LTm_mi~padre, data=base)$p.value,
                        wilcox.test(LTm_ei~padre, data=base)$p.value,
                        wilcox.test(LTm_ci~padre, data=base)$p.value,
                        wilcox.test(LTm_LT~padre, data=base)$p.value,
                        wilcox.test(LTp_ii~madre, data=base)$p.value,
                        wilcox.test(LTp_mi~madre, data=base)$p.value,
                        wilcox.test(LTp_ei~madre, data=base)$p.value,
                        wilcox.test(LTp_ci~madre, data=base)$p.value,
                        wilcox.test(LTp_LT~madre, data=base)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("r","c","c"),
      caption = "Diferencias en LT y sus dimensiones según convivencia con la otra fig. parental") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Diferencias en LT y sus dimensiones según convivencia con la otra fig. parental
Variable Convive - No convive p
Influencia idealizada (madre) 0.15 0.221
Motivación inspiracional (madre) 0.15 0.257
Estimulación intelectual (madre) 0.16 0.285
Consideración individualizada (madre) 0.12 0.121
Parentalidad transformacional (madre) 0.14 0.261
Influencia idealizada (padre) -0.15 0.168
Motivación inspiracional (padre) -0.02 0.567
Estimulación intelectual (padre) 0.09 0.252
Consideración individualizada (padre) -0.07 0.816
Parentalidad transformacional (padre) -0.04 0.752

No hay diferencias en la parentalidad transformacional de una de las figuras parentales en función de la convivencia con la otra figura.

Consideraciones de género

En padres, todos los modelos con interacción fueron significativos (y todos sus términos también). En madres, ninguno lo fue (i.e., convivir con la madre no predice la percepción de su parentalidad transformacional, sin importar el sexo, pero tampoco el sexo predice bien la variable).

modLT <- lm(LTp_LT~padre*sexo_T1, data=base)



base_grafico <- data.frame("LT"= c(sum(as.data.frame(summary(modLT)$coef)$Estimate[1:4]),
                                   sum(as.data.frame(summary(modLT)$coef)$Estimate[1:2]),
                                   sum(as.data.frame(summary(modLT)$coef)$Estimate[c(1,3)]),
                                   sum(as.data.frame(summary(modLT)$coef)$Estimate[1])),
                           "Padre"= c("Convive","Convive","No convive","No convive"),
                           "Sexo"= rep(c("Masc.","Fem."),2),
                           "int"=c("p_m","p_f","np_m","np_f"))



ggplot(base_grafico, aes(x=Padre, y=LT, color=as.factor(Sexo), group=as.factor(Sexo)))+
  geom_point(size=5)+
  geom_line(lwd=2)+
  theme_minimal()+
  ylab("LTp")+
  ggtitle("Paternidad transformacional según convivencia y sexo")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Sexo", labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Sexo",  labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))

mod1 <- lm(LTp_LT~sexo_T1, base[base$padre==1,])
mod2 <- lm(LTp_LT~sexo_T1, base[base$padre==0,])
mod3 <- lm(LTp_LT~padre, base[base$sexo_T1=="m",])
mod4 <- lm(LTp_LT~padre, base[base$sexo_T1=="f",])

tabla <- data.frame(Comparación=c("Sexo | convive",
                                  "Sexo | no convive",
                                  "Convivencia | masc.",
                                  "Convivencia | fem."),
                    Estimación= c(round(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$estimate,2)),
                    p=round(c(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c"),
      caption = "Comparaciones de efectos simples en Paternidad transformacional") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Comparaciones de efectos simples en Paternidad transformacional
Comparación Estimación p
Sexo | convive -0.19 0.000
Sexo | no convive -0.70 0.002
Convivencia | masc. -0.57 0.000
Convivencia | fem. -1.08 0.000
modII <- lm(LTp_ii~padre*sexo_T1, data=base)

base_grafico <- data.frame("II"= c(sum(as.data.frame(summary(modII)$coef)$Estimate[1:4]),
                                   sum(as.data.frame(summary(modII)$coef)$Estimate[1:2]),
                                   sum(as.data.frame(summary(modII)$coef)$Estimate[c(1,3)]),
                                   sum(as.data.frame(summary(modII)$coef)$Estimate[1])),
                           "Padre"= c("Convive","Convive","No convive","No convive"),
                           "Sexo"= rep(c("Masc.","Fem."),2),
                           "int"=c("p_m","p_f","np_m","np_f"))



ggplot(base_grafico, aes(x=Padre, y=II, color=as.factor(Sexo), group=as.factor(Sexo)))+
  geom_point(size=5)+
  geom_line(lwd=2)+
  theme_minimal()+
  ylab("IIp")+
  ggtitle("Influencia idealizada según convivencia y sexo")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Sexo", labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Sexo",  labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))

mod1 <- lm(LTp_ii~sexo_T1, base[base$padre==1,])
mod2 <- lm(LTp_ii~sexo_T1, base[base$padre==0,])
mod3 <- lm(LTp_ii~padre, base[base$sexo_T1=="m",])
mod4 <- lm(LTp_ii~padre, base[base$sexo_T1=="f",])



tabla <- data.frame(Comparación=c("Sexo | convive",
                                  "Sexo | no convive",
                                  "Convivencia | masc.",
                                  "Convivencia | fem."),
                    Estimación= c(round(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$estimate,2)),
                    p=round(c(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c"),
      caption = "Comparaciones de efectos simples en Influencia idealizada (padre)") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Comparaciones de efectos simples en Influencia idealizada (padre)
Comparación Estimación p
Sexo | convive -0.31 0
Sexo | no convive -0.90 0
Convivencia | masc. -0.69 0
Convivencia | fem. -1.29 0
modMI <- lm(LTp_mi~padre*sexo_T1, data=base)
modEI <- lm(LTp_ei~padre*sexo_T1, data=base)
modCI <- lm(LTp_ci~padre*sexo_T1, data=base)

base_grafico <- data.frame("MI"= c(sum(as.data.frame(summary(modMI)$coef)$Estimate[1:4]),
                                   sum(as.data.frame(summary(modMI)$coef)$Estimate[1:2]),
                                   sum(as.data.frame(summary(modMI)$coef)$Estimate[c(1,3)]),
                                   sum(as.data.frame(summary(modMI)$coef)$Estimate[1])),
                           "Padre"= c("Convive","Convive","No convive","No convive"),
                           "Sexo"= rep(c("Masc.","Fem."),2),
                           "int"=c("p_m","p_f","np_m","np_f"))



ggplot(base_grafico, aes(x=Padre, y=MI, color=as.factor(Sexo), group=as.factor(Sexo)))+
  geom_point(size=5)+
  geom_line(lwd=2)+
  theme_minimal()+
  ylab("MIp")+
  ggtitle("Motivación inspiracional según convivencia y sexo")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Sexo", labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Sexo",  labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))

mod1 <- lm(LTp_mi~sexo_T1, base[base$padre==1,])
mod2 <- lm(LTp_mi~sexo_T1, base[base$padre==0,])
mod3 <- lm(LTp_mi~padre, base[base$sexo_T1=="m",])
mod4 <- lm(LTp_mi~padre, base[base$sexo_T1=="f",])



tabla <- data.frame(Comparación=c("Sexo | convive",
                                  "Sexo | no convive",
                                  "Convivencia | masc.",
                                  "Convivencia | fem."),
                    Estimación= c(round(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$estimate,2)),
                    p=round(c(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c"),
      caption = "Comparaciones de efectos simples en Motivación inspiracional (padre)") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Comparaciones de efectos simples en Motivación inspiracional (padre)
Comparación Estimación p
Sexo | convive -0.07 0.143
Sexo | no convive -0.57 0.017
Convivencia | masc. -0.46 0.000
Convivencia | fem. -0.96 0.000
modEI <- lm(LTp_ei~padre*sexo_T1, data=base)
modCI <- lm(LTp_ci~padre*sexo_T1, data=base)

base_grafico <- data.frame("EI"= c(sum(as.data.frame(summary(modEI)$coef)$Estimate[1:4]),
                                   sum(as.data.frame(summary(modEI)$coef)$Estimate[1:2]),
                                   sum(as.data.frame(summary(modEI)$coef)$Estimate[c(1,3)]),
                                   sum(as.data.frame(summary(modEI)$coef)$Estimate[1])),
                           "Padre"= c("Convive","Convive","No convive","No convive"),
                           "Sexo"= rep(c("Masc.","Fem."),2),
                           "int"=c("p_m","p_f","np_m","np_f"))



ggplot(base_grafico, aes(x=Padre, y=EI, color=as.factor(Sexo), group=as.factor(Sexo)))+
  geom_point(size=5)+
  geom_line(lwd=2)+
  theme_minimal()+
  ylab("EIp")+
  ggtitle("Estimulación intelectual según convivencia y sexo")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Sexo", labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Sexo",  labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))

mod1 <- lm(LTp_ei~sexo_T1, base[base$padre==1,])
mod2 <- lm(LTp_ei~sexo_T1, base[base$padre==0,])
mod3 <- lm(LTp_ei~padre, base[base$sexo_T1=="m",])
mod4 <- lm(LTp_ei~padre, base[base$sexo_T1=="f",])



tabla <- data.frame(Comparación=c("Sexo | convive",
                                  "Sexo | no convive",
                                  "Convivencia | masc.",
                                  "Convivencia | fem."),
                    Estimación= c(round(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$estimate,2)),
                    p=round(c(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c"),
      caption = "Comparaciones de efectos simples en Estimulación intelectual (padre)") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Comparaciones de efectos simples en Estimulación intelectual (padre)
Comparación Estimación p
Sexo | convive -0.19 0.001
Sexo | no convive -0.54 0.017
Convivencia | masc. -0.51 0.000
Convivencia | fem. -0.86 0.000
modCI <- lm(LTp_ci~padre*sexo_T1, data=base)

