DATA 605 Week 13 Discussion
Instructions
Exercise 5.4 Problem 5(APEX Calculus Version 4 Page 246)
Using R, Evaluate the definite integral:
\[∫_1^3 (3x^2 - 2x + 1) \ dx\]
To evaluate the definite integral, first find the antiderivative of the integrand:
\[∫_1^3 (3x^2 - 2x + 1) \ dx = x^2 - x^2 + x + C \]
where C is the constant of integration.
Then, evaluate the antiderivative at the limits of integration:
\[∫_1^3 (3x^2 - 2x + 1) \ dx = [x^3 - x^2 + x]_1^3\]
Substituting the limits of integration: \[= [3^3 - 3^2 + 3] - [1^3 - 1^2 + 1]\]
= 27 - 9 + 3 - 1 + 1 - 1 = 20
Therefore, the definite integral of \[∫_1^3 (3x^2 - 2x + 1) \ dx = 20\]
f <- function(x) {3*x^2 - 2*x + 1}
result <- integrate(f, 1, 3)
result## 20 with absolute error < 2.2e-13