Here are 20 analytics techniques along with their common use cases:

  1. Regression analysis: Regression analysis is a statistical technique used to find the relationship between a dependent variable and one or more independent variables. It is often used to predict or forecast future outcomes based on historical data.
    It is commonly used in finance, marketing, and economics.

  2. Cluster analysis: Cluster analysis is a technique used to group similar data points into clusters or segments based on their similarities. It is commonly used for market segmentation, customer segmentation, and image recognition.
    It is commonly used in marketing and image recognition.

  3. Classification analysis: Classification analysis is a technique used to classify data points into predefined categories or classes. It is commonly used for fraud detection, spam filtering, and image recognition.
    It is commonly used in finance, marketing, and cybersecurity.

  4. Time series analysis: Time series analysis is a statistical technique used to analyze and forecast time-dependent data. It is commonly used for forecasting sales, predicting financial trends, and predicting seasonal patterns.
    It is commonly used in finance, economics, and manufacturing.

  5. Principal component analysis (PCA): PCA is a statistical technique used to reduce the dimensionality of a dataset by identifying and removing the most important variables. It is commonly used for data compression and data visualization.
    It is commonly used in finance, marketing, and image recognition.

  6. Association analysis: Association analysis is a technique used to identify patterns or associations between items in a dataset. It is commonly used for market basket analysis, recommendation systems, and customer behavior analysis.
    It is commonly used in marketing and e-commerce.

  7. Text mining: Text mining is a technique used to extract information and insights from unstructured text data. It is commonly used for sentiment analysis, topic modeling, and text classification.
    It is commonly used in social media analysis, customer feedback analysis, and market research.

  8. Network analysis: Network analysis is a technique used to analyze the relationships between entities in a network. It is commonly used for social network analysis, supply chain analysis, and transportation planning.
    It is commonly used in logistics, transportation, and social network analysis.

  9. Machine learning: Machine learning is a technique used to develop algorithms that can learn from data and make predictions or decisions. It is commonly used for image recognition, natural language processing, and predictive analytics.
    It is commonly used in healthcare, finance, and marketing.

  10. Deep learning: Deep learning is a subset of machine learning that uses artificial neural networks to learn from data. It is commonly used for image recognition, natural language processing, and speech recognition.
    It is commonly used in healthcare, finance, and marketing.

  11. Decision trees: Decision trees are a graphical representation of a decision-making process that can be used to make predictions or decisions based on input variables.
    It is commonly used in finance, marketing, and healthcare.

  12. Random forests: Random forests are an ensemble learning method that uses multiple decision trees to improve prediction accuracy.
    It is commonly used in finance, marketing, and healthcare.

  13. Gradient boosting: Gradient boosting is a machine learning technique that uses a sequence of decision trees to improve prediction accuracy.
    It is commonly used in finance, marketing, and healthcare.

  14. Support vector machines (SVM): SVM is a machine learning technique used for classification and regression analysis.
    It is commonly used in finance, marketing, and cybersecurity.

  15. Naive Bayes: Naive Bayes is a probabilistic machine learning technique used for classification and regression analysis.
    It is commonly used in finance, marketing, and natural language processing.

  16. K-means clustering: K-means clustering is a type of cluster analysis that groups similar data points into K clusters.
    It is commonly used in marketing and customer segmentation, as well as image recognition and natural language processing.

  17. Logistic regression: Logistic regression is a statistical technique used for binary classification.
    It is commonly used in finance, marketing, and healthcare.

  18. Survival analysis: Survival analysis is a statistical technique used to analyze and predict the time until an event occurs.
    It is commonly used in healthcare, finance, and engineering.

  19. Fuzzy logic: Fuzzy logic is a mathematical framework used to handle uncertainty in data.
    It is commonly used in control systems, decision-making, and expert systems.

  20. Bayesian network: A Bayesian network is a graphical model used to represent probabilistic relationships among variables.
    It is commonly used in finance, marketing, and healthcare for decision-making and prediction.

