Final Paper: VAR by OLS (IRF)

Set work directory

setwd("C:/Users/victo/Downloads/ECON 4310/Paper")

Loading Packages

We are using various R packages that need to be installed and added. You might have to uncomment/run the chunk below. Alternatively, you may be able to install the missing packages through RStudio, selecting “packages” and “install”, entering the names.

#install.packages("invgamma")
library(invgamma)

#install.packages("matlib")
library(matlib)

#install.packages("MASS")
library(MASS)

#install.packages("MCMCpack")
library(MCMCpack) #for Inverse Wishart
## Warning: package 'MCMCpack' was built under R version 4.2.3
## Loading required package: coda
## Warning: package 'coda' was built under R version 4.2.3
## ##
## ## Markov Chain Monte Carlo Package (MCMCpack)
## ## Copyright (C) 2003-2023 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
## ##
## ## Support provided by the U.S. National Science Foundation
## ## (Grants SES-0350646 and SES-0350613)
## ##
## 
## Attaching package: 'MCMCpack'
## The following objects are masked from 'package:invgamma':
## 
##     dinvgamma, rinvgamma
#install.packages("mvtnorm")
library(mvtnorm) #for multivariate Normal

#install.packages("HypergeoMat")
library(HypergeoMat) #for multivariate gamma function (VAR-MDD calculation)
## Warning: package 'HypergeoMat' was built under R version 4.2.3

Load Data

Load monthly data and trim to 1997, Q2 (max MPR data):

data  <- read.csv("Chile_1986_Monthly.csv", header=TRUE)
# head(data)
#na.omit(as.numeric(data$CPI))
#na.omit(data$CPI)
UE <- ts(data$UE, frequency=12,start=c(1986,1))
CPI <- ts(data$CPI, frequency=12, start=c(1986,1))
UE <- window(UE,start=c(1997,2),end=c(2022,12))
CPI <- window(CPI,start=c(1997,2),end=c(2022,12))

Convert monthly to quarterly data

MonthlyToQuarterly <- function(MonthlyData,start,namevec){
  ## Assume that first obs is first month of quarter
  ## Assume that last obs is last month of quarter
  nobsMonth <- length(MonthlyData)
  nobsQuart <- nobsMonth/3
  firstyear <- start[1]
  firstquarter <- ((start[2]-1) %/% 3)+1
  QuarterlyData <- matrix(0,nrow=nobsQuart,ncol=1)
  for(i in 1:nobsQuart){
     QuarterlyData[i] <- mean(MonthlyData[(1+3*(i-1)):(3*i)],na.rm=FALSE)
  }
  QuarterlyData <- ts(QuarterlyData,frequency=4,start=c(firstyear,firstquarter),
                      names=namevec)
  return(QuarterlyData)
}

UEq <- MonthlyToQuarterly(UE,c(1996,1),"UE")
UEq <- window(UEq,start=c(1997,2))
#print(UEq)

CPIq <- MonthlyToQuarterly(CPI,c(1996,1),"CPI")
CPIq <- window(CPIq,start=c(1997,2))
#print(CPIq)

Load Monetary Policy Rate data (MPR)

data <- read.csv("Chile_MPR_monthly_F1997.csv", header = T)
MPR <- ts(data$MPR, frequency = 12, start = c(1997, 2))
MPRq <- MonthlyToQuarterly(MPR, c(1997,2), "MPR")
MPRq <- window(MPRq, start=c(1997,2), end=c(2021,3))
#print(MPRq)

Load the GDP data (unnecessary for monetary policy shock)

data     <- read.csv("Chile_1996_Quarterly.csv", header=TRUE)


GDP <- gsub(",","",data$GDP)
GDP <- as.numeric(GDP)
GDP      <- ts(GDP, frequency=4, start=c(1997,2))
#head(GDP)
GDPlog <- log(GDP)
GDPlogdiff <- diff(GDPlog)
GDPgrowth <- 400*GDPlogdiff
GDPgrowth <- ts(GDPgrowth, frequency = 4,start=c(1997,2))

Estimate VAR

# Prepare data
Tall <- length(UEq) # total number of observations, starting 1997:Q2
T1   <- (1+3) # estimation sample will start in T1 = 1998:Q1
p    <- 2 # number of lags
n    <- 3 # number of series in VAR
yyall <- cbind(UEq,CPIq,MPRq)

yy   <- yyall[T1:Tall,]
xx   <- matrix(1,nrow=(Tall-T1+1), ncol=(n*p+1))
for(i in 1:p){
  # first column of xx is vector of 1s
  # followed by y(t-1), y(t-2), ..., y(t-p)
  xx[,(1+(i-1)*n+1):(1+i*n)] <- yyall[(T1-i):(Tall-i),]
}

