dat <- read.csv("senol2010.csv")
head(dat)
##     ptgi1   ptgi2   ptgi3   ptgi4   ptgi5      fa      fr      si    comt
## 1 15.8617  7.0800  9.4997  7.2756  7.2680 28.7726 16.9739 20.4296 12.4859
## 2 19.6334 13.1096 12.3745  6.9255  6.2475 16.0773  9.7708  6.5726 10.1819
## 3 24.6786 18.5167 14.6082 18.2842 10.4416 34.5587 23.8234 21.7633 12.2450
## 4 26.9459 15.3288 14.5654  9.9698  8.3321 24.3256 33.4157 31.2910 10.8508
## 5 18.0531 13.3321 14.5088 11.6376 10.3924 22.6827  9.4061  3.1562 11.2533
## 6 31.3798 17.5496 18.4890 12.8566  7.1857 29.0508 23.1035 26.1498 11.9943
##       con     cha      es       lo    pro     th     time      em     ind
## 1 10.9396 10.1292 36.8005  52.8915 2.8763 2.6852  -0.8918 52.0948 17.2888
## 2 12.5612  9.6461 31.4333  98.4248 2.9732 2.0234   5.2705 29.8632 24.3148
## 3 10.6007 11.7502 27.9093 101.7361 1.8429 2.3620   8.3544 50.4500  7.2650
## 4  6.8631 11.3476 25.9313  78.5248 2.2862 2.7916   7.5874 52.5123 17.4150
## 5  7.8138 11.3474 39.1906  99.5560 2.3429 1.5655 -11.4437 52.2498 23.9244
## 6 10.9793  8.6953 43.8300  76.8719 3.9703 0.8496  13.7793 40.7333 21.3375
##        ru      av      hy     rb
## 1 13.7673 10.0187 12.5244 2.0344
## 2 17.4315 18.7440 10.8034 4.9841
## 3 15.6340 20.8238 13.3176 4.4496
## 4 18.6266  8.9949  9.5156 4.7464
## 5 13.6645  8.4527  8.4414 4.2300
## 6 11.8501 10.2377  7.7889 2.7087
##########################
####Part 1
##Fit the path analysis implied by Figure 1 in the paper
##########################


library(psych)
## Warning: package 'psych' was built under R version 4.2.2
######## Calculate the alpha-coefficient for each scale
#alpha-coefficient for each ERSS_scale
alpha(dat[c("fa","fr","si")],check.keys=TRUE)$total
## Number of categories should be increased  in order to count frequencies.
##  raw_alpha std.alpha  G6(smc) average_r      S/N        ase  mean       sd
##  0.6262383 0.6242778 0.576102  0.356436 1.661541 0.04854985 21.03 4.556611
##   median_r
##  0.3267338
#alpha-coefficient for each IR_scale
alpha(dat[c("lo","comt","con","cha","es")],check.keys=TRUE)$total
## Number of categories should be increased  in order to count frequencies.
## Warning in alpha(dat[c("lo", "comt", "con", "cha", "es")], check.keys = TRUE): Some items were negatively correlated with total scale and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
##  raw_alpha std.alpha   G6(smc) average_r      S/N        ase     mean       sd
##  0.4369416  0.661696 0.6588184 0.2811879 1.955921 0.04261331 21.78866 4.903381
##   median_r
##  0.2871283
#alpha-coefficient for each ERF_scale
alpha(dat[c("pro","th","time")],check.keys=TRUE)$total
## Number of categories should be increased  in order to count frequencies.
## Warning in alpha(dat[c("pro", "th", "time")], check.keys = TRUE): Some items were negatively correlated with total scale and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
##   raw_alpha std.alpha   G6(smc) average_r       S/N        ase     mean
##  0.06426069 0.3435068 0.2733099 0.1485122 0.5232449 0.04422656 3.737367
##        sd   median_r
##  2.795414 0.08910729
#alpha-coefficient for each CPC_scale
alpha(dat[c("em","ind","ru","av","hy","rb")],check.keys=TRUE)$total
## Number of categories should be increased  in order to count frequencies.
## Warning in alpha(dat[c("em", "ind", "ru", "av", "hy", "rb")], check.keys = TRUE): Some items were negatively correlated with total scale and were automatically reversed.
##  This is indicated by a negative sign for the variable name.
##  raw_alpha std.alpha   G6(smc) average_r      S/N        ase    mean       sd
##  0.7088734 0.7259453 0.7510934 0.3062706 2.648906 0.03352199 18.2549 4.532799
##   median_r
##  0.2970295
#alpha-coefficient for each ptgi_scale
alpha(dat[c("ptgi1","ptgi2","ptgi3","ptgi4","ptgi5")],check.keys=TRUE)$total
## Number of categories should be increased  in order to count frequencies.
##  raw_alpha std.alpha   G6(smc) average_r      S/N        ase   mean       sd
##  0.8655373  0.905243 0.8873872 0.6564356 9.553313 0.01320586 11.834 4.848053
##   median_r
##  0.6584159
########
#Replace the latent variables with scale scores (standardize each variable then create sum or mean scores)
#ERSS_scale
dat$erss_scale= scale(dat$fa)+scale(dat$fr)+scale(dat$si)

#IR_scale
dat$ir_scale= scale(dat$comt)+scale(dat$con)+scale(dat$cha)+scale(dat$es)-scale(dat$lo)


#ERF_scale
dat$erf_scale= scale(dat$pro)-scale(dat$th)+scale(dat$time)


#CPC_scale
dat$cpc_scale= scale(dat$em)-scale(dat$ind)+scale(dat$ru)+scale(dat$av)+scale(dat$hy)+scale(dat$rb)

#ptgi_scale
dat$ptgi_scale= scale(dat$ptgi1)+scale(dat$ptgi2)+scale(dat$ptgi3)+scale(dat$ptgi4)+scale(dat$ptgi5)

colnames(dat)
##  [1] "ptgi1"      "ptgi2"      "ptgi3"      "ptgi4"      "ptgi5"     
##  [6] "fa"         "fr"         "si"         "comt"       "con"       
## [11] "cha"        "es"         "lo"         "pro"        "th"        
## [16] "time"       "em"         "ind"        "ru"         "av"        
## [21] "hy"         "rb"         "erss_scale" "ir_scale"   "erf_scale" 
## [26] "cpc_scale"  "ptgi_scale"
library(lavaan)
## Warning: package 'lavaan' was built under R version 4.2.3
## This is lavaan 0.6-15
## lavaan is FREE software! Please report any bugs.
## 
## Attaching package: 'lavaan'
## The following object is masked from 'package:psych':
## 
##     cor2cov
######
# Fit the path analysis using the scale scores.