Made by AI, 2023
Prompter: Tural Naghi

LS0tDQp0aXRsZTogIlRvcCBhbmFseXRpY3MgdGVjaG5pcXVlcyINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCiMjIyMgSGVyZSBhcmUgMjAgYW5hbHl0aWNzIHRlY2huaXF1ZXMgYWxvbmcgd2l0aCB0aGVpciBjb21tb24gdXNlIGNhc2VzOg0KDQoxLiAgKipSZWdyZXNzaW9uIGFuYWx5c2lzKio6IFJlZ3Jlc3Npb24gYW5hbHlzaXMgaXMgYSBzdGF0aXN0aWNhbCB0ZWNobmlxdWUgdXNlZCB0byBmaW5kIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBhIGRlcGVuZGVudCB2YXJpYWJsZSBhbmQgb25lIG9yIG1vcmUgaW5kZXBlbmRlbnQgdmFyaWFibGVzLiBJdCBpcyBvZnRlbiB1c2VkIHRvIHByZWRpY3Qgb3IgZm9yZWNhc3QgZnV0dXJlIG91dGNvbWVzIGJhc2VkIG9uIGhpc3RvcmljYWwgZGF0YS4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIGZpbmFuY2UsIG1hcmtldGluZywgYW5kIGVjb25vbWljcy4qDQoNCjIuICAqKkNsdXN0ZXIgYW5hbHlzaXMqKjogQ2x1c3RlciBhbmFseXNpcyBpcyBhIHRlY2huaXF1ZSB1c2VkIHRvIGdyb3VwIHNpbWlsYXIgZGF0YSBwb2ludHMgaW50byBjbHVzdGVycyBvciBzZWdtZW50cyBiYXNlZCBvbiB0aGVpciBzaW1pbGFyaXRpZXMuIEl0IGlzIGNvbW1vbmx5IHVzZWQgZm9yIG1hcmtldCBzZWdtZW50YXRpb24sIGN1c3RvbWVyIHNlZ21lbnRhdGlvbiwgYW5kIGltYWdlIHJlY29nbml0aW9uLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gbWFya2V0aW5nIGFuZCBpbWFnZSByZWNvZ25pdGlvbi4qDQoNCjMuICAqKkNsYXNzaWZpY2F0aW9uIGFuYWx5c2lzKio6IENsYXNzaWZpY2F0aW9uIGFuYWx5c2lzIGlzIGEgdGVjaG5pcXVlIHVzZWQgdG8gY2xhc3NpZnkgZGF0YSBwb2ludHMgaW50byBwcmVkZWZpbmVkIGNhdGVnb3JpZXMgb3IgY2xhc3Nlcy4gSXQgaXMgY29tbW9ubHkgdXNlZCBmb3IgZnJhdWQgZGV0ZWN0aW9uLCBzcGFtIGZpbHRlcmluZywgYW5kIGltYWdlIHJlY29nbml0aW9uLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gZmluYW5jZSwgbWFya2V0aW5nLCBhbmQgY3liZXJzZWN1cml0eS4qDQoNCjQuICAqKlRpbWUgc2VyaWVzIGFuYWx5c2lzKio6IFRpbWUgc2VyaWVzIGFuYWx5c2lzIGlzIGEgc3RhdGlzdGljYWwgdGVjaG5pcXVlIHVzZWQgdG8gYW5hbHl6ZSBhbmQgZm9yZWNhc3QgdGltZS1kZXBlbmRlbnQgZGF0YS4gSXQgaXMgY29tbW9ubHkgdXNlZCBmb3IgZm9yZWNhc3Rpbmcgc2FsZXMsIHByZWRpY3RpbmcgZmluYW5jaWFsIHRyZW5kcywgYW5kIHByZWRpY3Rpbmcgc2Vhc29uYWwgcGF0dGVybnMuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBmaW5hbmNlLCBlY29ub21pY3MsIGFuZCBtYW51ZmFjdHVyaW5nLioNCg0KNS4gICoqUHJpbmNpcGFsIGNvbXBvbmVudCBhbmFseXNpcyAoUENBKSoqOiBQQ0EgaXMgYSBzdGF0aXN0aWNhbCB0ZWNobmlxdWUgdXNlZCB0byByZWR1Y2UgdGhlIGRpbWVuc2lvbmFsaXR5IG9mIGEgZGF0YXNldCBieSBpZGVudGlmeWluZyBhbmQgcmVtb3ZpbmcgdGhlIG1vc3QgaW1wb3J0YW50IHZhcmlhYmxlcy4gSXQgaXMgY29tbW9ubHkgdXNlZCBmb3IgZGF0YSBjb21wcmVzc2lvbiBhbmQgZGF0YSB2aXN1YWxpemF0aW9uLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gZmluYW5jZSwgbWFya2V0aW5nLCBhbmQgaW1hZ2UgcmVjb2duaXRpb24uKg0KDQo2LiAgKipBc3NvY2lhdGlvbiBhbmFseXNpcyoqOiBBc3NvY2lhdGlvbiBhbmFseXNpcyBpcyBhIHRlY2huaXF1ZSB1c2VkIHRvIGlkZW50aWZ5IHBhdHRlcm5zIG9yIGFzc29jaWF0aW9ucyBiZXR3ZWVuIGl0ZW1zIGluIGEgZGF0YXNldC4gSXQgaXMgY29tbW9ubHkgdXNlZCBmb3IgbWFya2V0IGJhc2tldCBhbmFseXNpcywgcmVjb21tZW5kYXRpb24gc3lzdGVtcywgYW5kIGN1c3RvbWVyIGJlaGF2aW9yIGFuYWx5c2lzLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gbWFya2V0aW5nIGFuZCBlLWNvbW1lcmNlLioNCg0KNy4gICoqVGV4dCBtaW5pbmcqKjogVGV4dCBtaW5pbmcgaXMgYSB0ZWNobmlxdWUgdXNlZCB0byBleHRyYWN0IGluZm9ybWF0aW9uIGFuZCBpbnNpZ2h0cyBmcm9tIHVuc3RydWN0dXJlZCB0ZXh0IGRhdGEuIEl0IGlzIGNvbW1vbmx5IHVzZWQgZm9yIHNlbnRpbWVudCBhbmFseXNpcywgdG9waWMgbW9kZWxpbmcsIGFuZCB0ZXh0IGNsYXNzaWZpY2F0aW9uLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gc29jaWFsIG1lZGlhIGFuYWx5c2lzLCBjdXN0b21lciBmZWVkYmFjayBhbmFseXNpcywgYW5kIG1hcmtldCByZXNlYXJjaC4qDQoNCjguICAqKk5ldHdvcmsgYW5hbHlzaXMqKjogTmV0d29yayBhbmFseXNpcyBpcyBhIHRlY2huaXF1ZSB1c2VkIHRvIGFuYWx5emUgdGhlIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiBlbnRpdGllcyBpbiBhIG5ldHdvcmsuIEl0IGlzIGNvbW1vbmx5IHVzZWQgZm9yIHNvY2lhbCBuZXR3b3JrIGFuYWx5c2lzLCBzdXBwbHkgY2hhaW4gYW5hbHlzaXMsIGFuZCB0cmFuc3BvcnRhdGlvbiBwbGFubmluZy4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIGxvZ2lzdGljcywgdHJhbnNwb3J0YXRpb24sIGFuZCBzb2NpYWwgbmV0d29yayBhbmFseXNpcy4qDQoNCjkuICAqKk1hY2hpbmUgbGVhcm5pbmcqKjogTWFjaGluZSBsZWFybmluZyBpcyBhIHRlY2huaXF