base_grafico <- data.frame("CI"= c(sum(as.data.frame(summary(modCI)$coef)$Estimate[1:4]),
                                   sum(as.data.frame(summary(modCI)$coef)$Estimate[1:2]),
                                   sum(as.data.frame(summary(modCI)$coef)$Estimate[c(1,3)]),
                                   sum(as.data.frame(summary(modCI)$coef)$Estimate[1])),
                           "Padre"= c("Convive","Convive","No convive","No convive"),
                           "Sexo"= rep(c("Masc.","Fem."),2),
                           "int"=c("p_m","p_f","np_m","np_f"))



ggplot(base_grafico, aes(x=Padre, y=CI, color=as.factor(Sexo), group=as.factor(Sexo)))+
  geom_point(size=5)+
  geom_line(lwd=2)+
  theme_minimal()+
  ylab("CIp")+
  ggtitle("Consideración individualizada según convivencia y sexo")+
  scale_y_continuous(breaks = seq(0, 6, by = 1), limits = c(0,6))+
  scale_fill_manual(name = "Sexo", labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Sexo",  labels=c("Fem.", "Masc."),values=c("#f08f56","#10b0bc"))

mod1 <- lm(LTp_ci~sexo_T1, base[base$padre==1,])
mod2 <- lm(LTp_ci~sexo_T1, base[base$padre==0,])
mod3 <- lm(LTp_ci~padre, base[base$sexo_T1=="m",])
mod4 <- lm(LTp_ci~padre, base[base$sexo_T1=="f",])



tabla <- data.frame(Comparación=c("Sexo | convive",
                                  "Sexo | no convive",
                                  "Convivencia | masc.",
                                  "Convivencia | fem."),
                    Estimación= c(round(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$estimate,2),
                                  round(as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$estimate,2)),
                    p=round(c(as.data.frame(emmeans(mod1, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod2, pairwise ~ sexo_T1)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod3, pairwise ~ padre)$contrasts)$p.value,
                                  as.data.frame(emmeans(mod4, pairwise ~ padre)$contrasts)$p.value),3),
                    check.names=FALSE)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c"),
      caption = "Comparaciones de efectos simples en Estimulación intelectual (padre)") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12)
Comparaciones de efectos simples en Estimulación intelectual (padre)
Comparación Estimación p
Sexo | convive -0.21 0.000
Sexo | no convive -0.79 0.001
Convivencia | masc. -0.61 0.000
Convivencia | fem. -1.20 0.000

Limitaciones

  • Sólo 45 (3.98%) casos no conviven con la madre, mientras que 167 (14.78%) casos no conviven con el padre. Podría ser que falten casos de no convivencia con la madre para encontrar diferencias significativas.
  • Los puntajes de 1 en Paternidad transformacional puede que sean por no conocer al padre, no porque realmente es 1.

LT y valores personales

Madre

Hipótesis: Las conductas de Maternidad trasformacional se asocian positivamente con valores de AT y AC y negativamente con AP y C.

AT sin relación. AP negativa. AC y C positiva

base <- data.frame(cbind(T1[c(1:3)],
                         LTm_ii=rowMeans(T1[c(88,92,96,100)]),
                         LTm_mi=rowMeans(T1[c(89,93,97,101)]),
                         LTm_ei=rowMeans(T1[c(90,94,98,102)]),
                         LTm_ci=rowMeans(T1[c(91,95,99,103)]),
                         LTm_LT=rowMeans(T1[88:103]),
                         LTp_ii=rowMeans(T1[c(104,108,112,116)]),
                         LTp_mi=rowMeans(T1[c(105,109,113,117)]),
                         LTp_ei=rowMeans(T1[c(106,110,114,118)]),
                         LTp_ci=rowMeans(T1[c(107,111,115,119)]),
                         LTp_LT=rowMeans(T1[104:119]),
                         LTc_ii=rowMeans(T1[c(73,76,83,87)]),
                         LTc_mi=rowMeans(T1[c(75,77,79,86)]),
                         LTc_ei=rowMeans(T1[c(74,78,81,84)]),
                         LTc_ci=rowMeans(T1[c(72,80,82,85)]),
                         LTc_LT=rowMeans(T1[72:87]),
                         AT=rowMeans(T1[c(44,49,53,59,60)]),
                         AC=rowMeans(T1[c(42,47,51,52,56,62)]),
                         AP=rowMeans(T1[c(43,45,54,58)]),
                         C=rowMeans(T1[c(46,48,50,55,57,61)]),
                         VP_media=rowMeans(T1[42:62]),
                         ATc=rowMeans(T1[c(44,49,53,59,60)])-rowMeans(T1[42:62]),
                         ACc=rowMeans(T1[c(42,47,51,52,56,62)])-rowMeans(T1[42:62]),
                         APc=rowMeans(T1[c(43,45,54,58)])-rowMeans(T1[42:62]),
                         Cc=rowMeans(T1[c(46,48,50,55,57,61)])-rowMeans(T1[42:62])))
base <- base[complete.cases(base),]