senol_pa <- "
erf_scale ~ erss_scale +ir_scale
cpc_scale ~ erf_scale
ptgi_scale ~ erss_scale + ir_scale +cpc_scale"

senol_pa <- sem(model = senol_pa, data = dat)
senol_pa
## lavaan 0.6.15 ended normally after 1 iteration
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         9
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 5.465
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.141
summary(senol_pa, header = FALSE, ci = TRUE, rsquare = TRUE ,fit.measures=TRUE)
## 
## Model Test Baseline Model:
## 
##   Test statistic                                68.704
##   Degrees of freedom                                 9
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.959
##   Tucker-Lewis Index (TLI)                       0.876
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -989.236
##   Loglikelihood unrestricted model (H1)       -986.504
##                                                       
##   Akaike (AIC)                                1996.473
##   Bayesian (BIC)                              2022.418
##   Sample-size adjusted Bayesian (SABIC)       1993.951
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.183
##   P-value H_0: RMSEA <= 0.050                    0.251
##   P-value H_0: RMSEA >= 0.080                    0.582
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   erf_scale ~                                                           
##     erss_scale       -0.016    0.075   -0.207    0.836   -0.163    0.132
##     ir_scale          0.179    0.052    3.427    0.001    0.077    0.281
##   cpc_scale ~                                                           
##     erf_scale        -0.369    0.169   -2.184    0.029   -0.700   -0.038
##   ptgi_scale ~                                                          
##     erss_scale        0.349    0.142    2.457    0.014    0.071    0.627
##     ir_scale          0.196    0.099    1.987    0.047    0.003    0.390
##     cpc_scale         0.500    0.080    6.273    0.000    0.344    0.657
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .erf_scale         3.533    0.435    8.124    0.000    2.681    4.386
##    .cpc_scale        14.547    1.791    8.124    0.000   11.038   18.057
##    .ptgi_scale       12.618    1.553    8.124    0.000    9.574   15.662
## 
## R-Square:
##                    Estimate
##     erf_scale         0.085
##     cpc_scale         0.035
##     ptgi_scale        0.279
library(lavaanPlot)
## Warning: package 'lavaanPlot' was built under R version 4.2.2
lavaanPlot(model = senol_pa, coefs = TRUE, covs = TRUE, stars = "regress")

Notes Part1

Scale Alpha

ERSS_scale 0.6242778

IR_scale 0.661696

ERF_scale 0.3435068

CPC_scale 0.7259453

ptgi_scale 0.905243

##########################
####Part 2
#Fit the SEM implied by Figure 1
senol_sem_syntax <- "
# Measurement model
er =~ fa + fr +si
ir  =~ comt + con + cha + es + lo
erf =~ pro + time +th
cpc =~ em + ind +ru +av +hy +rb
ptgi =~ ptgi1 + ptgi2 +ptgi3 +ptgi4 +ptgi5

# Structural model
erf ~ er + ir
cpc ~ erf 
ptgi ~ er + ir +cpc
"
senol_sem_fit <- sem(
  senol_sem_syntax,
  data = dat, # dataset
  std.lv = TRUE # standardize latent variables
)

summary(senol_sem_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                               337.682
##   Degrees of freedom                               202
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1172.516
##   Degrees of freedom                               231
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.856
##   Tucker-Lewis Index (TLI)                       0.835
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8036.650
##   Loglikelihood unrestricted model (H1)      -7867.809
##                                                       
##   Akaike (AIC)                               16175.301
##   Bayesian (BIC)                             16322.323
##   Sample-size adjusted Bayesian (SABIC)      16161.010
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.058
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: RMSEA <= 0.050                    0.006
##   P-value H_0: RMSEA >= 0.080                    0.143
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er =~                                                                 
##     fa                1.356    0.367    3.692    0.000    1.356    0.350
##     fr                5.683    0.744    7.640    0.000    5.683    0.935
##     si                4.580    0.779    5.883    0.000    4.580    0.612
##   ir =~                                                                 
##     comt              1.214    0.262    4.638    0.000    1.214    0.458
##     con               1.709    0.319    5.354    0.000    1.709    0.522
##     cha               1.252    0.240    5.222    0.000    1.252    0.510
##     es                2.949    0.581    5.080    0.000    2.949    0.498
##     lo              -12.019    1.738   -6.915    0.000  -12.019   -0.663
##   erf =~                                                                
##     pro               0.324    0.094    3.440    0.001    0.407    0.549
##     time              1.506    0.787    1.912    0.056    1.890    0.235
##     th               -0.406    0.126   -3.235    0.001   -0.510   -0.447
##   cpc =~                                                                
##     em                4.455    0.946    4.710    0.000    4.753    0.416
##     ind              -2.435    0.569   -4.276    0.000   -2.597   -0.380
##     ru                6.196    0.567   10.936    0.000    6.610    0.879
##     av                2.243    0.455    4.925    0.000    2.393    0.434
##     hy                5.144    0.447   11.503    0.000    5.488    0.923
##     rb                0.148    0.078    1.886    0.059    0.158    0.171
##   ptgi =~                                                               
##     ptgi1             6.705    0.582   11.522    0.000    7.821    0.871
##     ptgi2             5.084    0.447   11.371    0.000    5.930    0.863
##     ptgi3             3.304    0.357    9.246    0.000    3.854    0.739
##     ptgi4             2.500    0.251    9.968    0.000    2.916    0.783
##     ptgi5             2.074    0.204   10.166    0.000    2.419    0.794
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   erf ~                                                                 
##     er               -0.254    0.191   -1.330    0.183   -0.202   -0.202
##     ir                0.790    0.288    2.742    0.006    0.629    0.629
##   cpc ~                                                                 
##     erf              -0.296    0.123   -2.415    0.016   -0.348   -0.348
##   ptgi ~                                                                
##     er                0.234    0.113    2.072    0.038    0.200    0.200
##     ir                0.276    0.130    2.132    0.033    0.237    0.237
##     cpc               0.465    0.109    4.256    0.000    0.425    0.425
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er ~~                                                                 
##     ir                0.280    0.109    2.573    0.010    0.280    0.280
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fa               13.173    1.684    7.822    0.000   13.173    0.877
##    .fr                4.636    7.174    0.646    0.518    4.636    0.126
##    .si               35.107    6.368    5.513    0.000   35.107    0.626
##    .comt              5.565    0.769    7.235    0.000    5.565    0.791
##    .con               7.796    1.137    6.857    0.000    7.796    0.727
##    .cha               4.449    0.642    6.935    0.000    4.449    0.740
##    .es               26.430    3.768    7.014    0.000   26.430    0.752
##    .lo              184.659   33.730    5.475    0.000  184.659    0.561
##    .pro               0.383    0.077    4.977    0.000    0.383    0.699
##    .time             61.380    7.952    7.719    0.000   61.380    0.945
##    .th                1.042    0.165    6.310    0.000    1.042    0.800
##    .em              107.905   13.571    7.951    0.000  107.905    0.827
##    .ind              40.012    5.011    7.985    0.000   40.012    0.856
##    .ru               12.839    3.266    3.930    0.000   12.839    0.227
##    .av               24.704    3.115    7.932    0.000   24.704    0.812
##    .hy                5.253    2.062    2.548    0.011    5.253    0.149
##    .rb                0.824    0.102    8.100    0.000    0.824    0.971
##    .ptgi1            19.484    3.432    5.677    0.000   19.484    0.242
##    .ptgi2            12.106    2.067    5.857    0.000   12.106    0.256
##    .ptgi3            12.332    1.712    7.205    0.000   12.332    0.454
##    .ptgi4             5.370    0.777    6.908    0.000    5.370    0.387
##    .ptgi5             3.420    0.502    6.807    0.000    3.420    0.369
##     er                1.000                               1.000    1.000
##     ir                1.000                               1.000    1.000
##    .erf               1.000                               0.634    0.634
##    .cpc               1.000                               0.879    0.879
##    .ptgi              1.000                               0.735    0.735
## 
## R-Square:
##                    Estimate
##     fa                0.123
##     fr                0.874
##     si                0.374
##     comt              0.209
##     con               0.273
##     cha               0.260
##     es                0.248
##     lo                0.439
##     pro               0.301
##     time              0.055
##     th                0.200
##     em                0.173
##     ind               0.144
##     ru                0.773
##     av                0.188
##     hy                0.851
##     rb                0.029
##     ptgi1             0.758
##     ptgi2             0.744
##     ptgi3             0.546
##     ptgi4             0.613
##     ptgi5             0.631
##     erf               0.366
##     cpc               0.121
##     ptgi              0.265

