R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

3

p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("green", "blue", "red"))

8

library(ISLR2)
## Warning: package 'ISLR2' was built under R version 4.1.3
library(tree)
## Warning: package 'tree' was built under R version 4.1.3
attach(Carseats)
set.seed(1)

###a

train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
Carseats.train = Carseats[train, ]
Carseats.test = Carseats[-train, ]

###b

tree.carseats = tree(Sales ~ ., data = Carseats.train)
plot(tree.carseats)
text(tree.carseats, pretty = 0)

pred.carseats = predict(tree.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.carseats)^2)
## [1] 4.922039

The MSE value is 4.92

###c

cv.carseats = cv.tree(tree.carseats, FUN = prune.tree)
par(mfrow = c(1, 2))
plot(cv.carseats$size, cv.carseats$dev, type = "b")
plot(cv.carseats$k, cv.carseats$dev, type = "b")

pruned.carseats = prune.tree(tree.carseats, best = 9)
par(mfrow = c(1, 1))
plot(pruned.carseats)
text(pruned.carseats, pretty = 0)

pred.pruned = predict(pruned.carseats, Carseats.test)
mean((Carseats.test$Sales - pred.pruned)^2)
## [1] 4.918134

The new MSE value has decreased to 4.91

d

library(randomForest)
## Warning: package 'randomForest' was built under R version 4.1.3
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
bag.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 10, ntree = 500, 
    importance = T)
bag.pred = predict(bag.carseats, Carseats.test)
mean((Carseats.test$Sales - bag.pred)^2)
## [1] 2.657296
importance(bag.carseats)
##                 %IncMSE IncNodePurity
## CompPrice   23.07909904    171.185734
## Income       2.82081527     94.079825
## Advertising 11.43295625     99.098941
## Population  -3.92119532     59.818905
## Price       54.24314632    505.887016
## ShelveLoc   46.26912996    361.962753
## Age         14.24992212    159.740422
## Education   -0.07662320     46.738585
## Urban        0.08530119      8.453749
## US           4.34349223     15.157608

By using the bagging approach our MSE is now 2.65. Additionaly, the price, shelveloc, and compprice varibales are the most important.

e

rf.carseats = randomForest(Sales ~ ., data = Carseats.train, mtry = 5, ntree = 500, 
    importance = T)
rf.pred = predict(rf.carseats, Carseats.test)
mean((Carseats.test$Sales - rf.pred)^2)
## [1] 2.701665
importance(rf.carseats)
##                %IncMSE IncNodePurity
## CompPrice   19.8160444     162.73603
## Income       2.8940268     106.96093
## Advertising 11.6799573     106.30923
## Population  -1.6998805      79.04937
## Price       46.3454015     448.33554
## ShelveLoc   40.4412189     334.33610
## Age         12.5440659     169.06125
## Education    1.0762096      55.87510
## Urban        0.5703583      13.21963
## US           5.8799999      25.59797

The new MSE value is 2.701. The most important variables are price, age, shelveloc.

9

###a

library(ISLR2)
attach(OJ)
library(tree)
set.seed(1)

train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]

b

oj.tree = tree(Purchase ~ ., data = OJ.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800

There are 9 terminal nodes and the training error rate for the tree is .158.

###c

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196197 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196197 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *

I decided to pick node labeled 20. The splitting variable at this node is SpecialCH. The splitting value is .5. There are 64 points in the subtree. The deviance for all points bellow the node is 52. Around 15% of points in this node have CH value of Sales and the remaining 85% have MM as value of sales.

###d

plot(oj.tree)
text(oj.tree, pretty = 0)

LoyalCH is in the top 3 nodes of this tree. If the LoyalCH<.28, the tree predicts MM. If the LoyalCH>.76 the tree predicts CH.

###e

oj.pred = predict(oj.tree, OJ.test, type = "class")
table(OJ.test$Purchase, oj.pred)
##     oj.pred
##       CH  MM
##   CH 160   8
##   MM  38  64

###f

cv.oj = cv.tree(oj.tree, FUN = prune.tree)

###g

plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")

###h A tree size of 6 has the lowest cross-validation error

###i

oj.pruned = prune.tree(oj.tree, best = 6)

###j

summary(oj.pruned)
## 
## Classification tree:
## snip.tree(tree = oj.tree, nodes = c(10L, 4L, 12L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff"
## Number of terminal nodes:  6 
## Residual mean deviance:  0.7919 = 628.8 / 794 
## Misclassification error rate: 0.1788 = 143 / 800

The misclassification error of the pruned tree is .1788, while the error rate for the unpruned tree is .1588.

###k

pred.unpruned = predict(oj.tree, OJ.test, type = "class")
misclass.unpruned = sum(OJ.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1703704
pred.pruned = predict(oj.pruned, OJ.test, type = "class")
misclass.pruned = sum(OJ.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
## [1] 0.1851852

The pruned tree has the higher test error rate of .185.