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia", rep(NA,5),
                                          "Apertura al cambio", rep(NA,5),
                                          "Autopromoción", rep(NA,5),
                                          "Conservación", rep(NA,5)),
                    `Variable predictora`=rep(c(NA,"Influencia idealizada (madre)",
                               "Motivación inspiracional (madre)",
                               "Estimulación intelectual (madre)",
                               "Consideración individualizada (madre)",
                               "Parentalidad transformacional (madre)"),4),
                    beta=round(c(NA,coefficients(lm(ATc~LTm_ii,base))[2],
                                 coefficients(lm(ATc~LTm_mi,base))[2],
                                 coefficients(lm(ATc~LTm_ei,base))[2],
                                 coefficients(lm(ATc~LTm_ci,base))[2],
                                 coefficients(lm(ATc~LTm_LT,base))[2],
                                 NA,coefficients(lm(ACc~LTm_ii,base))[2],
                                 coefficients(lm(ACc~LTm_mi,base))[2],
                                 coefficients(lm(ACc~LTm_ei,base))[2],
                                 coefficients(lm(ACc~LTm_ci,base))[2],
                                 coefficients(lm(ACc~LTm_LT,base))[2],
                                 NA,coefficients(lm(APc~LTm_ii,base))[2],
                                 coefficients(lm(APc~LTm_mi,base))[2],
                                 coefficients(lm(APc~LTm_ei,base))[2],
                                 coefficients(lm(APc~LTm_ci,base))[2],
                                 coefficients(lm(APc~LTm_LT,base))[2],
                                 NA,coefficients(lm(Cc~LTm_ii,base))[2],
                                 coefficients(lm(Cc~LTm_mi,base))[2],
                                 coefficients(lm(Cc~LTm_ei,base))[2],
                                 coefficients(lm(Cc~LTm_ci,base))[2],
                                 coefficients(lm(Cc~LTm_LT,base))[2]),2),
                    p=round(c(NA,summary(lm(ATc~LTm_ii,base))$coefficients[2,4],
                                 summary(lm(ATc~LTm_mi,base))$coefficients[2,4],
                                 summary(lm(ATc~LTm_ei,base))$coefficients[2,4],
                                 summary(lm(ATc~LTm_ci,base))$coefficients[2,4],
                                 summary(lm(ATc~LTm_LT,base))$coefficients[2,4],
                                 NA,summary(lm(ACc~LTm_ii,base))$coefficients[2,4],
                                 summary(lm(ACc~LTm_mi,base))$coefficients[2,4],
                                 summary(lm(ACc~LTm_ei,base))$coefficients[2,4],
                                 summary(lm(ACc~LTm_ci,base))$coefficients[2,4],
                                 summary(lm(ACc~LTm_LT,base))$coefficients[2,4],
                                 NA,summary(lm(APc~LTm_ii,base))$coefficients[2,4],
                                 summary(lm(APc~LTm_mi,base))$coefficients[2,4],
                                 summary(lm(APc~LTm_ei,base))$coefficients[2,4],
                                 summary(lm(APc~LTm_ci,base))$coefficients[2,4],
                                 summary(lm(APc~LTm_LT,base))$coefficients[2,4],
                                 NA,summary(lm(Cc~LTm_ii,base))$coefficients[2,4],
                                 summary(lm(Cc~LTm_mi,base))$coefficients[2,4],
                                 summary(lm(Cc~LTm_ei,base))$coefficients[2,4],
                                 summary(lm(Cc~LTm_ci,base))$coefficients[2,4],
                                 summary(lm(Cc~LTm_LT,base))$coefficients[2,4]),3),
                    `F`=round(c(NA,summary(lm(ATc~LTm_ii,base))$fstatistic[1],
                                 summary(lm(ATc~LTm_mi,base))$fstatistic[1],
                                 summary(lm(ATc~LTm_ei,base))$fstatistic[1],
                                 summary(lm(ATc~LTm_ci,base))$fstatistic[1],
                                 summary(lm(ATc~LTm_LT,base))$fstatistic[1],
                                 NA,summary(lm(ACc~LTm_ii,base))$fstatistic[1],
                                 summary(lm(ACc~LTm_mi,base))$fstatistic[1],
                                 summary(lm(ACc~LTm_ei,base))$fstatistic[1],
                                 summary(lm(ACc~LTm_ci,base))$fstatistic[1],
                                 summary(lm(ACc~LTm_LT,base))$fstatistic[1],
                                 NA,summary(lm(APc~LTm_ii,base))$fstatistic[1],
                                 summary(lm(APc~LTm_mi,base))$fstatistic[1],
                                 summary(lm(APc~LTm_ei,base))$fstatistic[1],
                                 summary(lm(APc~LTm_ci,base))$fstatistic[1],
                                 summary(lm(APc~LTm_LT,base))$fstatistic[1],
                                 NA,summary(lm(Cc~LTm_ii,base))$fstatistic[1],
                                 summary(lm(Cc~LTm_mi,base))$fstatistic[1],
                                 summary(lm(Cc~LTm_ei,base))$fstatistic[1],
                                 summary(lm(Cc~LTm_ci,base))$fstatistic[1],
                                 summary(lm(Cc~LTm_LT,base))$fstatistic[1]),2),
                    `P`=round(c(NA,pf(summary(lm(ATc~LTm_ii,base))$fstatistic[1],summary(lm(ATc~LTm_ii,base))$fstatistic[2],summary(lm(ATc~LTm_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTm_mi,base))$fstatistic[1],summary(lm(ATc~LTm_mi,base))$fstatistic[2],summary(lm(ATc~LTm_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTm_ei,base))$fstatistic[1],summary(lm(ATc~LTm_ei,base))$fstatistic[2],summary(lm(ATc~LTm_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTm_ci,base))$fstatistic[1],summary(lm(ATc~LTm_ci,base))$fstatistic[2],summary(lm(ATc~LTm_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTm_LT,base))$fstatistic[1],summary(lm(ATc~LTm_LT,base))$fstatistic[2],summary(lm(ATc~LTm_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(ACc~LTm_ii,base))$fstatistic[1],summary(lm(ACc~LTm_ii,base))$fstatistic[2],summary(lm(ACc~LTm_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTm_mi,base))$fstatistic[1],summary(lm(ACc~LTm_mi,base))$fstatistic[2],summary(lm(ACc~LTm_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTm_ei,base))$fstatistic[1],summary(lm(ACc~LTm_ei,base))$fstatistic[2],summary(lm(ACc~LTm_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTm_ci,base))$fstatistic[1],summary(lm(ACc~LTm_ci,base))$fstatistic[2],summary(lm(ACc~LTm_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTm_LT,base))$fstatistic[1],summary(lm(ACc~LTm_LT,base))$fstatistic[2],summary(lm(ACc~LTm_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(APc~LTm_ii,base))$fstatistic[1],summary(lm(APc~LTm_ii,base))$fstatistic[2],summary(lm(APc~LTm_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTm_mi,base))$fstatistic[1],summary(lm(APc~LTm_mi,base))$fstatistic[2],summary(lm(APc~LTm_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTm_ei,base))$fstatistic[1],summary(lm(APc~LTm_ei,base))$fstatistic[2],summary(lm(APc~LTm_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTm_ci,base))$fstatistic[1],summary(lm(APc~LTm_ci,base))$fstatistic[2],summary(lm(APc~LTm_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTm_LT,base))$fstatistic[1],summary(lm(APc~LTm_LT,base))$fstatistic[2],summary(lm(APc~LTm_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(Cc~LTm_ii,base))$fstatistic[1],summary(lm(Cc~LTm_ii,base))$fstatistic[2],summary(lm(Cc~LTm_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTm_mi,base))$fstatistic[1],summary(lm(Cc~LTm_mi,base))$fstatistic[2],summary(lm(Cc~LTm_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTm_ei,base))$fstatistic[1],summary(lm(Cc~LTm_ei,base))$fstatistic[2],summary(lm(Cc~LTm_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTm_ci,base))$fstatistic[1],summary(lm(Cc~LTm_ci,base))$fstatistic[2],summary(lm(Cc~LTm_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTm_LT,base))$fstatistic[1],summary(lm(Cc~LTm_LT,base))$fstatistic[2],summary(lm(Cc~LTm_LT,base))$fstatistic[3],lower.tail = F)),3),
                    `R2`=round(c(NA,summary(lm(ATc~LTm_ii,base))$r.squared,
                                 summary(lm(ATc~LTm_mi,base))$r.squared,
                                 summary(lm(ATc~LTm_ei,base))$r.squared,
                                 summary(lm(ATc~LTm_ci,base))$r.squared,
                                 summary(lm(ATc~LTm_LT,base))$r.squared,
                                 NA,summary(lm(ACc~LTm_ii,base))$r.squared,
                                 summary(lm(ACc~LTm_mi,base))$r.squared,
                                 summary(lm(ACc~LTm_ei,base))$r.squared,
                                 summary(lm(ACc~LTm_ci,base))$r.squared,
                                 summary(lm(ACc~LTm_LT,base))$r.squared,
                                 NA,summary(lm(APc~LTm_ii,base))$r.squared,
                                 summary(lm(APc~LTm_mi,base))$r.squared,
                                 summary(lm(APc~LTm_ei,base))$r.squared,
                                 summary(lm(APc~LTm_ci,base))$r.squared,
                                 summary(lm(APc~LTm_LT,base))$r.squared,
                                 NA,summary(lm(Cc~LTm_ii,base))$r.squared,
                                 summary(lm(Cc~LTm_mi,base))$r.squared,
                                 summary(lm(Cc~LTm_ei,base))$r.squared,
                                 summary(lm(Cc~LTm_ci,base))$r.squared,
                                 summary(lm(Cc~LTm_LT,base))$r.squared),3),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("r","l","c","c","c","c","c"),
      caption = "Modelos de regresión simple") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(8:12,14:18,20,24), bold = T, color = "black", background = "darkorange")
Modelos de regresión simple
Variable criterio Variable predictora beta p F P R2
Autotrascendencia
Influencia idealizada (madre) 0.00 0.906 0.01 0.906 0.000
Motivación inspiracional (madre) -0.01 0.781 0.08 0.781 0.000
Estimulación intelectual (madre) 0.02 0.448 0.58 0.448 0.001
Consideración individualizada (madre) 0.02 0.474 0.51 0.474 0.000
Parentalidad transformacional (madre) 0.01 0.716 0.13 0.716 0.000
Apertura al cambio
Influencia idealizada (madre) 0.05 0.027 4.92 0.027 0.005
Motivación inspiracional (madre) 0.04 0.042 4.15 0.042 0.004
Estimulación intelectual (madre) 0.07 0.000 12.30 0.000 0.011
Consideración individualizada (madre) 0.06 0.004 8.27 0.004 0.008
Parentalidad transformacional (madre) 0.07 0.003 8.68 0.003 0.008
Autopromoción
Influencia idealizada (madre) -0.16 0.000 22.15 0.000 0.020
Motivación inspiracional (madre) -0.11 0.003 8.60 0.003 0.008
Estimulación intelectual (madre) -0.18 0.000 28.29 0.000 0.026
Consideración individualizada (madre) -0.17 0.000 19.55 0.000 0.018
Parentalidad transformacional (madre) -0.19 0.000 23.24 0.000 0.021
Conservación
Influencia idealizada (madre) 0.06 0.007 7.43 0.007 0.007
Motivación inspiracional (madre) 0.03 0.159 1.98 0.159 0.002
Estimulación intelectual (madre) 0.04 0.091 2.85 0.091 0.003
Consideración individualizada (madre) 0.03 0.166 1.92 0.166 0.002
Parentalidad transformacional (madre) 0.05 0.046 4.00 0.046 0.004

Modelos múltiples

Apertura al cambio

summary(lm(ACc~LTm_ii + LTm_mi + LTm_ei + LTm_ci, base))
## 
## Call:
## lm(formula = ACc ~ LTm_ii + LTm_mi + LTm_ei + LTm_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.57934 -0.34630 -0.01297  0.34401  1.32118 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)  0.06757    0.12826   0.527   0.5984  
## LTm_ii      -0.02527    0.03660  -0.690   0.4901  
## LTm_mi      -0.03333    0.03732  -0.893   0.3719  
## LTm_ei       0.08008    0.03363   2.381   0.0174 *
## LTm_ci       0.04481    0.04132   1.085   0.2783  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5082 on 1056 degrees of freedom
## Multiple R-squared:  0.01323,    Adjusted R-squared:  0.009489 
## F-statistic: 3.539 on 4 and 1056 DF,  p-value: 0.007064

Autopromoción

summary(lm(APc~LTm_ii + LTm_mi + LTm_ei + LTm_ci, base))
## 
## Call:
## lm(formula = APc ~ LTm_ii + LTm_mi + LTm_ei + LTm_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.79376 -0.54188  0.00966  0.63477  2.50429 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.40993    0.21995   1.864   0.0626 . 
## LTm_ii      -0.08832    0.06276  -1.407   0.1596   
## LTm_mi       0.14810    0.06399   2.314   0.0208 * 
## LTm_ei      -0.15912    0.05767  -2.759   0.0059 **
## LTm_ci      -0.08501    0.07085  -1.200   0.2305   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8716 on 1056 degrees of freedom
## Multiple R-squared:  0.03196,    Adjusted R-squared:  0.0283 
## F-statistic: 8.717 on 4 and 1056 DF,  p-value: 6.353e-07

Conservación

summary(lm(Cc~LTm_ii + LTm_mi + LTm_ei + LTm_ci, base))
## 
## Call:
## lm(formula = Cc ~ LTm_ii + LTm_mi + LTm_ei + LTm_ci, data = base)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7806 -0.3673  0.0360  0.4119  1.6485 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.819367   0.144828  -5.658 1.98e-08 ***
## LTm_ii       0.100676   0.041323   2.436    0.015 *  
## LTm_mi      -0.019106   0.042136  -0.453    0.650    
## LTm_ei      -0.002512   0.037975  -0.066    0.947    
## LTm_ci      -0.030736   0.046653  -0.659    0.510    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5739 on 1056 degrees of freedom
## Multiple R-squared:  0.008329,   Adjusted R-squared:  0.004573 
## F-statistic: 2.217 on 4 and 1056 DF,  p-value: 0.0652

Padre

Hipótesis: Las conductas de Paternidad trasformacional se asocian positivamente con valores de AT y AC y negativamente con AP y C.