4.Assess the resulting model for misspecification using global fit indices.

Chi-square(3)=5.465 df= 3 , P=0.141 Conventional preference: p > α=0.05

(CFI)=0.959 ;Conventional Reference: CFI>0.95

(TLI)= 0.876 ;Conventional Reference: TLI>0.95

RMSEA=0.079 :Conventional Reference: RMSEA<0.06

RMSEA = .079, 90% CI [.000,0.183], p(RMSEA >= .08)= 0.582 >0.05 not significant

SRMR=0.051 ;Conventional Reference: SRMR < .05

Conventional cut-offs:

Passed: Chi-square, CFI , SRMR ;

Failed: χ2, RMSEA ,TLI

#2. Fit the SEM implied by Figure 1.

2.1.Does lavaan report a correlation between any factors? If so, why?

Covariances:

Yes ,Lavaan reported a correlation between er and ir , er ~~ ir

Estimate 0.280

Std.Err 0.109

z-value 2.573

P(>|z|) 0.010

Std.lv 0.280

Std.all 0.280

correlation = sqrt (.280) = 0.52915026221 = 53%

2.2.Assess the resulting model for misspecification using global fit indices.

Chi-square 337.682 (202), p < .001

RMSEA values(0.071) is larger than 0.06 which indicate that the model has not the best fit

CFI CFI values (0.856 ) isless than 0.95

TLI TLI values (0.835) is less than 0.95 which indicate no good model fit

SRMR 0.104

Conventional cut-offs:

Passed: SRMR

Failed:Chi-square, χ2, RMSEA ,CFI,TLI

the model have poor fit ###

#########
####Part 3.The model in 2. will have poor fit. Break this model down into the constituent unidimensional factor models. 
##Steps
##3.1.Fit each constituent unidimensional factor model separately using a CFA. Start with the factors with fewer items.
##

er_cfa_syn <-"ercfa =~ fa + fr +si"

er_cfa_fit <-cfa(er_cfa_syn , data=dat, std.lv= TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
er_cfa_fit
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
summary(er_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                67.802
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1210.751
##   Loglikelihood unrestricted model (H1)      -1210.751
##                                                       
##   Akaike (AIC)                                2433.501
##   Bayesian (BIC)                              2450.798
##   Sample-size adjusted Bayesian (SABIC)       2431.820
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ercfa =~                                                              
##     fa                1.199    0.408    2.941    0.003    1.199    0.309
##     fr                6.416    1.335    4.807    0.000    6.416    1.056
##     si                4.073    1.015    4.013    0.000    4.073    0.544
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fa               13.574    1.768    7.679    0.000   13.574    0.904
##    .fr               -4.238   16.530   -0.256    0.798   -4.238   -0.115
##    .si               39.491    8.244    4.790    0.000   39.491    0.704
##     ercfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     fa                0.096
##     fr                   NA
##     si                0.296
##
#ir 
##
ir_cfa_syn <-"ircfa =~ comt + con + cha + es + lo"