head(yy)
##            UEq      CPIq      MPRq
## [1,]  9.386524 0.3611800  8.450000
## [2,] 10.779787 0.1090467  8.500000
## [3,] 10.851437 0.2595300 10.706667
## [4,]  9.640314 0.2023733  8.610000
## [5,]  9.161562 0.5886367  6.966667
## [6,]  9.878699 0.1912600  5.550000
head(xx)
##      [,1]      [,2]       [,3]      [,4]      [,5]       [,6]      [,7]
## [1,]    1  8.214573 0.09094667  6.633333  6.791117 0.55271333  6.593333
## [2,]    1  9.386524 0.36118000  8.450000  8.214573 0.09094667  6.633333
## [3,]    1 10.779787 0.10904667  8.500000  9.386524 0.36118000  8.450000
## [4,]    1 10.851437 0.25953000 10.706667 10.779787 0.10904667  8.500000
## [5,]    1  9.640314 0.20237333  8.610000 10.851437 0.25953000 10.706667
## [6,]    1  9.161562 0.58863667  6.966667  9.640314 0.20237333  8.610000

Compute OLS/ML estimators of Phi and Sigma

Phi_hat   <- solve(t(xx)%*%xx,t(xx)%*%yy)
Sigma_hat <- (t(yy)%*%yy - t(yy)%*%xx%*%Phi_hat)/(Tall-T1+1)

print(Phi_hat)
##               UEq        CPIq        MPRq
## [1,]  0.720572571  0.34982157  1.01441247
## [2,]  1.298268331 -0.03135854  0.23126546
## [3,] -0.157578608  0.21378029  0.01316291
## [4,]  0.015456130 -0.06549527  1.25264299
## [5,] -0.404090542  0.02185523 -0.29920682
## [6,]  0.361527326  0.14003846  0.08054883
## [7,]  0.006729597  0.04626337 -0.38411389
print(Sigma_hat)
##              UEq         CPIq        MPRq
## UEq   0.25776658 -0.012946675 0.038122113
## CPIq -0.01294668  0.094937320 0.003842696
## MPRq  0.03812211  0.003842696 0.527514891

Cholesky Factorization in R

Sigma_hat_tr <- t(chol(Sigma_hat))
print(Sigma_hat_tr)
##              UEq       CPIq      MPRq
## UEq   0.50770718 0.00000000 0.0000000
## CPIq -0.02550028 0.30706197 0.0000000
## MPRq  0.07508681 0.01875006 0.7221671
# Verify that Sigma_hat_tr*t(Sigma_hat_tr) = Sigma_hat
#print(Sigma_hat)

#print(Sigma_hat_tr %*% t(Sigma_hat_tr))

Procedure to Compute IRF to Shock sh_ind

IRFVARp <- function(Phi,Sigma_tr,sh_ind,Hmax){
  n <- ncol(Phi)
  k <- nrow(Phi)
  p <- k/n
  yy <- matrix(0, nrow=(Hmax+1), ncol=n )
  # define xx without intercept
  xt <- matrix(0, nrow=1, ncol=n*p)
  # Impact effect
  yy[1,] <- t(Sigma_tr[,sh_ind])
  # loop to generate the impulse responses
  xt[,1:n] <- yy[1,]
  for(t in 2:(Hmax+1)){
    yy[t,] <- xt%*%Phi
    # update the x(t) vector -> x(t+1)
    if(p > 1){
      xt[,(n+1):(p*n)] <- xt[,1:((p-1)*n)]
      xt[,1:n] <- yy[t,]}
    else{
      xt[,1:n] <- yy[t,]}
    }
  return(yy)
  }
Hmax <- 120
sh_ind <- 1
# we are dropping the intercept when computing the IRF
VARirf_sh1 <- IRFVARp(Phi_hat[2:nrow(Phi_hat),],Sigma_hat_tr,sh_ind,Hmax)
sh_ind <- 2
# we are dropping the intercept when computing the IRF
VARirf_sh2 <- IRFVARp(Phi_hat[2:nrow(Phi_hat),],Sigma_hat_tr,sh_ind,Hmax)

plot(0:Hmax,VARirf_sh1[,1],type="l",cex.axis=1.5,cex.lab=1.5,xlab="Horizon h", ylab="Unemployment Response",col="blue",lwd=2)
abline(h=0,col="black",lwd=1)

plot(0:Hmax,VARirf_sh1[,2],type="l",cex.axis=1.5,cex.lab=1.5,xlab="Horizon h", ylab="CPI Response", col="blue", lwd=2)
abline(h=0,col="black",lwd=1)

plot(0:Hmax,VARirf_sh1[,3],type="l",cex.axis=1.5,cex.lab=1.5,xlab="Horizon h", ylab="MPR Response", col="blue", lwd=2)
abline(h=0,col="black",lwd=1)