AT y AC sin relación. AP negativa. C positiva

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia", rep(NA,5),
                                          "Apertura al cambio", rep(NA,5),
                                          "Autopromoción", rep(NA,5),
                                          "Conservación", rep(NA,5)),
                    `Variable predictora`=rep(c(NA,"Influencia idealizada (padre)",
                               "Motivación inspiracional (padre)",
                               "Estimulación intelectual (padre)",
                               "Consideración individualizada (padre)",
                               "Parentalidad transformacional (padre)"),4),
                    beta=round(c(NA,coefficients(lm(ATc~LTp_ii,base))[2],
                                 coefficients(lm(ATc~LTp_mi,base))[2],
                                 coefficients(lm(ATc~LTp_ei,base))[2],
                                 coefficients(lm(ATc~LTp_ci,base))[2],
                                 coefficients(lm(ATc~LTp_LT,base))[2],
                                 NA,coefficients(lm(ACc~LTp_ii,base))[2],
                                 coefficients(lm(ACc~LTp_mi,base))[2],
                                 coefficients(lm(ACc~LTp_ei,base))[2],
                                 coefficients(lm(ACc~LTp_ci,base))[2],
                                 coefficients(lm(ACc~LTp_LT,base))[2],
                                 NA,coefficients(lm(APc~LTp_ii,base))[2],
                                 coefficients(lm(APc~LTp_mi,base))[2],
                                 coefficients(lm(APc~LTp_ei,base))[2],
                                 coefficients(lm(APc~LTp_ci,base))[2],
                                 coefficients(lm(APc~LTp_LT,base))[2],
                                 NA,coefficients(lm(Cc~LTp_ii,base))[2],
                                 coefficients(lm(Cc~LTp_mi,base))[2],
                                 coefficients(lm(Cc~LTp_ei,base))[2],
                                 coefficients(lm(Cc~LTp_ci,base))[2],
                                 coefficients(lm(Cc~LTp_LT,base))[2]),2),
                    p=round(c(NA,summary(lm(ATc~LTp_ii,base))$coefficients[2,4],
                                 summary(lm(ATc~LTp_mi,base))$coefficients[2,4],
                                 summary(lm(ATc~LTp_ei,base))$coefficients[2,4],
                                 summary(lm(ATc~LTp_ci,base))$coefficients[2,4],
                                 summary(lm(ATc~LTp_LT,base))$coefficients[2,4],
                                 NA,summary(lm(ACc~LTp_ii,base))$coefficients[2,4],
                                 summary(lm(ACc~LTp_mi,base))$coefficients[2,4],
                                 summary(lm(ACc~LTp_ei,base))$coefficients[2,4],
                                 summary(lm(ACc~LTp_ci,base))$coefficients[2,4],
                                 summary(lm(ACc~LTp_LT,base))$coefficients[2,4],
                                 NA,summary(lm(APc~LTp_ii,base))$coefficients[2,4],
                                 summary(lm(APc~LTp_mi,base))$coefficients[2,4],
                                 summary(lm(APc~LTp_ei,base))$coefficients[2,4],
                                 summary(lm(APc~LTp_ci,base))$coefficients[2,4],
                                 summary(lm(APc~LTp_LT,base))$coefficients[2,4],
                                 NA,summary(lm(Cc~LTp_ii,base))$coefficients[2,4],
                                 summary(lm(Cc~LTp_mi,base))$coefficients[2,4],
                                 summary(lm(Cc~LTp_ei,base))$coefficients[2,4],
                                 summary(lm(Cc~LTp_ci,base))$coefficients[2,4],
                                 summary(lm(Cc~LTp_LT,base))$coefficients[2,4]),3),
                    `F`=round(c(NA,summary(lm(ATc~LTp_ii,base))$fstatistic[1],
                                 summary(lm(ATc~LTp_mi,base))$fstatistic[1],
                                 summary(lm(ATc~LTp_ei,base))$fstatistic[1],
                                 summary(lm(ATc~LTp_ci,base))$fstatistic[1],
                                 summary(lm(ATc~LTp_LT,base))$fstatistic[1],
                                 NA,summary(lm(ACc~LTp_ii,base))$fstatistic[1],
                                 summary(lm(ACc~LTp_mi,base))$fstatistic[1],
                                 summary(lm(ACc~LTp_ei,base))$fstatistic[1],
                                 summary(lm(ACc~LTp_ci,base))$fstatistic[1],
                                 summary(lm(ACc~LTp_LT,base))$fstatistic[1],
                                 NA,summary(lm(APc~LTp_ii,base))$fstatistic[1],
                                 summary(lm(APc~LTp_mi,base))$fstatistic[1],
                                 summary(lm(APc~LTp_ei,base))$fstatistic[1],
                                 summary(lm(APc~LTp_ci,base))$fstatistic[1],
                                 summary(lm(APc~LTp_LT,base))$fstatistic[1],
                                 NA,summary(lm(Cc~LTp_ii,base))$fstatistic[1],
                                 summary(lm(Cc~LTp_mi,base))$fstatistic[1],
                                 summary(lm(Cc~LTp_ei,base))$fstatistic[1],
                                 summary(lm(Cc~LTp_ci,base))$fstatistic[1],
                                 summary(lm(Cc~LTp_LT,base))$fstatistic[1]),2),
                    `P`=round(c(NA,pf(summary(lm(ATc~LTp_ii,base))$fstatistic[1],summary(lm(ATc~LTp_ii,base))$fstatistic[2],summary(lm(ATc~LTp_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTp_mi,base))$fstatistic[1],summary(lm(ATc~LTp_mi,base))$fstatistic[2],summary(lm(ATc~LTp_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTp_ei,base))$fstatistic[1],summary(lm(ATc~LTp_ei,base))$fstatistic[2],summary(lm(ATc~LTp_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTp_ci,base))$fstatistic[1],summary(lm(ATc~LTp_ci,base))$fstatistic[2],summary(lm(ATc~LTp_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTp_LT,base))$fstatistic[1],summary(lm(ATc~LTp_LT,base))$fstatistic[2],summary(lm(ATc~LTp_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(ACc~LTp_ii,base))$fstatistic[1],summary(lm(ACc~LTp_ii,base))$fstatistic[2],summary(lm(ACc~LTp_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTp_mi,base))$fstatistic[1],summary(lm(ACc~LTp_mi,base))$fstatistic[2],summary(lm(ACc~LTp_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTp_ei,base))$fstatistic[1],summary(lm(ACc~LTp_ei,base))$fstatistic[2],summary(lm(ACc~LTp_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTp_ci,base))$fstatistic[1],summary(lm(ACc~LTp_ci,base))$fstatistic[2],summary(lm(ACc~LTp_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTp_LT,base))$fstatistic[1],summary(lm(ACc~LTp_LT,base))$fstatistic[2],summary(lm(ACc~LTp_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(APc~LTp_ii,base))$fstatistic[1],summary(lm(APc~LTp_ii,base))$fstatistic[2],summary(lm(APc~LTp_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTp_mi,base))$fstatistic[1],summary(lm(APc~LTp_mi,base))$fstatistic[2],summary(lm(APc~LTp_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTp_ei,base))$fstatistic[1],summary(lm(APc~LTp_ei,base))$fstatistic[2],summary(lm(APc~LTp_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTp_ci,base))$fstatistic[1],summary(lm(APc~LTp_ci,base))$fstatistic[2],summary(lm(APc~LTp_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTp_LT,base))$fstatistic[1],summary(lm(APc~LTp_LT,base))$fstatistic[2],summary(lm(APc~LTp_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(Cc~LTp_ii,base))$fstatistic[1],summary(lm(Cc~LTp_ii,base))$fstatistic[2],summary(lm(Cc~LTp_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTp_mi,base))$fstatistic[1],summary(lm(Cc~LTp_mi,base))$fstatistic[2],summary(lm(Cc~LTp_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTp_ei,base))$fstatistic[1],summary(lm(Cc~LTp_ei,base))$fstatistic[2],summary(lm(Cc~LTp_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTp_ci,base))$fstatistic[1],summary(lm(Cc~LTp_ci,base))$fstatistic[2],summary(lm(Cc~LTp_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTp_LT,base))$fstatistic[1],summary(lm(Cc~LTp_LT,base))$fstatistic[2],summary(lm(Cc~LTp_LT,base))$fstatistic[3],lower.tail = F)),3),
                    `R2`=round(c(NA,summary(lm(ATc~LTp_ii,base))$r.squared,
                                 summary(lm(ATc~LTp_mi,base))$r.squared,
                                 summary(lm(ATc~LTp_ei,base))$r.squared,
                                 summary(lm(ATc~LTp_ci,base))$r.squared,
                                 summary(lm(ATc~LTp_LT,base))$r.squared,
                                 NA,summary(lm(ACc~LTp_ii,base))$r.squared,
                                 summary(lm(ACc~LTp_mi,base))$r.squared,
                                 summary(lm(ACc~LTp_ei,base))$r.squared,
                                 summary(lm(ACc~LTp_ci,base))$r.squared,
                                 summary(lm(ACc~LTp_LT,base))$r.squared,
                                 NA,summary(lm(APc~LTp_ii,base))$r.squared,
                                 summary(lm(APc~LTp_mi,base))$r.squared,
                                 summary(lm(APc~LTp_ei,base))$r.squared,
                                 summary(lm(APc~LTp_ci,base))$r.squared,
                                 summary(lm(APc~LTp_LT,base))$r.squared,
                                 NA,summary(lm(Cc~LTp_ii,base))$r.squared,
                                 summary(lm(Cc~LTp_mi,base))$r.squared,
                                 summary(lm(Cc~LTp_ei,base))$r.squared,
                                 summary(lm(Cc~LTp_ci,base))$r.squared,
                                 summary(lm(Cc~LTp_LT,base))$r.squared),3),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("r","l","c","c","c","c","c"),
      caption = "Modelos de regresión simple") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(10,14:18,20,23,24), bold = T, color = "black", background = "darkorange")
Modelos de regresión simple
Variable criterio Variable predictora beta p F P R2
Autotrascendencia
Influencia idealizada (padre) -0.01 0.562 0.34 0.562 0.000
Motivación inspiracional (padre) 0.01 0.482 0.49 0.482 0.000
Estimulación intelectual (padre) 0.02 0.322 0.98 0.322 0.001
Consideración individualizada (padre) 0.02 0.324 0.97 0.324 0.001
Parentalidad transformacional (padre) 0.01 0.582 0.30 0.582 0.000
Apertura al cambio
Influencia idealizada (padre) 0.01 0.427 0.63 0.427 0.001
Motivación inspiracional (padre) 0.02 0.266 1.24 0.266 0.001
Estimulación intelectual (padre) 0.05 0.002 9.35 0.002 0.009
Consideración individualizada (padre) 0.02 0.192 1.71 0.192 0.002
Parentalidad transformacional (padre) 0.03 0.093 2.83 0.093 0.003
Autopromoción
Influencia idealizada (padre) -0.09 0.000 12.32 0.000 0.012
Motivación inspiracional (padre) -0.08 0.008 7.04 0.008 0.007
Estimulación intelectual (padre) -0.14 0.000 27.59 0.000 0.025
Consideración individualizada (padre) -0.12 0.000 18.85 0.000 0.017
Parentalidad transformacional (padre) -0.12 0.000 18.10 0.000 0.017
Conservación
Influencia idealizada (padre) 0.06 0.001 11.17 0.001 0.010
Motivación inspiracional (padre) 0.02 0.241 1.37 0.241 0.001
Estimulación intelectual (padre) 0.03 0.066 3.38 0.066 0.003
Consideración individualizada (padre) 0.04 0.013 6.18 0.013 0.006
Parentalidad transformacional (padre) 0.05 0.016 5.79 0.016 0.005