ir_cfa_fit <-cfa(ir_cfa_syn , data=dat, std.lv= TRUE)
ir_cfa_fit
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
summary(ir_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.684
##   Tucker-Lewis Index (TLI)                       0.368
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1918.755
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3857.509
##   Bayesian (BIC)                              3886.337
##   Sample-size adjusted Bayesian (SABIC)       3854.707
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.226
##   90 Percent confidence interval - lower         0.163
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.106
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              1.249    0.270    4.633    0.000    1.249    0.471
##     con               1.640    0.332    4.943    0.000    1.640    0.501
##     cha               1.276    0.248    5.141    0.000    1.276    0.520
##     es                2.958    0.601    4.925    0.000    2.958    0.499
##     lo              -12.089    1.847   -6.546    0.000  -12.089   -0.666
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              5.478    0.783    6.998    0.000    5.478    0.778
##    .con               8.028    1.182    6.792    0.000    8.028    0.749
##    .cha               4.388    0.661    6.642    0.000    4.388    0.729
##    .es               26.376    3.876    6.806    0.000   26.376    0.751
##    .lo              182.950   36.974    4.948    0.000  182.950    0.556
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.222
##     con               0.251
##     cha               0.271
##     es                0.249
##     lo                0.444
##
modificationIndices(ir_cfa_fit, sort. = TRUE)
##     lhs op rhs     mi     epc sepc.lv sepc.all sepc.nox
## 13 comt ~~ cha 29.738   2.975   2.975    0.607    0.607
## 16  con ~~ cha 12.392  -2.401  -2.401   -0.404   -0.404
## 18  con ~~  lo 11.776 -19.751 -19.751   -0.515   -0.515
## 12 comt ~~ con  7.657  -2.001  -2.001   -0.302   -0.302
## 17  con ~~  es  5.264   3.743   3.743    0.257    0.257
## 14 comt ~~  es  2.646  -2.128  -2.128   -0.177   -0.177
## 20  cha ~~  lo  2.587   7.112   7.112    0.251    0.251
## 15 comt ~~  lo  1.095   4.719   4.719    0.149    0.149
## 21   es ~~  lo  0.618   8.175   8.175    0.118    0.118
## 19  cha ~~  es  0.024   0.192   0.192    0.018    0.018
###
##
ir_cfa_mod_syn <-"ircfa =~ comt + con + cha + es + lo 
comt ~~ cha "

ir_cfa_mod_fit <-cfa(ir_cfa_mod_syn , data=dat, std.lv= TRUE)
ir_cfa_mod_fit
## lavaan 0.6.15 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                10.463
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.033
summary(ir_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.684
##   Tucker-Lewis Index (TLI)                       0.368
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1918.755
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3857.509
##   Bayesian (BIC)                              3886.337
##   Sample-size adjusted Bayesian (SABIC)       3854.707
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.226
##   90 Percent confidence interval - lower         0.163
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.106
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              1.249    0.270    4.633    0.000    1.249    0.471
##     con               1.640    0.332    4.943    0.000    1.640    0.501
##     cha               1.276    0.248    5.141    0.000    1.276    0.520
##     es                2.958    0.601    4.925    0.000    2.958    0.499
##     lo              -12.089    1.847   -6.546    0.000  -12.089   -0.666
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              5.478    0.783    6.998    0.000    5.478    0.778
##    .con               8.028    1.182    6.792    0.000    8.028    0.749
##    .cha               4.388    0.661    6.642    0.000    4.388    0.729
##    .es               26.376    3.876    6.806    0.000   26.376    0.751
##    .lo              182.950   36.974    4.948    0.000  182.950    0.556
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.222
##     con               0.251
##     cha               0.271
##     es                0.249
##     lo                0.444
##
##
modificationIndices(ir_cfa_mod_fit, sort. = TRUE)
##     lhs op rhs    mi     epc sepc.lv sepc.all sepc.nox
## 21   es ~~  lo 8.023  42.666  42.666    0.656    0.656
## 16  con ~~ cha 3.521  -1.088  -1.088   -0.183   -0.183
## 17  con ~~  es 3.331   4.090   4.090    0.309    0.309
## 19  cha ~~  es 2.628   1.662   1.662    0.142    0.142
## 15 comt ~~  lo 1.543  -4.563  -4.563   -0.141   -0.141
## 18  con ~~  lo 1.090 -11.513 -11.513   -0.347   -0.347
## 14 comt ~~  es 0.645  -0.889  -0.889   -0.069   -0.069
## 13 comt ~~ con 0.448  -0.412  -0.412   -0.063   -0.063
## 20  cha ~~  lo 0.202  -1.575  -1.575   -0.054   -0.054
###
##
ir_cfa_mod_syn <-"ircfa =~ comt + con + cha + es + lo 
comt ~~ cha  
es ~~  lo"

ir_cfa_mod_fit <-cfa(ir_cfa_mod_syn , data=dat, std.lv= TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
ir_cfa_mod_fit
## lavaan 0.6.15 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.443
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.695
summary(ir_cfa_mod_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.443
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.695
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.049
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1900.135
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3824.271
##   Bayesian (BIC)                              3858.865
##   Sample-size adjusted Bayesian (SABIC)       3820.908
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.110
##   P-value H_0: RMSEA <= 0.050                    0.789
##   P-value H_0: RMSEA >= 0.080                    0.118
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              0.529    0.280    1.888    0.059    0.529    0.199
##     con               1.216    0.526    2.310    0.021    1.216    0.371
##     cha               0.631    0.311    2.031    0.042    0.631    0.257
##     es                5.810    2.298    2.529    0.011    5.810    0.980
##     lo              -21.847    8.248   -2.649    0.008  -21.847   -1.204
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .comt ~~                                                               
##    .cha               3.082    0.647    4.766    0.000    3.082    0.500
##  .es ~~                                                                 
##    .lo               93.934   94.326    0.996    0.319   93.934    6.590
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              6.760    0.849    7.958    0.000    6.760    0.960
##    .con               9.240    1.576    5.864    0.000    9.240    0.862
##    .cha               5.619    0.749    7.497    0.000    5.619    0.934
##    .es                1.371   26.349    0.052    0.959    1.371    0.039
##    .lo             -148.205  359.036   -0.413    0.680 -148.205   -0.450
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.040
##     con               0.138
##     cha               0.066
##     es                0.961
##     lo                   NA
##









#erf 
###
erf_cfa_syn <-"erfcfa =~ pro + time +th"

erf_cfa_fit <-cfa(erf_cfa_syn , data=dat, std.lv= TRUE)
erf_cfa_fit
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
summary(erf_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                12.037
##   Degrees of freedom                                 3
##   P-value                                        0.007
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -809.204
##   Loglikelihood unrestricted model (H1)       -809.204
##                                                       
##   Akaike (AIC)                                1630.408
##   Bayesian (BIC)                              1647.705
##   Sample-size adjusted Bayesian (SABIC)       1628.727
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   erfcfa =~                                                             
##     pro               0.414    0.267    1.552    0.121    0.414    0.558
##     time              1.286    1.067    1.205    0.228    1.286    0.160
##     th               -0.567    0.368   -1.540    0.123   -0.567   -0.496
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pro               0.378    0.220    1.717    0.086    0.378    0.688
##    .time             63.301    8.064    7.850    0.000   63.301    0.975
##    .th                0.982    0.421    2.332    0.020    0.982    0.754
##     erfcfa            1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     pro               0.312
##     time              0.025
##     th                0.246
####
#cpc =~ em + ind +ru +av +hy +rb
####
cpc_cfa_syn <-"cpccfa =~ pro + time +th"

