# Import the Data
library(readxl)
Data <- read_excel("D:/COLLEGE 4TH YEAR/2nd SEMESTER/STAT 54 NONPARAMETRIC STATISTICS/MIDTERM/MIDTERM PART 2/Data.xlsx")
New names:
• `` -> `...51`
• `` -> `...89`
• `` -> `...96`
paged_table(Data)
str(Data$Age)
num [1:47] 23 22 20 19 22 20 21 23 22 23 ...
library(dplyr)
ian <- Data%>%
group_by(Age)%>%
summarise(count=n())%>%
mutate(Percentage =round((count/sum(count)*100),2))
paged_table(ian)
str(Data$Sex)
chr [1:47] "Female" "Female" "Female" "Female" "Female" "Male" "Male" ...
Data$Sex <- as.factor(Data$Sex)
Data
library(dplyr)
ian1 <- Data%>%
group_by(Sex)%>%
summarise(count=n())%>%
mutate(Percentage =round((count/sum(count)*100),2))
paged_table(ian1)
str(Data$`# of years`)
chr [1:47] "10 years" "5 years" "20 years" "13 years" "7 Years" "6 years" ...
library(dplyr)
ian2 <- Data%>%
group_by(`# of years`)%>%
summarise(count=n())%>%
mutate(Percentage =round((count/sum(count)*100),2))
paged_table(ian2)
str(Data$`Socio Economic Status`)
chr [1:47] "Mababa" "Mababa" "Mababa" "Mababa" "Katamtaman" "Mababa" ...
Data$`Socio Economic Status` <- as.factor(Data$`Socio Economic Status`)
Data
library(dplyr)
ian3 <- Data%>%
group_by(`Socio Economic Status`)%>%
summarise(count=n())%>%
mutate(Percentage =round((count/sum(count)*100),2))
paged_table(ian3)
library(rstatix)
ian4 <- Data%>%
gather(key ="Psychological", value = "Score",AutonomyMean, EnvironmentalMasteryMean, PersonalGrowthMean, PositiveRelationsMean, PurposeinLifeMean, SelfAcceptanceMean)%>%
convert_as_factor(Psychological)
paged_table(ian4)
#Summary statistics
ian4.1 <- ian4%>%
group_by(Psychological) %>%
get_summary_stats(Score, type = "mean_sd")
paged_table(ian4.1)
library(rstatix)
ian5 <- Data%>%
gather(key ="FCS", value = "Score",CognitiveReappraisalMean, SocialSupportMean, ProblemSolvingMean, ReligiosityMean, ToleranceMean, EmotionalReleaseMean, OveractivityMean, RelaxationMean, SubstanceUseMean)%>%
convert_as_factor(FCS)
paged_table(ian5)
#Summary statistics
ian5.1 <- ian5%>%
group_by(FCS)%>%
get_summary_stats(Score, type = "mean_sd")
paged_table(ian5.1)
cor.test(Data$CognitiveReappraisalMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$CognitiveReappraisalMean, Data$AutonomyMean, :
Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$AutonomyMean
S = 8668.3, p-value = 0.0003586
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4988283
cor.test(Data$CognitiveReappraisalMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$CognitiveReappraisalMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$EnvironmentalMasteryMean
S = 6241.4, p-value = 1.33e-06
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6391419
cor.test(Data$CognitiveReappraisalMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$PersonalGrowthMean
S = 4626, p-value = 3.729e-08
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7325393
cor.test(Data$CognitiveReappraisalMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$PositiveRelationsMean
S = 5382, p-value = 2.771e-07
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6888298
cor.test(Data$CognitiveReappraisalMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$PurposeinLifeMean
S = 5604, p-value = 4.864e-07
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6759944
cor.test(Data$CognitiveReappraisalMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$CognitiveReappraisalMean and Data$SelfAcceptanceMean
S = 2522, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8541859
cor.test(Data$ProblemSolvingMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$ProblemSolvingMean, Data$AutonomyMean, : Cannot
compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$AutonomyMean
S = 6129.7, p-value = 9.588e-07
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6456004
cor.test(Data$ProblemSolvingMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$ProblemSolvingMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$EnvironmentalMasteryMean
S = 9405.9, p-value = 0.00127
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.456183
cor.test(Data$ProblemSolvingMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$PersonalGrowthMean
S = 8100, p-value = 0.0001516
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5316836
cor.test(Data$ProblemSolvingMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$PositiveRelationsMean
S = 9872, p-value = 0.002831
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4292322
cor.test(Data$ProblemSolvingMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$PurposeinLifeMean
S = 10246, p-value = 0.00475
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4076087
cor.test(Data$ProblemSolvingMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ProblemSolvingMean and Data$SelfAcceptanceMean
S = 8190, p-value = 0.0001797
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5264801
cor.test(Data$ReligiosityMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$ReligiosityMean, Data$AutonomyMean, method =
"spearman"): Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$AutonomyMean
S = 7800.4, p-value = 6.442e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5490063
cor.test(Data$ReligiosityMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$ReligiosityMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$EnvironmentalMasteryMean
S = 11498, p-value = 0.02126
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3352127