Modelos múltiples

Apertura al cambio

summary(lm(ACc~LTp_ii + LTp_mi + LTp_ei + LTp_ci, base))
## 
## Call:
## lm(formula = ACc ~ LTp_ii + LTp_mi + LTp_ei + LTp_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.72439 -0.33052 -0.01975  0.35018  1.33923 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.27202    0.09479   2.870  0.00419 ** 
## LTp_ii      -0.04339    0.03060  -1.418  0.15652    
## LTp_mi      -0.02592    0.03557  -0.729  0.46636    
## LTp_ei       0.11717    0.02997   3.910 9.81e-05 ***
## LTp_ci      -0.01677    0.03595  -0.466  0.64103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5075 on 1056 degrees of freedom
## Multiple R-squared:  0.0162, Adjusted R-squared:  0.01247 
## F-statistic: 4.347 on 4 and 1056 DF,  p-value: 0.001718

Autopromoción

summary(lm(APc~LTp_ii + LTp_mi + LTp_ei + LTp_ci, base))
## 
## Call:
## lm(formula = APc ~ LTp_ii + LTp_mi + LTp_ei + LTp_ci, data = base)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7888 -0.5593  0.0266  0.6233  2.5222 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.04163    0.16260  -0.256 0.797986    
## LTp_ii       0.01818    0.05249   0.346 0.729202    
## LTp_mi       0.17615    0.06102   2.887 0.003970 ** 
## LTp_ei      -0.19307    0.05140  -3.756 0.000182 ***
## LTp_ci      -0.11242    0.06166  -1.823 0.068576 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8705 on 1056 degrees of freedom
## Multiple R-squared:  0.03431,    Adjusted R-squared:  0.03066 
## F-statistic: 9.381 on 4 and 1056 DF,  p-value: 1.882e-07

Conservación

summary(lm(Cc~LTp_ii + LTp_mi + LTp_ei + LTp_ci, base))
## 
## Call:
## lm(formula = Cc ~ LTp_ii + LTp_mi + LTp_ei + LTp_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.80750 -0.36596  0.04494  0.40473  1.63404 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.70852    0.10666  -6.643 4.91e-11 ***
## LTp_ii       0.10905    0.03443   3.167  0.00158 ** 
## LTp_mi      -0.10474    0.04002  -2.617  0.00899 ** 
## LTp_ei      -0.01538    0.03372  -0.456  0.64844    
## LTp_ci       0.04333    0.04045   1.071  0.28429    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.571 on 1056 degrees of freedom
## Multiple R-squared:  0.01831,    Adjusted R-squared:  0.01459 
## F-statistic: 4.923 on 4 and 1056 DF,  p-value: 0.0006181

Coach

Hipótesis: Las conductas de Liderazgo trasformacional del/de la entrenador/a se asocian positivamente con valores de AT y AC y negativamente con AP y C.

AC sin relación. AP negativa. AT y C positiva

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia", rep(NA,5),
                                          "Apertura al cambio", rep(NA,5),
                                          "Autopromoción", rep(NA,5),
                                          "Conservación", rep(NA,5)),
                    `Variable predictora`=rep(c(NA,"Influencia idealizada (coach)",
                               "Motivación inspiracional (coach)",
                               "Estimulación intelectual (coach)",
                               "Consideración individualizada (coach)",
                               "Liderazgo transformacional (coach)"),4),
                    beta=round(c(NA,coefficients(lm(ATc~LTc_ii,base))[2],
                                 coefficients(lm(ATc~LTc_mi,base))[2],
                                 coefficients(lm(ATc~LTc_ei,base))[2],
                                 coefficients(lm(ATc~LTc_ci,base))[2],
                                 coefficients(lm(ATc~LTc_LT,base))[2],
                                 NA,coefficients(lm(ACc~LTc_ii,base))[2],
                                 coefficients(lm(ACc~LTc_mi,base))[2],
                                 coefficients(lm(ACc~LTc_ei,base))[2],
                                 coefficients(lm(ACc~LTc_ci,base))[2],
                                 coefficients(lm(ACc~LTc_LT,base))[2],
                                 NA,coefficients(lm(APc~LTc_ii,base))[2],
                                 coefficients(lm(APc~LTc_mi,base))[2],
                                 coefficients(lm(APc~LTc_ei,base))[2],
                                 coefficients(lm(APc~LTc_ci,base))[2],
                                 coefficients(lm(APc~LTc_LT,base))[2],
                                 NA,coefficients(lm(Cc~LTc_ii,base))[2],
                                 coefficients(lm(Cc~LTc_mi,base))[2],
                                 coefficients(lm(Cc~LTc_ei,base))[2],
                                 coefficients(lm(Cc~LTc_ci,base))[2],
                                 coefficients(lm(Cc~LTc_LT,base))[2]),2),
                    p=round(c(NA,summary(lm(ATc~LTc_ii,base))$coefficients[2,4],
                                 summary(lm(ATc~LTc_mi,base))$coefficients[2,4],
                                 summary(lm(ATc~LTc_ei,base))$coefficients[2,4],
                                 summary(lm(ATc~LTc_ci,base))$coefficients[2,4],
                                 summary(lm(ATc~LTc_LT,base))$coefficients[2,4],
                                 NA,summary(lm(ACc~LTc_ii,base))$coefficients[2,4],
                                 summary(lm(ACc~LTc_mi,base))$coefficients[2,4],
                                 summary(lm(ACc~LTc_ei,base))$coefficients[2,4],
                                 summary(lm(ACc~LTc_ci,base))$coefficients[2,4],
                                 summary(lm(ACc~LTc_LT,base))$coefficients[2,4],
                                 NA,summary(lm(APc~LTc_ii,base))$coefficients[2,4],
                                 summary(lm(APc~LTc_mi,base))$coefficients[2,4],
                                 summary(lm(APc~LTc_ei,base))$coefficients[2,4],
                                 summary(lm(APc~LTc_ci,base))$coefficients[2,4],
                                 summary(lm(APc~LTc_LT,base))$coefficients[2,4],
                                 NA,summary(lm(Cc~LTc_ii,base))$coefficients[2,4],
                                 summary(lm(Cc~LTc_mi,base))$coefficients[2,4],
                                 summary(lm(Cc~LTc_ei,base))$coefficients[2,4],
                                 summary(lm(Cc~LTc_ci,base))$coefficients[2,4],
                                 summary(lm(Cc~LTc_LT,base))$coefficients[2,4]),3),
                    `F`=round(c(NA,summary(lm(ATc~LTc_ii,base))$fstatistic[1],
                                 summary(lm(ATc~LTc_mi,base))$fstatistic[1],
                                 summary(lm(ATc~LTc_ei,base))$fstatistic[1],
                                 summary(lm(ATc~LTc_ci,base))$fstatistic[1],
                                 summary(lm(ATc~LTc_LT,base))$fstatistic[1],
                                 NA,summary(lm(ACc~LTc_ii,base))$fstatistic[1],
                                 summary(lm(ACc~LTc_mi,base))$fstatistic[1],
                                 summary(lm(ACc~LTc_ei,base))$fstatistic[1],
                                 summary(lm(ACc~LTc_ci,base))$fstatistic[1],
                                 summary(lm(ACc~LTc_LT,base))$fstatistic[1],
                                 NA,summary(lm(APc~LTc_ii,base))$fstatistic[1],
                                 summary(lm(APc~LTc_mi,base))$fstatistic[1],
                                 summary(lm(APc~LTc_ei,base))$fstatistic[1],
                                 summary(lm(APc~LTc_ci,base))$fstatistic[1],
                                 summary(lm(APc~LTc_LT,base))$fstatistic[1],
                                 NA,summary(lm(Cc~LTc_ii,base))$fstatistic[1],
                                 summary(lm(Cc~LTc_mi,base))$fstatistic[1],
                                 summary(lm(Cc~LTc_ei,base))$fstatistic[1],
                                 summary(lm(Cc~LTc_ci,base))$fstatistic[1],
                                 summary(lm(Cc~LTc_LT,base))$fstatistic[1]),2),
                    `P`=round(c(NA,pf(summary(lm(ATc~LTc_ii,base))$fstatistic[1],summary(lm(ATc~LTc_ii,base))$fstatistic[2],summary(lm(ATc~LTc_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTc_mi,base))$fstatistic[1],summary(lm(ATc~LTc_mi,base))$fstatistic[2],summary(lm(ATc~LTc_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTc_ei,base))$fstatistic[1],summary(lm(ATc~LTc_ei,base))$fstatistic[2],summary(lm(ATc~LTc_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTc_ci,base))$fstatistic[1],summary(lm(ATc~LTc_ci,base))$fstatistic[2],summary(lm(ATc~LTc_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ATc~LTc_LT,base))$fstatistic[1],summary(lm(ATc~LTc_LT,base))$fstatistic[2],summary(lm(ATc~LTc_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(ACc~LTc_ii,base))$fstatistic[1],summary(lm(ACc~LTc_ii,base))$fstatistic[2],summary(lm(ACc~LTc_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTc_mi,base))$fstatistic[1],summary(lm(ACc~LTc_mi,base))$fstatistic[2],summary(lm(ACc~LTc_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTc_ei,base))$fstatistic[1],summary(lm(ACc~LTc_ei,base))$fstatistic[2],summary(lm(ACc~LTc_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTc_ci,base))$fstatistic[1],summary(lm(ACc~LTc_ci,base))$fstatistic[2],summary(lm(ACc~LTc_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(ACc~LTc_LT,base))$fstatistic[1],summary(lm(ACc~LTc_LT,base))$fstatistic[2],summary(lm(ACc~LTc_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(APc~LTc_ii,base))$fstatistic[1],summary(lm(APc~LTc_ii,base))$fstatistic[2],summary(lm(APc~LTc_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTc_mi,base))$fstatistic[1],summary(lm(APc~LTc_mi,base))$fstatistic[2],summary(lm(APc~LTc_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTc_ei,base))$fstatistic[1],summary(lm(APc~LTc_ei,base))$fstatistic[2],summary(lm(APc~LTc_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTc_ci,base))$fstatistic[1],summary(lm(APc~LTc_ci,base))$fstatistic[2],summary(lm(APc~LTc_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(APc~LTc_LT,base))$fstatistic[1],summary(lm(APc~LTc_LT,base))$fstatistic[2],summary(lm(APc~LTc_LT,base))$fstatistic[3],lower.tail = F),
                                 NA,pf(summary(lm(Cc~LTc_ii,base))$fstatistic[1],summary(lm(Cc~LTc_ii,base))$fstatistic[2],summary(lm(Cc~LTc_ii,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTc_mi,base))$fstatistic[1],summary(lm(Cc~LTc_mi,base))$fstatistic[2],summary(lm(Cc~LTc_mi,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTc_ei,base))$fstatistic[1],summary(lm(Cc~LTc_ei,base))$fstatistic[2],summary(lm(Cc~LTc_ei,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTc_ci,base))$fstatistic[1],summary(lm(Cc~LTc_ci,base))$fstatistic[2],summary(lm(Cc~LTc_ci,base))$fstatistic[3],lower.tail = F),
                                 pf(summary(lm(Cc~LTc_LT,base))$fstatistic[1],summary(lm(Cc~LTc_LT,base))$fstatistic[2],summary(lm(Cc~LTc_LT,base))$fstatistic[3],lower.tail = F)),3),
                    `R2`=round(c(NA,summary(lm(ATc~LTc_ii,base))$r.squared,
                                 summary(lm(ATc~LTc_mi,base))$r.squared,
                                 summary(lm(ATc~LTc_ei,base))$r.squared,
                                 summary(lm(ATc~LTc_ci,base))$r.squared,
                                 summary(lm(ATc~LTc_LT,base))$r.squared,
                                 NA,summary(lm(ACc~LTc_ii,base))$r.squared,
                                 summary(lm(ACc~LTc_mi,base))$r.squared,
                                 summary(lm(ACc~LTc_ei,base))$r.squared,
                                 summary(lm(ACc~LTc_ci,base))$r.squared,
                                 summary(lm(ACc~LTc_LT,base))$r.squared,
                                 NA,summary(lm(APc~LTc_ii,base))$r.squared,
                                 summary(lm(APc~LTc_mi,base))$r.squared,
                                 summary(lm(APc~LTc_ei,base))$r.squared,
                                 summary(lm(APc~LTc_ci,base))$r.squared,
                                 summary(lm(APc~LTc_LT,base))$r.squared,
                                 NA,summary(lm(Cc~LTc_ii,base))$r.squared,
                                 summary(lm(Cc~LTc_mi,base))$r.squared,
                                 summary(lm(Cc~LTc_ei,base))$r.squared,
                                 summary(lm(Cc~LTc_ci,base))$r.squared,
                                 summary(lm(Cc~LTc_LT,base))$r.squared),3),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("r","l","c","c","c","c","c"),
      caption = "Modelos de regresión simple") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(2:6,10,14:18,20,21,23,24), bold = T, color = "black", background = "darkorange")
Modelos de regresión simple
Variable criterio Variable predictora beta p F P R2
Autotrascendencia
Influencia idealizada (coach) 0.03 0.047 3.94 0.047 0.004
Motivación inspiracional (coach) 0.05 0.002 9.28 0.002 0.009
Estimulación intelectual (coach) 0.05 0.006 7.57 0.006 0.007
Consideración individualizada (coach) 0.05 0.001 10.59 0.001 0.010
Liderazgo transformacional (coach) 0.06 0.002 9.43 0.002 0.009
Apertura al cambio
Influencia idealizada (coach) 0.01 0.591 0.29 0.591 0.000
Motivación inspiracional (coach) 0.01 0.396 0.72 0.396 0.001
Estimulación intelectual (coach) 0.04 0.014 6.09 0.014 0.006
Consideración individualizada (coach) 0.01 0.452 0.57 0.452 0.001
Liderazgo transformacional (coach) 0.02 0.208 1.59 0.208 0.001
Autopromoción
Influencia idealizada (coach) -0.11 0.000 19.03 0.000 0.018
Motivación inspiracional (coach) -0.14 0.000 27.28 0.000 0.025
Estimulación intelectual (coach) -0.14 0.000 26.27 0.000 0.024
Consideración individualizada (coach) -0.18 0.000 45.76 0.000 0.041
Liderazgo transformacional (coach) -0.18 0.000 35.91 0.000 0.033
Conservación
Influencia idealizada (coach) 0.04 0.016 5.79 0.016 0.005
Motivación inspiracional (coach) 0.04 0.031 4.65 0.031 0.004
Estimulación intelectual (coach) 0.02 0.394 0.73 0.394 0.001
Consideración individualizada (coach) 0.06 0.000 12.97 0.000 0.012
Liderazgo transformacional (coach) 0.05 0.012 6.40 0.012 0.006

