## [1] "C:/Users/nehet/Downloads/old dell/Downloads/analytics classes/term 6/ANLY 545"
data <- read_csv("data.3.csv")
## Rows: 29034 Columns: 8
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (8): roll 1, roll 2, roll 3, roll 4, roll 5, roll 6, roll 7, roll 8
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#Analysis (Fact)
#Perform a goodness-of-fit test.

#1. The test’s statistic has a value of χ2 = _14.413_____.
#2. The test has a p-value of _0.0443_____.
#3. The test provides evidence that the distribution [is]/[is not] __is not binomial___ because _p value is less than 0.05, so we reject the null hypothesis_____.
#Find the maximum dice size: 10
## [1] 10
#Find the group size: 8
## [1] 8
#Considering a roll of 1/2/3 to be a success, find the number of successes per grouping.
##            0    1    2    3    4    5    6    7    8    9   10   11   12   13
## Success 1681 5718 8495 7531 4017 1301  251   39    1    0    0    0    0    0
#Number of successes when rolling a 10 sided dice in groups of 8.
## 
## Observed and fitted values for binomial distribution
## with parameters estimated by `ML' 
## 
##  count observed     fitted pearson residual
##      0     1681 1675.44957        0.1356003
##      1     5718 5741.97282       -0.3163651
##      2     8495 8609.32218       -1.2321002
##      3     7531 7376.30287        1.8012040
##      4     4017 3949.92216        1.0672958
##      5     1301 1353.68716       -1.4320085
##      6      251  289.95333       -2.2876022
##      7       39   35.48950        0.5892770
##      8        1    1.90042       -0.6531612
## $prob
## [1] 0.2999113
## 
## $size
## [1] 8
## 
##   Goodness-of-fit test for binomial distribution
## 
##                       X^2 df  P(> X^2)
## Likelihood Ratio 14.41346  7 0.0442977