cpc_cfa_fit <-cfa(cpc_cfa_syn , data=dat, std.lv= TRUE)
cpc_cfa_fit
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
summary(cpc_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         6
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                                12.037
##   Degrees of freedom                                 3
##   P-value                                        0.007
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -809.204
##   Loglikelihood unrestricted model (H1)       -809.204
##                                                       
##   Akaike (AIC)                                1630.408
##   Bayesian (BIC)                              1647.705
##   Sample-size adjusted Bayesian (SABIC)       1628.727
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   cpccfa =~                                                             
##     pro               0.414    0.267    1.552    0.121    0.414    0.558
##     time              1.286    1.067    1.205    0.228    1.286    0.160
##     th               -0.567    0.368   -1.540    0.123   -0.567   -0.496
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .pro               0.378    0.220    1.717    0.086    0.378    0.688
##    .time             63.301    8.064    7.850    0.000   63.301    0.975
##    .th                0.982    0.421    2.332    0.020    0.982    0.754
##     cpccfa            1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     pro               0.312
##     time              0.025
##     th                0.246
###########
#ptgi =~ ptgi1 + ptgi2 +ptgi3 +ptgi4 +ptgi5
#####

ptgi_cfa_syn <-"ptgicfa =~ ptgi1 + ptgi2 +ptgi3 +ptgi4 +ptgi5"

ptgi_cfa_fit <-cfa(ptgi_cfa_syn , data=dat, std.lv= TRUE)
ptgi_cfa_fit
## lavaan 0.6.15 ended normally after 16 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.353
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.929
summary(ptgi_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 16 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.353
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.929
## 
## Model Test Baseline Model:
## 
##   Test statistic                               409.896
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.018
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1816.899
##   Loglikelihood unrestricted model (H1)      -1816.223
##                                                       
##   Akaike (AIC)                                3653.799
##   Bayesian (BIC)                              3682.627
##   Sample-size adjusted Bayesian (SABIC)       3650.996
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.036
##   P-value H_0: RMSEA <= 0.050                    0.964
##   P-value H_0: RMSEA >= 0.080                    0.012
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.009
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ptgicfa =~                                                            
##     ptgi1             7.870    0.637   12.350    0.000    7.870    0.873
##     ptgi2             5.950    0.491   12.107    0.000    5.950    0.863
##     ptgi3             3.832    0.403    9.513    0.000    3.832    0.733
##     ptgi4             2.920    0.280   10.429    0.000    2.920    0.782
##     ptgi5             2.451    0.226   10.838    0.000    2.451    0.803
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .ptgi1            19.255    3.458    5.568    0.000   19.255    0.237
##    .ptgi2            12.179    2.096    5.810    0.000   12.179    0.256
##    .ptgi3            12.632    1.749    7.222    0.000   12.632    0.462
##    .ptgi4             5.417    0.786    6.893    0.000    5.417    0.388
##    .ptgi5             3.317    0.495    6.702    0.000    3.317    0.356
##     ptgicfa           1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     ptgi1             0.763
##     ptgi2             0.744
##     ptgi3             0.538
##     ptgi4             0.612
##     ptgi5             0.644
############
#####Part3.4
##########
senolcfa_sem_syntax <- "
# Measurement model
ercfa =~ fa + fr +si
ircfa  =~ comt + con + cha + es + lo
erfcfa =~ pro + time +th
cpccfa =~ em + ind +ru +av +hy +rb
ptgicfa =~ ptgi1 + ptgi2 +ptgi3 +ptgi4 +ptgi5

# Structural model
erfcfa ~ ercfa + ircfa
cpccfa ~ erfcfa 
ptgicfa ~ ercfa + ircfa +cpccfa

comt ~~ cha  
es ~~  lo"

senolcfa_sem_fit <- sem(
  senol_sem_syntax,
  data = dat, # dataset
  std.lv = TRUE # standardize latent variables
)