Modelos múltiples

Autotrascendencia

summary(lm(ATc~LTc_ii + LTc_mi + LTc_ei + LTc_ci, base))
## 
## Call:
## lm(formula = ATc ~ LTc_ii + LTc_mi + LTc_ei + LTc_ci, data = base)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8878 -0.3594  0.0162  0.3679  1.6587 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.30107    0.09307   3.235  0.00126 **
## LTc_ii      -0.04380    0.02872  -1.525  0.12753   
## LTc_mi       0.02904    0.02990   0.971  0.33165   
## LTc_ei       0.02599    0.02578   1.008  0.31362   
## LTc_ci       0.05007    0.03126   1.602  0.10949   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5391 on 1056 degrees of freedom
## Multiple R-squared:  0.01288,    Adjusted R-squared:  0.009146 
## F-statistic: 3.446 on 4 and 1056 DF,  p-value: 0.00829

Apertura al cambio

summary(lm(ACc~LTc_ii + LTc_mi + LTc_ei + LTc_ci, base))
## 
## Call:
## lm(formula = ACc ~ LTc_ii + LTc_mi + LTc_ei + LTc_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.63685 -0.33500 -0.01718  0.34881  1.32627 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  0.269011   0.087956   3.058  0.00228 **
## LTc_ii      -0.031130   0.027139  -1.147  0.25161   
## LTc_mi      -0.001573   0.028259  -0.056  0.95561   
## LTc_ei       0.070179   0.024367   2.880  0.00406 **
## LTc_ci      -0.006745   0.029542  -0.228  0.81945   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5094 on 1056 degrees of freedom
## Multiple R-squared:  0.008545,   Adjusted R-squared:  0.00479 
## F-statistic: 2.275 on 4 and 1056 DF,  p-value: 0.05934

Autopromoción

summary(lm(APc~LTc_ii + LTc_mi + LTc_ei + LTc_ci, base))
## 
## Call:
## lm(formula = APc ~ LTc_ii + LTc_mi + LTc_ei + LTc_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.64226 -0.55418  0.01793  0.58714  2.28145 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.379644   0.149441   2.540   0.0112 *  
## LTc_ii       0.083903   0.046110   1.820   0.0691 .  
## LTc_mi      -0.002956   0.048014  -0.062   0.9509    
## LTc_ei      -0.060639   0.041401  -1.465   0.1433    
## LTc_ci      -0.209203   0.050193  -4.168 3.33e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8656 on 1056 degrees of freedom
## Multiple R-squared:  0.04527,    Adjusted R-squared:  0.04165 
## F-statistic: 12.52 on 4 and 1056 DF,  p-value: 5.93e-10

Conservación

summary(lm(Cc~LTc_ii + LTc_mi + LTc_ei + LTc_ci, base))
## 
## Call:
## lm(formula = Cc ~ LTc_ii + LTc_mi + LTc_ei + LTc_ci, data = base)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.74958 -0.37910  0.04003  0.41606  1.69677 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.77300    0.09866  -7.835 1.14e-14 ***
## LTc_ii       0.01169    0.03044   0.384  0.70098    
## LTc_mi      -0.02066    0.03170  -0.652  0.51473    
## LTc_ei      -0.05142    0.02733  -1.881  0.06024 .  
## LTc_ci       0.10448    0.03314   3.153  0.00166 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5714 on 1056 degrees of freedom
## Multiple R-squared:  0.01675,    Adjusted R-squared:  0.01303 
## F-statistic: 4.497 on 4 and 1056 DF,  p-value: 0.001318

Valores según deporte

Hipótesis: Cada deporte se asocia con un sistema de valores particular.

Considerando la alta relación de valores con edad y sexo y que hay deportes en los que sólo contamos con una de las ramas, en todos los modelos se incluyen las variables edad y sexo como control.