cor.test(Data$ReligiosityMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$PersonalGrowthMean
S = 8680, p-value = 0.0004344
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4981499
cor.test(Data$ReligiosityMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$PositiveRelationsMean
S = 12048, p-value = 0.03857
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3034228
cor.test(Data$ReligiosityMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$PurposeinLifeMean
S = 14106, p-value = 0.2139
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1844357
cor.test(Data$ReligiosityMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ReligiosityMean and Data$SelfAcceptanceMean
S = 8844, p-value = 0.0005747
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4886679
cor.test(Data$ToleranceMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$ToleranceMean, Data$AutonomyMean, method =
"spearman"): Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$AutonomyMean
S = 8796.4, p-value = 0.000452
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.4914202
cor.test(Data$ToleranceMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$ToleranceMean, Data$EnvironmentalMasteryMean, :
Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$EnvironmentalMasteryMean
S = 15512, p-value = 0.4902
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1031601
cor.test(Data$ToleranceMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$PersonalGrowthMean
S = 11742, p-value = 0.02821
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3211147
cor.test(Data$ToleranceMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$PositiveRelationsMean
S = 14996, p-value = 0.3717
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1329787
cor.test(Data$ToleranceMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$PurposeinLifeMean
S = 15708, p-value = 0.5382
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.09181314
cor.test(Data$ToleranceMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$ToleranceMean and Data$SelfAcceptanceMean
S = 13582, p-value = 0.1469
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2147317
cor.test(Data$EmotionalReleaseMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$EmotionalReleaseMean, Data$AutonomyMean, :
Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$AutonomyMean
S = 4518.1, p-value = 3.056e-09
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7387798
cor.test(Data$EmotionalReleaseMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$EmotionalReleaseMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$EnvironmentalMasteryMean
S = 12194, p-value = 0.04414
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2949663
cor.test(Data$EmotionalReleaseMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$PersonalGrowthMean
S = 10912, p-value = 0.01108
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3691027
cor.test(Data$EmotionalReleaseMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$PositiveRelationsMean
S = 13630, p-value = 0.1523
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2119565
cor.test(Data$EmotionalReleaseMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$PurposeinLifeMean
S = 17626, p-value = 0.8986
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.01907956
cor.test(Data$EmotionalReleaseMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$EmotionalReleaseMean and Data$SelfAcceptanceMean
S = 11896, p-value = 0.03308
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3122109
cor.test(Data$OveractivityMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$OveractivityMean, Data$AutonomyMean, method =
"spearman"): Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$AutonomyMean
S = 4161.7, p-value = 6.114e-10
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.7593834
cor.test(Data$OveractivityMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$OveractivityMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$EnvironmentalMasteryMean
S = 14284, p-value = 0.2417
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1741695
cor.test(Data$OveractivityMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$PersonalGrowthMean
S = 14566, p-value = 0.2883
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.15784
cor.test(Data$OveractivityMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$PositiveRelationsMean
S = 16254, p-value = 0.6866
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.06024514
cor.test(Data$OveractivityMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$PurposeinLifeMean
S = 18424, p-value = 0.6623
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
-0.06521739
cor.test(Data$OveractivityMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$OveractivityMean and Data$SelfAcceptanceMean
S = 15480, p-value = 0.4812
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.1049954
cor.test(Data$RelaxationMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$RelaxationMean, Data$AutonomyMean, method =
"spearman"): Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$AutonomyMean
S = 5598.2, p-value = 1.81e-07
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.6763322
cor.test(Data$RelaxationMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$RelaxationMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$EnvironmentalMasteryMean