summary(senol_sem_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                               337.682
##   Degrees of freedom                               202
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1172.516
##   Degrees of freedom                               231
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.856
##   Tucker-Lewis Index (TLI)                       0.835
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8036.650
##   Loglikelihood unrestricted model (H1)      -7867.809
##                                                       
##   Akaike (AIC)                               16175.301
##   Bayesian (BIC)                             16322.323
##   Sample-size adjusted Bayesian (SABIC)      16161.010
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.058
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: RMSEA <= 0.050                    0.006
##   P-value H_0: RMSEA >= 0.080                    0.143
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er =~                                                                 
##     fa                1.356    0.367    3.692    0.000    1.356    0.350
##     fr                5.683    0.744    7.640    0.000    5.683    0.935
##     si                4.580    0.779    5.883    0.000    4.580    0.612
##   ir =~                                                                 
##     comt              1.214    0.262    4.638    0.000    1.214    0.458
##     con               1.709    0.319    5.354    0.000    1.709    0.522
##     cha               1.252    0.240    5.222    0.000    1.252    0.510
##     es                2.949    0.581    5.080    0.000    2.949    0.498
##     lo              -12.019    1.738   -6.915    0.000  -12.019   -0.663
##   erf =~                                                                
##     pro               0.324    0.094    3.440    0.001    0.407    0.549
##     time              1.506    0.787    1.912    0.056    1.890    0.235
##     th               -0.406    0.126   -3.235    0.001   -0.510   -0.447
##   cpc =~                                                                
##     em                4.455    0.946    4.710    0.000    4.753    0.416
##     ind              -2.435    0.569   -4.276    0.000   -2.597   -0.380
##     ru                6.196    0.567   10.936    0.000    6.610    0.879
##     av                2.243    0.455    4.925    0.000    2.393    0.434
##     hy                5.144    0.447   11.503    0.000    5.488    0.923
##     rb                0.148    0.078    1.886    0.059    0.158    0.171
##   ptgi =~                                                               
##     ptgi1             6.705    0.582   11.522    0.000    7.821    0.871
##     ptgi2             5.084    0.447   11.371    0.000    5.930    0.863
##     ptgi3             3.304    0.357    9.246    0.000    3.854    0.739
##     ptgi4             2.500    0.251    9.968    0.000    2.916    0.783
##     ptgi5             2.074    0.204   10.166    0.000    2.419    0.794
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   erf ~                                                                 
##     er               -0.254    0.191   -1.330    0.183   -0.202   -0.202
##     ir                0.790    0.288    2.742    0.006    0.629    0.629
##   cpc ~                                                                 
##     erf              -0.296    0.123   -2.415    0.016   -0.348   -0.348
##   ptgi ~                                                                
##     er                0.234    0.113    2.072    0.038    0.200    0.200
##     ir                0.276    0.130    2.132    0.033    0.237    0.237
##     cpc               0.465    0.109    4.256    0.000    0.425    0.425
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er ~~                                                                 
##     ir                0.280    0.109    2.573    0.010    0.280    0.280
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fa               13.173    1.684    7.822    0.000   13.173    0.877
##    .fr                4.636    7.174    0.646    0.518    4.636    0.126
##    .si               35.107    6.368    5.513    0.000   35.107    0.626
##    .comt              5.565    0.769    7.235    0.000    5.565    0.791
##    .con               7.796    1.137    6.857    0.000    7.796    0.727
##    .cha               4.449    0.642    6.935    0.000    4.449    0.740
##    .es               26.430    3.768    7.014    0.000   26.430    0.752
##    .lo              184.659   33.730    5.475    0.000  184.659    0.561
##    .pro               0.383    0.077    4.977    0.000    0.383    0.699
##    .time             61.380    7.952    7.719    0.000   61.380    0.945
##    .th                1.042    0.165    6.310    0.000    1.042    0.800
##    .em              107.905   13.571    7.951    0.000  107.905    0.827
##    .ind              40.012    5.011    7.985    0.000   40.012    0.856
##    .ru               12.839    3.266    3.930    0.000   12.839    0.227
##    .av               24.704    3.115    7.932    0.000   24.704    0.812
##    .hy                5.253    2.062    2.548    0.011    5.253    0.149
##    .rb                0.824    0.102    8.100    0.000    0.824    0.971
##    .ptgi1            19.484    3.432    5.677    0.000   19.484    0.242
##    .ptgi2            12.106    2.067    5.857    0.000   12.106    0.256
##    .ptgi3            12.332    1.712    7.205    0.000   12.332    0.454
##    .ptgi4             5.370    0.777    6.908    0.000    5.370    0.387
##    .ptgi5             3.420    0.502    6.807    0.000    3.420    0.369
##     er                1.000                               1.000    1.000
##     ir                1.000                               1.000    1.000
##    .erf               1.000                               0.634    0.634
##    .cpc               1.000                               0.879    0.879
##    .ptgi              1.000                               0.735    0.735
## 
## R-Square:
##                    Estimate
##     fa                0.123
##     fr                0.874
##     si                0.374
##     comt              0.209
##     con               0.273
##     cha               0.260
##     es                0.248
##     lo                0.439
##     pro               0.301
##     time              0.055
##     th                0.200
##     em                0.173
##     ind               0.144
##     ru                0.773
##     av                0.188
##     hy                0.851
##     rb                0.029
##     ptgi1             0.758
##     ptgi2             0.744
##     ptgi3             0.546
##     ptgi4             0.613
##     ptgi5             0.631
##     erf               0.366
##     cpc               0.121
##     ptgi              0.265
#######

  1. The model in 2. will have poor fit. Break this model down into the constituent unidimensional factor models. Steps:

  2. Fit each constituent unidimensional factor model separately using a CFA. Start with the factors with fewer items.

  3. Some of these models will have completely perfect fit (Chi^2 p-value = 1).

What do these models share in common? How many parameters? How many unique elements in variance-covariance matrix?

Models (er, erf , cpc ) have perfect fit(Chi^2 p-value = 1), CFI & TLI= 1

they have in common:

6 parameters , and 6 unique elements in variance-covariance matrix

  1. Other models will not have less than perfect fit.

  2. Which of these models have acceptable fit?

ptgi has acceptable fit

  1. For models that are unacceptable: ir have unacceptable fit

Use modification indices to improve the fit of these models individually.

Read the paper to check whether each modification makes sense on face-value. If you had subject-matter expertise, you could judge the adequacy of these

modifications yourselves.

#ir 
##
ir_cfa_syn <-"ircfa =~ comt + con + cha + es + lo"

ir_cfa_fit <-cfa(ir_cfa_syn , data=dat, std.lv= TRUE)
ir_cfa_fit
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
summary(ir_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.684
##   Tucker-Lewis Index (TLI)                       0.368
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1918.755
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3857.509
##   Bayesian (BIC)                              3886.337
##   Sample-size adjusted Bayesian (SABIC)       3854.707
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.226
##   90 Percent confidence interval - lower         0.163
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.106
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              1.249    0.270    4.633    0.000    1.249    0.471
##     con               1.640    0.332    4.943    0.000    1.640    0.501
##     cha               1.276    0.248    5.141    0.000    1.276    0.520
##     es                2.958    0.601    4.925    0.000    2.958    0.499
##     lo              -12.089    1.847   -6.546    0.000  -12.089   -0.666
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              5.478    0.783    6.998    0.000    5.478    0.778
##    .con               8.028    1.182    6.792    0.000    8.028    0.749
##    .cha               4.388    0.661    6.642    0.000    4.388    0.729
##    .es               26.376    3.876    6.806    0.000   26.376    0.751
##    .lo              182.950   36.974    4.948    0.000  182.950    0.556
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.222
##     con               0.251
##     cha               0.271
##     es                0.249
##     lo                0.444
##
modificationIndices(ir_cfa_fit, sort. = TRUE)
##     lhs op rhs     mi     epc sepc.lv sepc.all sepc.nox
## 13 comt ~~ cha 29.738   2.975   2.975    0.607    0.607
## 16  con ~~ cha 12.392  -2.401  -2.401   -0.404   -0.404
## 18  con ~~  lo 11.776 -19.751 -19.751   -0.515   -0.515
## 12 comt ~~ con  7.657  -2.001  -2.001   -0.302   -0.302
## 17  con ~~  es  5.264   3.743   3.743    0.257    0.257
## 14 comt ~~  es  2.646  -2.128  -2.128   -0.177   -0.177
## 20  cha ~~  lo  2.587   7.112   7.112    0.251    0.251
## 15 comt ~~  lo  1.095   4.719   4.719    0.149    0.149
## 21   es ~~  lo  0.618   8.175   8.175    0.118    0.118
## 19  cha ~~  es  0.024   0.192   0.192    0.018    0.018
###
##
ir_cfa_mod_syn <-"ircfa =~ comt + con + cha + es + lo 
comt ~~ cha "