1ZSB1c2VkIHRvIGRldmVsb3AgYWxnb3JpdGhtcyB0aGF0IGNhbiBsZWFybiBmcm9tIGRhdGEgYW5kIG1ha2UgcHJlZGljdGlvbnMgb3IgZGVjaXNpb25zLiBJdCBpcyBjb21tb25seSB1c2VkIGZvciBpbWFnZSByZWNvZ25pdGlvbiwgbmF0dXJhbCBsYW5ndWFnZSBwcm9jZXNzaW5nLCBhbmQgcHJlZGljdGl2ZSBhbmFseXRpY3MuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBoZWFsdGhjYXJlLCBmaW5hbmNlLCBhbmQgbWFya2V0aW5nLioNCg0KMTAuICoqRGVlcCBsZWFybmluZyoqOiBEZWVwIGxlYXJuaW5nIGlzIGEgc3Vic2V0IG9mIG1hY2hpbmUgbGVhcm5pbmcgdGhhdCB1c2VzIGFydGlmaWNpYWwgbmV1cmFsIG5ldHdvcmtzIHRvIGxlYXJuIGZyb20gZGF0YS4gSXQgaXMgY29tbW9ubHkgdXNlZCBmb3IgaW1hZ2UgcmVjb2duaXRpb24sIG5hdHVyYWwgbGFuZ3VhZ2UgcHJvY2Vzc2luZywgYW5kIHNwZWVjaCByZWNvZ25pdGlvbi4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIGhlYWx0aGNhcmUsIGZpbmFuY2UsIGFuZCBtYXJrZXRpbmcuKg0KDQoxMS4gKipEZWNpc2lvbiB0cmVlcyoqOiBEZWNpc2lvbiB0cmVlcyBhcmUgYSBncmFwaGljYWwgcmVwcmVzZW50YXRpb24gb2YgYSBkZWNpc2lvbi1tYWtpbmcgcHJvY2VzcyB0aGF0IGNhbiBiZSB1c2VkIHRvIG1ha2UgcHJlZGljdGlvbnMgb3IgZGVjaXNpb25zIGJhc2VkIG9uIGlucHV0IHZhcmlhYmxlcy4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIGZpbmFuY2UsIG1hcmtldGluZywgYW5kIGhlYWx0aGNhcmUuKg0KDQoxMi4gKipSYW5kb20gZm9yZXN0cyoqOiBSYW5kb20gZm9yZXN0cyBhcmUgYW4gZW5zZW1ibGUgbGVhcm5pbmcgbWV0aG9kIHRoYXQgdXNlcyBtdWx0aXBsZSBkZWNpc2lvbiB0cmVlcyB0byBpbXByb3ZlIHByZWRpY3Rpb24gYWNjdXJhY3kuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBmaW5hbmNlLCBtYXJrZXRpbmcsIGFuZCBoZWFsdGhjYXJlLioNCg0KMTMuICoqR3JhZGllbnQgYm9vc3RpbmcqKjogR3JhZGllbnQgYm9vc3RpbmcgaXMgYSBtYWNoaW5lIGxlYXJuaW5nIHRlY2huaXF1ZSB0aGF0IHVzZXMgYSBzZXF1ZW5jZSBvZiBkZWNpc2lvbiB0cmVlcyB0byBpbXByb3ZlIHByZWRpY3Rpb24gYWNjdXJhY3kuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBmaW5hbmNlLCBtYXJrZXRpbmcsIGFuZCBoZWFsdGhjYXJlLioNCg0KMTQuICoqU3VwcG9ydCB2ZWN0b3IgbWFjaGluZXMgKFNWTSkqKjogU1ZNIGlzIGEgbWFjaGluZSBsZWFybmluZyB0ZWNobmlxdWUgdXNlZCBmb3IgY2xhc3NpZmljYXRpb24gYW5kIHJlZ3Jlc3Npb24gYW5hbHlzaXMuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBmaW5hbmNlLCBtYXJrZXRpbmcsIGFuZCBjeWJlcnNlY3VyaXR5LioNCg0KMTUuICoqTmFpdmUgQmF5ZXMqKjogTmFpdmUgQmF5ZXMgaXMgYSBwcm9iYWJpbGlzdGljIG1hY2hpbmUgbGVhcm5pbmcgdGVjaG5pcXVlIHVzZWQgZm9yIGNsYXNzaWZpY2F0aW9uIGFuZCByZWdyZXNzaW9uIGFuYWx5c2lzLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gZmluYW5jZSwgbWFya2V0aW5nLCBhbmQgbmF0dXJhbCBsYW5ndWFnZSBwcm9jZXNzaW5nLioNCg0KMTYuICoqSy1tZWFucyBjbHVzdGVyaW5nKio6IEstbWVhbnMgY2x1c3RlcmluZyBpcyBhIHR5cGUgb2YgY2x1c3RlciBhbmFseXNpcyB0aGF0IGdyb3VwcyBzaW1pbGFyIGRhdGEgcG9pbnRzIGludG8gSyBjbHVzdGVycy4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIG1hcmtldGluZyBhbmQgY3VzdG9tZXIgc2VnbWVudGF0aW9uLCBhcyB3ZWxsIGFzIGltYWdlIHJlY29nbml0aW9uIGFuZCBuYXR1cmFsIGxhbmd1YWdlIHByb2Nlc3NpbmcuKg0KDQoxNy4gKipMb2dpc3RpYyByZWdyZXNzaW9uKio6IExvZ2lzdGljIHJlZ3Jlc3Npb24gaXMgYSBzdGF0aXN0aWNhbCB0ZWNobmlxdWUgdXNlZCBmb3IgYmluYXJ5IGNsYXNzaWZpY2F0aW9uLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gZmluYW5jZSwgbWFya2V0aW5nLCBhbmQgaGVhbHRoY2FyZS4qDQoNCjE4LiAqKlN1cnZpdmFsIGFuYWx5c2lzKio6IFN1cnZpdmFsIGFuYWx5c2lzIGlzIGEgc3RhdGlzdGljYWwgdGVjaG5pcXVlIHVzZWQgdG8gYW5hbHl6ZSBhbmQgcHJlZGljdCB0aGUgdGltZSB1bnRpbCBhbiBldmVudCBvY2N1cnMuIFwNCiAgICAqSXQgaXMgY29tbW9ubHkgdXNlZCBpbiBoZWFsdGhjYXJlLCBmaW5hbmNlLCBhbmQgZW5naW5lZXJpbmcuKg0KDQoxOS4gKipGdXp6eSBsb2dpYyoqOiBGdXp6eSBsb2dpYyBpcyBhIG1hdGhlbWF0aWNhbCBmcmFtZXdvcmsgdXNlZCB0byBoYW5kbGUgdW5jZXJ0YWludHkgaW4gZGF0YS4gXA0KICAgICpJdCBpcyBjb21tb25seSB1c2VkIGluIGNvbnRyb2wgc3lzdGVtcywgZGVjaXNpb24tbWFraW5nLCBhbmQgZXhwZXJ0IHN5c3RlbXMuKg0KDQoyMC4gKipCYXllc2lhbiBuZXR3b3JrKio6IEEgQmF5ZXNpYW4gbmV0d29yayBpcyBhIGdyYXBoaWNhbCBtb2RlbCB1c2VkIHRvIHJlcHJlc2VudCBwcm9iYWJpbGlzdGljIHJlbGF0aW9uc2hpcHMgYW1vbmcgdmFyaWFibGVzLiBcDQogICAgKkl0IGlzIGNvbW1vbmx5IHVzZWQgaW4gZmluYW5jZSwgbWFya2V0aW5nLCBhbmQgaGVhbHRoY2FyZSBmb3IgZGVjaXNpb24tbWFraW5nIGFuZCBwcmVkaWN0aW9uLioNCg0KTWFkZSBieSBBSSwgMjAyMyBcDQpQcm9tcHRlcjogVHVyYWwgTmFnaGkNCg==