Indoor vs. outdoor

base <- data.frame(cbind(T1[c(1:4)],
                         AT=rowMeans(T1[c(44,49,53,59,60)]),
                         AC=rowMeans(T1[c(42,47,51,52,56,62)]),
                         AP=rowMeans(T1[c(43,45,54,58)]),
                         C=rowMeans(T1[c(46,48,50,55,57,61)]),
                         VP_media=rowMeans(T1[42:62]),
                         ATc=rowMeans(T1[c(44,49,53,59,60)])-rowMeans(T1[42:62]),
                         ACc=rowMeans(T1[c(42,47,51,52,56,62)])-rowMeans(T1[42:62]),
                         APc=rowMeans(T1[c(43,45,54,58)])-rowMeans(T1[42:62]),
                         Cc=rowMeans(T1[c(46,48,50,55,57,61)])-rowMeans(T1[42:62])))
base <- base[complete.cases(base),]
base$deporte_dic <- ifelse(base$deporte_T1%in%c("basquet","handball","voley"),"indoor","outdoor")




tabla <- data.frame(`Variable criterio`=c("Autotrascendencia","Apertura al cambio", "Autopromoción","Conservación"),
                    rbind(as.data.frame(emmeans(lm(ATc~deporte_dic+sexo_T1+edad_T1,base), pairwise~deporte_dic)$contrasts),
                          as.data.frame(emmeans(lm(ACc~deporte_dic+sexo_T1+edad_T1,base), pairwise~deporte_dic)$contrasts),
                          as.data.frame(emmeans(lm(APc~deporte_dic+sexo_T1+edad_T1,base), pairwise~deporte_dic)$contrasts),
                          as.data.frame(emmeans(lm(Cc~deporte_dic+sexo_T1+edad_T1,base), pairwise~deporte_dic)$contrasts)),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("l","c","c","c","c","c"),
      caption = "Modelos de regresión simple") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(1), bold = T, color = "black", background = "darkorange")
Modelos de regresión simple
Variable criterio contrast estimate SE df t.ratio p.value
Autotrascendencia indoor - outdoor 0.0804888 0.0320646 1146 2.5102062 0.0122030
Apertura al cambio indoor - outdoor -0.0277989 0.0300713 1146 -0.9244341 0.3554549
Autopromoción indoor - outdoor 0.0142907 0.0519600 1146 0.2750333 0.7833402
Conservación indoor - outdoor -0.0488022 0.0334555 1146 -1.4587207 0.1449160
base2 <- as.data.frame(emmeans(lm(ATc~deporte_dic+sexo_T1+edad_T1,base), pairwise~deporte_dic)$emmeans)
base2

deporte_dic emmean SE df lower.CL upper.CL indoor 0.6477009 0.02310356 1146 0.6023709 0.6930310 outdoor 0.5672121 0.02217533 1146 0.5237033 0.6107209

Results are averaged over the levels of: sexo_T1 Confidence level used: 0.95

ggplot(base2, aes(x=deporte_dic, y=emmean, color=deporte_dic)) + 
  geom_point(size=4)+
  geom_errorbar(aes(ymin=lower.CL, ymax=upper.CL), width=.5,
                position=position_dodge(0.05), lwd=1)+
  geom_point(data = base,aes(x=deporte_dic, y=ATc, color=deporte_dic),
             alpha=.15, position = position_jitterdodge())+
  theme_minimal()+
  theme(legend.position = "none")+
  xlab("Deporte")+ylab("Autotrascendencia")+
  scale_fill_manual(name = "Deporte", labels=c("Indoor", "Outdoor"),values=c("#f08f56","#10b0bc"))+
  scale_color_manual(name = "Deporte",  labels=c("Indoor", "Outdoor"),values=c("#f08f56","#10b0bc"))

Diferencias en indoor

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia",NA,NA,"Apertura al cambio",NA,NA, "Autopromoción",NA,NA,"Conservación",NA,NA),
                    rbind(as.data.frame(emmeans(lm(ATc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="indoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(ACc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="indoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(APc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="indoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(Cc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="indoor",]), pairwise~deporte_T1)$contrasts)),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("l","l","c","c","c","c","c"),
      caption = "Comparación de medias") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) 
Comparación de medias
Variable criterio contrast estimate SE df t.ratio p.value
Autotrascendencia basquet - handball 0.0449877 0.0625693 544 0.7190052 0.7523448
basquet - voley -0.0001035 0.0537362 544 -0.0019266 0.9999980
handball - voley -0.0450912 0.0624388 544 -0.7221661 0.7504637
Apertura al cambio basquet - handball 0.0493506 0.0619054 544 0.7971931 0.7049094
basquet - voley 0.1176163 0.0531660 544 2.2122462 0.0700060
handball - voley 0.0682657 0.0617763 544 1.1050478 0.5113484
Autopromoción basquet - handball -0.0912439 0.1116608 544 -0.8171520 0.6925476
basquet - voley -0.1548292 0.0958973 544 -1.6145316 0.2403237
handball - voley -0.0635853 0.1114279 544 -0.5706410 0.8358155
Conservación basquet - handball -0.0260110 0.0721738 544 -0.3603945 0.9309220
basquet - voley -0.0143105 0.0619848 544 -0.2308721 0.9710455
handball - voley 0.0117005 0.0720232 544 0.1624543 0.9855562

Diferencias en outdoor

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia",NA,NA,"Apertura al cambio",NA,NA, "Autopromoción",NA,NA,"Conservación",NA,NA),
                    rbind(as.data.frame(emmeans(lm(ATc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="outdoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(ACc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="outdoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(APc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="outdoor",]), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(Cc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="outdoor",]), pairwise~deporte_T1)$contrasts)),
                    check.names=FALSE)


kable(tabla,
      "html",
      booktabs = T,
      align = c("l","l","c","c","c","c","c"),
      caption = "Comparación de medias") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(5), bold = T, color = "black", background = "darkorange")
Comparación de medias
Variable criterio contrast estimate SE df t.ratio p.value
Autotrascendencia futbol - hockey -0.1017853 0.1202310 596 -0.8465807 0.6741643
futbol - rugby 0.1470452 0.0746712 596 1.9692347 0.1207685
hockey - rugby 0.2488304 0.1421904 596 1.7499808 0.1876415
Apertura al cambio futbol - hockey 0.1091758 0.1080081 596 1.0108114 0.5703058
futbol - rugby -0.1872803 0.0670800 596 -2.7918944 0.0149271
hockey - rugby -0.2964561 0.1277350 596 -2.3208679 0.0537172
Autopromoción futbol - hockey -0.2951700 0.1799033 596 -1.6407143 0.2293835
futbol - rugby -0.0499446 0.1117316 596 -0.4470052 0.8957480
hockey - rugby 0.2452254 0.2127614 596 1.1525838 0.4821523
Conservación futbol - hockey 0.1724252 0.1161610 596 1.4843643 0.2991466
futbol - rugby 0.0980391 0.0721435 596 1.3589457 0.3632898
hockey - rugby -0.0743862 0.1373770 596 -0.5414747 0.8508640
base2 <- as.data.frame(emmeans(lm(ACc~deporte_T1+sexo_T1+edad_T1,base[base$deporte_dic=="outdoor",]), pairwise~deporte_T1)$emmean)

ggplot(base2, aes(x=deporte_T1, y=emmean, color=deporte_T1)) + 
  geom_point(size=4)+
  geom_errorbar(aes(ymin=lower.CL, ymax=upper.CL), width=.5,
                position=position_dodge(0.05), lwd=1)+
  geom_point(data = base[base$deporte_T1%in%c("futbol","hockey","rugby"),],aes(x=deporte_T1, y=ACc, color=deporte_T1),
             alpha=.25, position = position_jitterdodge())+
  theme_minimal()+
  theme(legend.position = "none")+
  xlab("Deporte")+ylab("Apertura al cambio")+
  scale_fill_manual(name = "Deporte",values=c("#f08f56","#10b0bc","#2ec417"))+
  scale_color_manual(name = "Deporte",values=c("#f08f56","#10b0bc","#2ec417"))+
  annotate("text",
           x=1:3,
           y=-1,
           label=c("A","AB","B"))

Diferencias entre todos

tabla <- data.frame(`Variable criterio`=c("Autotrascendencia",rep(NA,14),"Apertura al cambio",rep(NA,14), "Autopromoción",rep(NA,14),"Conservación",rep(NA,14)),
                    rbind(as.data.frame(emmeans(lm(ATc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(ACc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(APc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$contrasts),
                          as.data.frame(emmeans(lm(Cc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$contrasts)),
                    check.names=FALSE)
tabla[3:7] <- round(tabla[3:7],3)

kable(tabla,
      "html",
      booktabs = T,
      align = c("l","l","c","c","c","c","c"),
      caption = "Comparación de medias") %>%
  kable_styling(full_width = F,
                position = "center", font_size = 12) %>%
  row_spec(c(4,15,28,30), bold = T, color = "black", background = "darkorange")
Comparación de medias
Variable criterio contrast estimate SE df t.ratio p.value
Autotrascendencia basquet - futbol 0.090 0.053 1142 1.699 0.533
basquet - handball 0.061 0.067 1142 0.908 0.945
basquet - hockey 0.040 0.060 1142 0.672 0.985
basquet - rugby 0.235 0.068 1142 3.468 0.007
basquet - voley -0.004 0.057 1142 -0.064 1.000
futbol - handball -0.029 0.069 1142 -0.425 0.998
futbol - hockey -0.050 0.065 1142 -0.767 0.973
futbol - rugby 0.145 0.069 1142 2.107 0.284
futbol - voley -0.094 0.061 1142 -1.532 0.643
handball - hockey -0.020 0.067 1142 -0.302 1.000
handball - rugby 0.174 0.082 1142 2.114 0.281
handball - voley -0.064 0.067 1142 -0.961 0.930
hockey - rugby 0.194 0.080 1142 2.421 0.150
hockey - voley -0.044 0.049 1142 -0.898 0.947
rugby - voley -0.238 0.076 1142 -3.120 0.023
Apertura al cambio basquet - futbol 0.045 0.050 1142 0.918 0.942
basquet - handball 0.062 0.062 1142 1.000 0.918
basquet - hockey 0.087 0.056 1142 1.554 0.629
basquet - rugby -0.129 0.063 1142 -2.037 0.322
basquet - voley 0.127 0.053 1142 2.386 0.162
futbol - handball 0.017 0.065 1142 0.262 1.000
futbol - hockey 0.042 0.060 1142 0.691 0.983
futbol - rugby -0.174 0.064 1142 -2.713 0.073
futbol - voley 0.082 0.057 1142 1.434 0.706
handball - hockey 0.025 0.063 1142 0.396 0.999
handball - rugby -0.191 0.077 1142 -2.484 0.130
handball - voley 0.065 0.062 1142 1.039 0.905
hockey - rugby -0.216 0.075 1142 -2.878 0.047
hockey - voley 0.040 0.046 1142 0.875 0.952
rugby - voley 0.256 0.071 1142 3.586 0.005
Autopromoción basquet - futbol 0.001 0.086 1142 0.017 1.000
basquet - handball -0.141 0.108 1142 -1.303 0.783
basquet - hockey -0.150 0.097 1142 -1.540 0.638
basquet - rugby -0.083 0.110 1142 -0.753 0.975
basquet - voley -0.179 0.093 1142 -1.934 0.382
futbol - handball -0.142 0.112 1142 -1.271 0.801
futbol - hockey -0.151 0.105 1142 -1.443 0.701
futbol - rugby -0.084 0.111 1142 -0.754 0.975
futbol - voley -0.180 0.099 1142 -1.822 0.452
handball - hockey -0.009 0.109 1142 -0.081 1.000
handball - rugby 0.058 0.134 1142 0.437 0.998
handball - voley -0.038 0.108 1142 -0.350 0.999
hockey - rugby 0.067 0.130 1142 0.516 0.996
hockey - voley -0.029 0.079 1142 -0.366 0.999
rugby - voley -0.096 0.124 1142 -0.777 0.971
Conservación basquet - futbol -0.121 0.055 1142 -2.193 0.242
basquet - handball -0.019 0.070 1142 -0.270 1.000
basquet - hockey -0.021 0.063 1142 -0.334 0.999
basquet - rugby -0.012 0.071 1142 -0.163 1.000
basquet - voley -0.005 0.060 1142 -0.084 1.000
futbol - handball 0.102 0.072 1142 1.419 0.716
futbol - hockey 0.100 0.068 1142 1.486 0.673
futbol - rugby 0.110 0.072 1142 1.529 0.645
futbol - voley 0.116 0.064 1142 1.823 0.451
handball - hockey -0.002 0.070 1142 -0.030 1.000
handball - rugby 0.007 0.086 1142 0.085 1.000
handball - voley 0.014 0.070 1142 0.198 1.000
hockey - rugby 0.009 0.084 1142 0.112 1.000
hockey - voley 0.016 0.051 1142 0.311 1.000
rugby - voley 0.007 0.080 1142 0.082 1.000
base2 <- as.data.frame(emmeans(lm(ATc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$emmeans)