ir_cfa_mod_fit <-cfa(ir_cfa_mod_syn , data=dat, std.lv= TRUE)
ir_cfa_mod_fit
## lavaan 0.6.15 ended normally after 39 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        11
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                10.463
##   Degrees of freedom                                 4
##   P-value (Chi-square)                           0.033
summary(ir_cfa_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                38.682
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.684
##   Tucker-Lewis Index (TLI)                       0.368
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1918.755
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3857.509
##   Bayesian (BIC)                              3886.337
##   Sample-size adjusted Bayesian (SABIC)       3854.707
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.226
##   90 Percent confidence interval - lower         0.163
##   90 Percent confidence interval - upper         0.295
##   P-value H_0: RMSEA <= 0.050                    0.000
##   P-value H_0: RMSEA >= 0.080                    1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.106
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              1.249    0.270    4.633    0.000    1.249    0.471
##     con               1.640    0.332    4.943    0.000    1.640    0.501
##     cha               1.276    0.248    5.141    0.000    1.276    0.520
##     es                2.958    0.601    4.925    0.000    2.958    0.499
##     lo              -12.089    1.847   -6.546    0.000  -12.089   -0.666
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              5.478    0.783    6.998    0.000    5.478    0.778
##    .con               8.028    1.182    6.792    0.000    8.028    0.749
##    .cha               4.388    0.661    6.642    0.000    4.388    0.729
##    .es               26.376    3.876    6.806    0.000   26.376    0.751
##    .lo              182.950   36.974    4.948    0.000  182.950    0.556
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.222
##     con               0.251
##     cha               0.271
##     es                0.249
##     lo                0.444
##
##
modificationIndices(ir_cfa_mod_fit, sort. = TRUE)
##     lhs op rhs    mi     epc sepc.lv sepc.all sepc.nox
## 21   es ~~  lo 8.023  42.666  42.666    0.656    0.656
## 16  con ~~ cha 3.521  -1.088  -1.088   -0.183   -0.183
## 17  con ~~  es 3.331   4.090   4.090    0.309    0.309
## 19  cha ~~  es 2.628   1.662   1.662    0.142    0.142
## 15 comt ~~  lo 1.543  -4.563  -4.563   -0.141   -0.141
## 18  con ~~  lo 1.090 -11.513 -11.513   -0.347   -0.347
## 14 comt ~~  es 0.645  -0.889  -0.889   -0.069   -0.069
## 13 comt ~~ con 0.448  -0.412  -0.412   -0.063   -0.063
## 20  cha ~~  lo 0.202  -1.575  -1.575   -0.054   -0.054
###
##
ir_cfa_mod_syn <-"ircfa =~ comt + con + cha + es + lo 
comt ~~ cha  
es ~~  lo"

ir_cfa_mod_fit <-cfa(ir_cfa_mod_syn , data=dat, std.lv= TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: some estimated ov
## variances are negative
ir_cfa_mod_fit
## lavaan 0.6.15 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.443
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.695
summary(ir_cfa_mod_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 66 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 1.443
##   Degrees of freedom                                 3
##   P-value (Chi-square)                           0.695
## 
## Model Test Baseline Model:
## 
##   Test statistic                               116.649
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.049
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1900.135
##   Loglikelihood unrestricted model (H1)      -1899.414
##                                                       
##   Akaike (AIC)                                3824.271
##   Bayesian (BIC)                              3858.865
##   Sample-size adjusted Bayesian (SABIC)       3820.908
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.110
##   P-value H_0: RMSEA <= 0.050                    0.789
##   P-value H_0: RMSEA >= 0.080                    0.118
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.017
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ircfa =~                                                              
##     comt              0.529    0.280    1.888    0.059    0.529    0.199
##     con               1.216    0.526    2.310    0.021    1.216    0.371
##     cha               0.631    0.311    2.031    0.042    0.631    0.257
##     es                5.810    2.298    2.529    0.011    5.810    0.980
##     lo              -21.847    8.248   -2.649    0.008  -21.847   -1.204
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .comt ~~                                                               
##    .cha               3.082    0.647    4.766    0.000    3.082    0.500
##  .es ~~                                                                 
##    .lo               93.934   94.326    0.996    0.319   93.934    6.590
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .comt              6.760    0.849    7.958    0.000    6.760    0.960
##    .con               9.240    1.576    5.864    0.000    9.240    0.862
##    .cha               5.619    0.749    7.497    0.000    5.619    0.934
##    .es                1.371   26.349    0.052    0.959    1.371    0.039
##    .lo             -148.205  359.036   -0.413    0.680 -148.205   -0.450
##     ircfa             1.000                               1.000    1.000
## 
## R-Square:
##                    Estimate
##     comt              0.040
##     con               0.138
##     cha               0.066
##     es                0.961
##     lo                   NA
##
  1. Fit the overall SEM including the modifications made to the individual components.

  2. Assess the resulting model for misspecification using global fit indices.

2.Make final changes to the model if you wish.

3.Compare this final model to the path analysis results using:

1.standardized regression coefficients – how similar/different are they? Regressions:

               Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all

erf ~

er               -0.254    0.191   -1.330    0.183   -0.202   -0.202

ir                0.790    0.288    2.742    0.006    0.629    0.629

cpc ~

erf              -0.296    0.123   -2.415    0.016   -0.348   -0.348

ptgi ~

er                0.234    0.113    2.072    0.038    0.200    0.200

ir                0.276    0.130    2.132    0.033    0.237    0.237


cpc               0.465    0.109    4.256    0.000    0.425    0.425

2.Patterns of statistical significance.

3.R-square for outcome variables – how similar/different are they? they are similar to each result of r-square in path analysis.it is like combining the r-square in one table.

               Estimate
               
fa                0.123

fr                0.874

si                0.374

comt              0.209

con               0.273

cha               0.260

es                0.248

lo                0.439

pro               0.301

time              0.055

th                0.200

em                0.173

ind               0.144

ru                0.773

av                0.188

hy                0.851

rb                0.029

ptgi1             0.758

ptgi2             0.744

ptgi3             0.546

ptgi4             0.613

ptgi5             0.631

erf               0.366

cpc               0.121

ptgi              0.265
############
#####Part4
##########
senolcfa_sem_syntax <- "
# Measurement model
ercfa =~ fa + fr +si
ircfa  =~ comt + con + cha + es + lo
erfcfa =~ pro + time +th
cpccfa =~ em + ind +ru +av +hy +rb
ptgicfa =~ ptgi1 + ptgi2 +ptgi3 +ptgi4 +ptgi5

