Diseño cuadrado Latino

Factorial Simple en blosques al azar (FSBA)

lote <- 
  c(
    rep("L1",1), 
    rep("L2",1), 
    rep("L3",1), 
    rep("L4",1), 
    rep("L5",1))

genotipo <- c(rep("gA",5),
           rep("gB",5),
           rep("gC",5),
           rep("gD",5),
           rep("gE",5))

prov <- c("A","E","C","B","D",
              "C","B","A","D","E", 
              "B","C","D","E","A", 
              "D","A","E","C","B", 
              "E","D","B","A","C")

biom <- c(42,45,41,56,47, 
             47,54,46,52,49,
             55,52,57,49,45,
             51,44,47,50,54, 
             44,50,48,43,46)


data <- data.frame(lote, genotipo, prov, biom)

head(data)
##   lote genotipo prov biom
## 1   L1       gA    A   42
## 2   L2       gA    E   45
## 3   L3       gA    C   41
## 4   L4       gA    B   56
## 5   L5       gA    D   47
## 6   L1       gB    C   47
library(lattice)

bwplot(biom ~ genotipo | prov + lote,
       data)

El provedor B coincide con los maximos.

\[y = \mu + \tau_i + \beta_j+ \delta_k + \epsilon_{ijk}\]

\(i=1, \dots, p\) \(j=1, \dots, p\) \(k=1, \dots, p\)

tbl = matrix(data$prov, 5)
colnames(tbl) = unique(data$genotipo)
rownames(tbl) = unique(data$lote)

tbl
##    gA  gB  gC  gD  gE 
## L1 "A" "C" "B" "D" "E"
## L2 "E" "B" "C" "A" "D"
## L3 "C" "A" "D" "E" "B"
## L4 "B" "D" "E" "C" "A"
## L5 "D" "E" "A" "B" "C"

Hipotesis

\[H_0: \mu_{B_{g_1}} =\mu_{B_{g_2}} = \mu_{B_{g_3}} = \mu_{B_{g_4}} = \mu_{B_{g_5}}\] ** No se hace hipotesis para los los bloques, ni se analiza el p-valor **

mod <- lm(biom ~ lote + genotipo + prov, 
          data)
anova(mod)
## Analysis of Variance Table
## 
## Response: biom
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## lote       4  17.76   4.440  0.7967 0.549839    
## genotipo   4 109.36  27.340  4.9055 0.014105 *  
## prov       4 286.16  71.540 12.8361 0.000271 ***
## Residuals 12  66.88   5.573                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
bwplot(biom ~ genotipo | prov, 
          data)

interaction.plot(genotipo, 
                 prov,
                 biom,
                 lwd=2)

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.2
ggplot(data)+
  aes(x=prov,
      y=biom,
      fill=genotipo)+
  geom_col(
    color='black',
    position = 'dodge')

* Hay un dominio del genotipo C (se aisla en este grafico al lote) * No se usan graficos de lineas para variables cualitativas

REVISION DE SUPUESTOS:

res_mod = mod$residuals

 #1. Normalidad
shapiro.test(res_mod)
## 
##  Shapiro-Wilk normality test
## 
## data:  res_mod
## W = 0.97691, p-value = 0.8178
#Se cumple el supuesto de normalidad 

# 2. Igualdad de varianzas 
bartlett.test(res_mod,
              genotipo)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  res_mod and genotipo
## Bartlett's K-squared = 5.9223, df = 4, p-value = 0.205
#se cumple el supuesto (varianzas iguales)
library(TukeyC)
## Warning: package 'TukeyC' was built under R version 4.2.3
tt = TukeyC(mod, 'genotipo')
plot(tt, lwd=2, cex=2)

se puede remover (lwd=2, cex=2)