S = 10438, p-value = 0.005794
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3965074
cor.test(Data$RelaxationMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$PersonalGrowthMean
S = 7750, p-value = 7.633e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5519195
cor.test(Data$RelaxationMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$PositiveRelationsMean
S = 11106, p-value = 0.01395
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3578862
cor.test(Data$RelaxationMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$PurposeinLifeMean
S = 13154, p-value = 0.1049
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2394773
cor.test(Data$RelaxationMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$RelaxationMean and Data$SelfAcceptanceMean
S = 7552, p-value = 5.085e-05
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.5633673
cor.test(Data$SubstanceUseMean, Data$AutonomyMean, method = "spearman")
Warning in cor.test.default(Data$SubstanceUseMean, Data$AutonomyMean, method =
"spearman"): Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$AutonomyMean
S = 2023.5, p-value < 2.2e-16
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8830053
cor.test(Data$SubstanceUseMean, Data$EnvironmentalMasteryMean, method = "spearman")
Warning in cor.test.default(Data$SubstanceUseMean,
Data$EnvironmentalMasteryMean, : Cannot compute exact p-value with ties
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$EnvironmentalMasteryMean
S = 13639, p-value = 0.1537
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2114089
cor.test(Data$SubstanceUseMean, Data$PersonalGrowthMean, method = "spearman")
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$PersonalGrowthMean
S = 11358, p-value = 0.0186
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.3433164
cor.test(Data$SubstanceUseMean, Data$PositiveRelationsMean, method = "spearman")
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$PositiveRelationsMean
S = 12572, p-value = 0.06351
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.2731267
cor.test(Data$SubstanceUseMean, Data$PurposeinLifeMean, method = "spearman")
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$PurposeinLifeMean
S = 16704, p-value = 0.8189
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.03422757
cor.test(Data$SubstanceUseMean, Data$SelfAcceptanceMean, method = "spearman")
Spearman's rank correlation rho
data: Data$SubstanceUseMean and Data$SelfAcceptanceMean
S = 11722, p-value = 0.02762
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.322271
ian6 <- Data%>%
mutate(psychmean = (AutonomyMean+EnvironmentalMasteryMean+PersonalGrowthMean+PositiveRelationsMean+PurposeinLifeMean+SelfAcceptanceMean/6))
ian6.1 <- Data%>%
mutate(NumberofYearsCode = ifelse(`# of years` <= 21, "5 to 10 years", "11 to 21 years"))%>%
group_by(NumberofYearsCode)
table(ian6.1$NumberofYearsCode)
11 to 21 years 5 to 10 years
22 25
res_aov <- aov(ian6$psychmean ~ ian6.1$NumberofYearsCode, var.equal = TRUE)
Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
extra argument 'var.equal' will be disregarded
res_aov
Call:
aov(formula = ian6$psychmean ~ ian6.1$NumberofYearsCode, var.equal = TRUE)
Terms:
ian6.1$NumberofYearsCode Residuals
Sum of Squares 4.59964 160.77839
Deg. of Freedom 1 45
Residual standard error: 1.890199
Estimated effects may be unbalanced
shapiro.test(res_aov$residuals)
Shapiro-Wilk normality test
data: res_aov$residuals
W = 0.97686, p-value = 0.4693
a <- leveneTest(ian6$psychmean ~ ian6.1$NumberofYearsCode)
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
paged_table(a)
res.kruskal <- ian6%>%
kruskal_test(ian6$psychmean~ian6.1$NumberofYearsCode)
paged_table(res.kruskal)
There is no significant difference on the psychological well-being of students raised by single parents when they are grouped according to the variable “# of years”, where # of years is grouped by this: 5 to 10 years, and 11 to 21 years since the p-value: 0.233 > 0.05 level of significance.
ian7 <- Data%>%
mutate(NumberofYearsCode = ifelse(`# of years` <= 8, "5 to 8 years",
ifelse(`# of years` >= 9, "9 to 12 years","13 to 21 years")))%>%
group_by(NumberofYearsCode)
table(ian7$NumberofYearsCode)
13 to 21 years 5 to 8 years 9 to 12 years
6 38 3
res_aov <- aov(ian6$psychmean ~ ian7$NumberofYearsCode, var.equal = TRUE)
Warning: In lm.fit(x, y, offset = offset, singular.ok = singular.ok, ...) :
extra argument 'var.equal' will be disregarded
res_aov
Call:
aov(formula = ian6$psychmean ~ ian7$NumberofYearsCode, var.equal = TRUE)
Terms:
ian7$NumberofYearsCode Residuals
Sum of Squares 1.08993 164.28810
Deg. of Freedom 2 44
Residual standard error: 1.93231
Estimated effects may be unbalanced
shapiro.test(res_aov$residuals)
Shapiro-Wilk normality test
data: res_aov$residuals
W = 0.9752, p-value = 0.4114
b <- leveneTest(ian6$psychmean ~ ian7$NumberofYearsCode)
Warning in leveneTest.default(y = y, group = group, ...): group coerced to
factor.
paged_table(b)
res.kruskal <- ian6%>%
kruskal_test(ian6$psychmean~ian7$NumberofYearsCode)
paged_table(res.kruskal)
There is no significant difference on the psychological well-being of students raised by single parents when they are grouped according to the variable “# of years”, where # of years is grouped by this: 55 to 8 years, 9 to 12 years, and 13 to 21 years since the p-value: 0.747 > 0.05 level of significance.