# Structural model
erfcfa ~ ercfa + ircfa
cpccfa ~ erfcfa 
ptgicfa ~ ercfa + ircfa +cpccfa

comt ~~ cha  
es ~~  lo"

senolcfa_sem_fit <- sem(
  senol_sem_syntax,
  data = dat, # dataset
  std.lv = TRUE # standardize latent variables
)

summary(senol_sem_fit, fit.measures = TRUE, standardize = TRUE, rsquare = TRUE)
## lavaan 0.6.15 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        51
## 
##   Number of observations                           132
## 
## Model Test User Model:
##                                                       
##   Test statistic                               337.682
##   Degrees of freedom                               202
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1172.516
##   Degrees of freedom                               231
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.856
##   Tucker-Lewis Index (TLI)                       0.835
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -8036.650
##   Loglikelihood unrestricted model (H1)      -7867.809
##                                                       
##   Akaike (AIC)                               16175.301
##   Bayesian (BIC)                             16322.323
##   Sample-size adjusted Bayesian (SABIC)      16161.010
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.071
##   90 Percent confidence interval - lower         0.058
##   90 Percent confidence interval - upper         0.084
##   P-value H_0: RMSEA <= 0.050                    0.006
##   P-value H_0: RMSEA >= 0.080                    0.143
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.104
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er =~                                                                 
##     fa                1.356    0.367    3.692    0.000    1.356    0.350
##     fr                5.683    0.744    7.640    0.000    5.683    0.935
##     si                4.580    0.779    5.883    0.000    4.580    0.612
##   ir =~                                                                 
##     comt              1.214    0.262    4.638    0.000    1.214    0.458
##     con               1.709    0.319    5.354    0.000    1.709    0.522
##     cha               1.252    0.240    5.222    0.000    1.252    0.510
##     es                2.949    0.581    5.080    0.000    2.949    0.498
##     lo              -12.019    1.738   -6.915    0.000  -12.019   -0.663
##   erf =~                                                                
##     pro               0.324    0.094    3.440    0.001    0.407    0.549
##     time              1.506    0.787    1.912    0.056    1.890    0.235
##     th               -0.406    0.126   -3.235    0.001   -0.510   -0.447
##   cpc =~                                                                
##     em                4.455    0.946    4.710    0.000    4.753    0.416
##     ind              -2.435    0.569   -4.276    0.000   -2.597   -0.380
##     ru                6.196    0.567   10.936    0.000    6.610    0.879
##     av                2.243    0.455    4.925    0.000    2.393    0.434
##     hy                5.144    0.447   11.503    0.000    5.488    0.923
##     rb                0.148    0.078    1.886    0.059    0.158    0.171
##   ptgi =~                                                               
##     ptgi1             6.705    0.582   11.522    0.000    7.821    0.871
##     ptgi2             5.084    0.447   11.371    0.000    5.930    0.863
##     ptgi3             3.304    0.357    9.246    0.000    3.854    0.739
##     ptgi4             2.500    0.251    9.968    0.000    2.916    0.783
##     ptgi5             2.074    0.204   10.166    0.000    2.419    0.794
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   erf ~                                                                 
##     er               -0.254    0.191   -1.330    0.183   -0.202   -0.202
##     ir                0.790    0.288    2.742    0.006    0.629    0.629
##   cpc ~                                                                 
##     erf              -0.296    0.123   -2.415    0.016   -0.348   -0.348
##   ptgi ~                                                                
##     er                0.234    0.113    2.072    0.038    0.200    0.200
##     ir                0.276    0.130    2.132    0.033    0.237    0.237
##     cpc               0.465    0.109    4.256    0.000    0.425    0.425
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   er ~~                                                                 
##     ir                0.280    0.109    2.573    0.010    0.280    0.280
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fa               13.173    1.684    7.822    0.000   13.173    0.877
##    .fr                4.636    7.174    0.646    0.518    4.636    0.126
##    .si               35.107    6.368    5.513    0.000   35.107    0.626
##    .comt              5.565    0.769    7.235    0.000    5.565    0.791
##    .con               7.796    1.137    6.857    0.000    7.796    0.727
##    .cha               4.449    0.642    6.935    0.000    4.449    0.740
##    .es               26.430    3.768    7.014    0.000   26.430    0.752
##    .lo              184.659   33.730    5.475    0.000  184.659    0.561
##    .pro               0.383    0.077    4.977    0.000    0.383    0.699
##    .time             61.380    7.952    7.719    0.000   61.380    0.945
##    .th                1.042    0.165    6.310    0.000    1.042    0.800
##    .em              107.905   13.571    7.951    0.000  107.905    0.827
##    .ind              40.012    5.011    7.985    0.000   40.012    0.856
##    .ru               12.839    3.266    3.930    0.000   12.839    0.227
##    .av               24.704    3.115    7.932    0.000   24.704    0.812
##    .hy                5.253    2.062    2.548    0.011    5.253    0.149
##    .rb                0.824    0.102    8.100    0.000    0.824    0.971
##    .ptgi1            19.484    3.432    5.677    0.000   19.484    0.242
##    .ptgi2            12.106    2.067    5.857    0.000   12.106    0.256
##    .ptgi3            12.332    1.712    7.205    0.000   12.332    0.454
##    .ptgi4             5.370    0.777    6.908    0.000    5.370    0.387
##    .ptgi5             3.420    0.502    6.807    0.000    3.420    0.369
##     er                1.000                               1.000    1.000
##     ir                1.000                               1.000    1.000
##    .erf               1.000                               0.634    0.634
##    .cpc               1.000                               0.879    0.879
##    .ptgi              1.000                               0.735    0.735
## 
## R-Square:
##                    Estimate
##     fa                0.123
##     fr                0.874
##     si                0.374
##     comt              0.209
##     con               0.273
##     cha               0.260
##     es                0.248
##     lo                0.439
##     pro               0.301
##     time              0.055
##     th                0.200
##     em                0.173
##     ind               0.144
##     ru                0.773
##     av                0.188
##     hy                0.851
##     rb                0.029
##     ptgi1             0.758
##     ptgi2             0.744
##     ptgi3             0.546
##     ptgi4             0.613
##     ptgi5             0.631
##     erf               0.366
##     cpc               0.121
##     ptgi              0.265
#######
###
#######

5.Conclude with final thoughts about the modelling exercise.

General approach is to hope that the model will pass as much as possible of the conventional

cut-off criteria,

We can stop this the modification cycle once we have

good/acceptable model-data fit using global fit indices.

Recomendation:to continue until you address all misspecifications.

Addressing a misspecification does not mean you change the model.