ggplot(base2, aes(x=deporte_T1, y=emmean, color=deporte_T1)) +
  geom_point(size=4)+
  geom_errorbar(aes(ymin=lower.CL, ymax=upper.CL), width=.5,
                position=position_dodge(0.05), lwd=1)+
  geom_point(data = base,aes(x=deporte_T1, y=ATc, color=deporte_T1),
             alpha=.25, position = position_jitterdodge())+
  theme_minimal()+
  theme(legend.position = "none")+
  xlab("Deporte")+ylab("Autotrascendencia")+
  scale_fill_manual(name = "Deporte", values=c("#e47777","#f08f56", "#d2c31e",
                                                                                   "#2ec417","#10b0bc", "#b623f6"))+
  scale_color_manual(name = "Deporte",  values=c("#e47777","#f08f56", "#d2c31e",
                                                                                   "#2ec417","#10b0bc", "#b623f6"))+
  annotate("text",
           x=1:6,
           y=-1,
           label=c("A","AB","AB","AB","B","A"))

base2 <- as.data.frame(emmeans(lm(ACc~deporte_T1+sexo_T1+edad_T1,base), pairwise~deporte_T1)$emmeans)

ggplot(base2, aes(x=deporte_T1, y=emmean, color=deporte_T1)) +
  geom_point(size=4)+
  geom_errorbar(aes(ymin=lower.CL, ymax=upper.CL), width=.5,
                position=position_dodge(0.05), lwd=1)+
  geom_point(data = base,aes(x=deporte_T1, y=ACc, color=deporte_T1),
             alpha=.25, position = position_jitterdodge())+
  theme_minimal()+
  theme(legend.position = "none")+
  xlab("Deporte")+ylab("Apertura al cambio")+
  scale_fill_manual(name = "Deporte",values=c("#e47777","#f08f56", "#d2c31e",
                                                                                   "#2ec417","#10b0bc", "#b623f6"))+
  scale_color_manual(name = "Deporte",values=c("#e47777","#f08f56", "#d2c31e",
                                                                                   "#2ec417","#10b0bc", "#b623f6"))+
  annotate("text",
           x=1:6,
           y=-1,
           label=c("AB","AB","AB","A","B","A"))


Consumo según valores

Hipótesis: El cambio en el consumo de alcohol entre T1 y T2 se puede predecir a partir del nivel de valores personales (AT, AC, AP, C).

De acuerdo con las sugerencias de Schwartz, se usaron los puntajes centrados de valores. Ninguno de los modelos fue significativo. Se probó la interacción con el sexo y tampoco fueron significativos.

Hipótesis: Los valores personales permiten predecir los niveles de consumo (no el cambio en los mismos)

Los valores de Autotrascendencia y Autopromoción no fueron significativos. La Apertura al cambio (T1) y Conservación (T1) permiten predecir el consumo de alcohol tanto en T1 como en T2.

Apertura al cambio

base <- data.frame(cbind(longi[c(1:3)],
                         AT=rowMeans(longi[c(82,87,91,97,98)]),
                         AC=rowMeans(longi[c(80,85,89,90,94,100)]),
                         AP=rowMeans(longi[c(81,83,92,96)]),
                         C=rowMeans(longi[c(84,86,88,93,95,99)]),
                         VP_media=rowMeans(longi[80:100]),
                         ATc=rowMeans(longi[c(82,87,91,97,98)])-rowMeans(longi[80:100]),
                         ACc=rowMeans(longi[c(80,85,89,90,94,100)])-rowMeans(longi[80:100]),
                         APc=rowMeans(longi[c(81,83,92,96)])-rowMeans(longi[80:100]),
                         Cc=rowMeans(longi[c(84,86,88,93,95,99)])-rowMeans(longi[80:100]),
                         delta_alcohol=rowSums(longi[50:59])-rowSums(longi[40:49]),
                         alcoholT1=rowSums(longi[40:49]),
                         alcoholT2=rowSums(longi[50:59])))
base <- base[complete.cases(base),]


mod1 <- lm(alcoholT1~ACc, data=base)

plotT1 <- ggplot(base, aes(y=alcoholT1,x=ACc)) +           
  geom_point(size=2, alpha=.5, color="#f08f56")+
  geom_abline(intercept=coefficients(mod1)[1],
              slope = coefficients(mod1)[2],
              color="#10b0bc",
              lwd=2)+
  theme_minimal()+
  ylab("Alcohol en T1")+
  ggtitle("Consumo de Alcohol en T1\nsegun Apertura al cambio (T1)")


mod2 <- lm(alcoholT2~ACc, data=base)

plotT2 <- ggplot(base, aes(y=alcoholT2,x=ACc)) +           
  geom_point(size=2, alpha=.5, color="#f08f56")+
  geom_abline(intercept=coefficients(mod2)[1],
              slope = coefficients(mod2)[2],
              color="#10b0bc",
              lwd=2)+
  theme_minimal()+
  ylab("Alcohol en T2")+
  ggtitle("Consumo de Alcohol en T2\nsegun Apertura al cambio (T1)")

grid.arrange(plotT1,plotT2,
             nrow=1)

summary(mod1)
## 
## Call:
## lm(formula = alcoholT1 ~ ACc, data = base)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.939 -2.982 -1.811  1.796 27.625 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.7424     0.2097   13.08   <2e-16 ***
## ACc           0.7179     0.3163    2.27   0.0235 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.244 on 671 degrees of freedom
## Multiple R-squared:  0.007621,   Adjusted R-squared:  0.006142 
## F-statistic: 5.153 on 1 and 671 DF,  p-value: 0.02352
summary(mod2)
## 
## Call:
## lm(formula = alcoholT2 ~ ACc, data = base)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.032 -2.876 -1.339  1.970 22.124 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6838     0.1879  14.286  < 2e-16 ***
## ACc           0.8091     0.2834   2.855  0.00443 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.802 on 671 degrees of freedom
## Multiple R-squared:  0.012,  Adjusted R-squared:  0.01053 
## F-statistic: 8.153 on 1 and 671 DF,  p-value: 0.004431

Conservación

mod1 <- lm(alcoholT1~Cc, data=base)

plotT1 <- ggplot(base, aes(y=alcoholT1,x=Cc)) +           
  geom_point(size=2, alpha=.5, color="#f08f56")+
  geom_abline(intercept=coefficients(mod1)[1],
              slope = coefficients(mod1)[2],
              color="#10b0bc",
              lwd=2)+
  theme_minimal()+
  ylab("Alcohol en T1")+
  ggtitle("Consumo de Alcohol en T1\nsegun Conservación (T1)")


mod2 <- lm(alcoholT2~Cc, data=base)

plotT2 <- ggplot(base, aes(y=alcoholT2,x=Cc)) +           
  geom_point(size=2, alpha=.5, color="#f08f56")+
  geom_abline(intercept=coefficients(mod2)[1],
              slope = coefficients(mod2)[2],
              color="#10b0bc",
              lwd=2)+
  theme_minimal()+
  ylab("Alcohol en T2")+
  ggtitle("Consumo de Alcohol en T2\nsegun Conservación (T1)")

grid.arrange(plotT1,plotT2,
             nrow=1)

summary(mod1)
## 
## Call:
## lm(formula = alcoholT1 ~ Cc, data = base)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.953 -2.917 -1.755  1.732 27.489 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6886     0.2273  11.829   <2e-16 ***
## Cc           -0.6398     0.2872  -2.228   0.0262 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.244 on 671 degrees of freedom
## Multiple R-squared:  0.007341,   Adjusted R-squared:  0.005862 
## F-statistic: 4.962 on 1 and 671 DF,  p-value: 0.02623
summary(mod2)
## 
## Call:
## lm(formula = alcoholT2 ~ Cc, data = base)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.147 -2.811 -1.488  1.850 22.603 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.5850     0.2034  12.707  < 2e-16 ***
## Cc           -0.7905     0.2571  -3.075  0.00219 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.799 on 671 degrees of freedom
## Multiple R-squared:  0.0139, Adjusted R-squared:  0.01243 
## F-statistic: 9.456 on 1 and 671 DF,  p-value: 0.00219

Limitaciones

  • Los \(R^2\) son un chiste
  • La distribución de consumo de alcohol es muuuuy asimétrica, habría que probar otro tipo de modelos (e.g., gamma), pero no sé si amerita para un congreso