lote <-
c(
rep("L1",1),
rep("L2",1),
rep("L3",1),
rep("L4",1),
rep("L5",1))
genotipo <- c(rep("gA",5),
rep("gB",5),
rep("gC",5),
rep("gD",5),
rep("gE",5))
prov <- c("A","E","C","B","D",
"C","B","A","D","E",
"B","C","D","E","A",
"D","A","E","C","B",
"E","D","B","A","C")
biom <- c(42,45,41,56,47,
47,54,46,52,49,
55,52,57,49,45,
51,44,47,50,54,
44,50,48,43,46)
data <- data.frame(lote, genotipo, prov, biom)
head(data)
## lote genotipo prov biom
## 1 L1 gA A 42
## 2 L2 gA E 45
## 3 L3 gA C 41
## 4 L4 gA B 56
## 5 L5 gA D 47
## 6 L1 gB C 47
library(lattice)
bwplot(biom ~ genotipo | prov + lote,
data)
El provedor B coincide con los maximos.
\[y = \mu + \tau_i + \beta_j+ \delta_k + \epsilon_{ijk}\]
\(i=1, \dots, p\) \(j=1, \dots, p\) \(k=1, \dots, p\)
tbl = matrix(data$prov, 5)
colnames(tbl) = unique(data$genotipo)
rownames(tbl) = unique(data$lote)
tbl
## gA gB gC gD gE
## L1 "A" "C" "B" "D" "E"
## L2 "E" "B" "C" "A" "D"
## L3 "C" "A" "D" "E" "B"
## L4 "B" "D" "E" "C" "A"
## L5 "D" "E" "A" "B" "C"
Hipotesis
\[H_0: \mu_{B_{g_1}} =\mu_{B_{g_2}} = \mu_{B_{g_3}} = \mu_{B_{g_4}} = \mu_{B_{g_5}}\] ** No se hace hipotesis para los los bloques, ni se analiza el p-valor **
mod <- lm(biom ~ lote + genotipo + prov,
data)
anova(mod)
## Analysis of Variance Table
##
## Response: biom
## Df Sum Sq Mean Sq F value Pr(>F)
## lote 4 17.76 4.440 0.7967 0.549839
## genotipo 4 109.36 27.340 4.9055 0.014105 *
## prov 4 286.16 71.540 12.8361 0.000271 ***
## Residuals 12 66.88 5.573
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bwplot(biom ~ genotipo | prov,
data)
interaction.plot(genotipo,
prov,
biom,
lwd=2)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.2
ggplot(data)+
aes(x=prov,
y=biom,
fill=genotipo)+
geom_col(
color='black',
position = 'dodge')
* Hay un dominio del genotipo C (se aisla en este grafico al lote) * No
se usan graficos de lineas para variables cualitativas
REVISION DE SUPUESTOS:
res_mod = mod$residuals
#1. Normalidad
shapiro.test(res_mod)
##
## Shapiro-Wilk normality test
##
## data: res_mod
## W = 0.97691, p-value = 0.8178
#Se cumple el supuesto de normalidad
# 2. Igualdad de varianzas
bartlett.test(res_mod,
genotipo)
##
## Bartlett test of homogeneity of variances
##
## data: res_mod and genotipo
## Bartlett's K-squared = 5.9223, df = 4, p-value = 0.205
#se cumple el supuesto (varianzas iguales)
library(TukeyC)
## Warning: package 'TukeyC' was built under R version 4.2.3
tt = TukeyC(mod, 'genotipo')
plot(tt, lwd=2, cex=2)
se puede remover (lwd=2, cex=2)