Description de la population

ne pas prendre en compte le nombre de NA pour Rox H1, R24, R72

IOT/mortalité J28

library(tidyverse)
library(finalfit)
## Warning: le package 'finalfit' a été compilé avec la version R 4.2.2
dependent_1="IOT_mortalite_J28"
explanatory_A=c("CPAP.1","OHD_CPAP.1")
explanatory_B=c("Rox_H1","Rox_H24","Rox_H48","Rox_H72")
explanatory_C=c("Duree_Hospit","Duree_SI_Rea")
explanatory_E=c("var_RoxH24_H1", "var_RoxH48_H1","var_RoxH72_H1")

Relation IOT/mortalité J28 avec CPAP/OHD

res_glm_uni_A <- Oxy_cov%>%
    glmuni(dependent_1, explanatory_A) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_A,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
CPAP.1Oui 1.43 (0.44-6.44, p=0.591)
OHD_CPAP.1OHD_CPAP 1.43 (0.44-6.44, p=0.591)

Relation IOT/mortalité J28 avec ROX

res_glm_uni_B<- Oxy_cov%>%
    glmuni(dependent_1, explanatory_B) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_B,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
Rox_H1 0.89 (0.76-1.03, p=0.146)
Rox_H24 0.51 (0.38-0.65, p<0.001)
Rox_H48 0.69 (0.56-0.83, p<0.001)
Rox_H72 0.72 (0.55-0.92, p=0.012)

Relation IOT/mortalité J28 avec durée d’hospitalisation et de séjour

res_glm_uni_C <- Oxy_cov%>%
    glmuni(dependent_1, explanatory_C) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_C,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
Duree_Hospit 1.10 (1.06-1.16, p<0.001)
Duree_SI_Rea 1.19 (1.12-1.28, p<0.001)

Relation IOT/mortalité J28 avec la variation de l’evolution Rox dans le temps

res_glm_uni_E <- Oxy_cov%>%
    glmuni(dependent_1, explanatory_E) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_E,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
var_RoxH24_H1 0.77 (0.66-0.89, p=0.001)
var_RoxH48_H1 0.80 (0.67-0.94, p=0.011)
var_RoxH72_H1 0.79 (0.60-1.01, p=0.076)

IOT mortalité J90

library(tidyverse)
library(finalfit)

dependent_2="IOT_mortalite_J90"
explanatory_A=c("CPAP.1","OHD_CPAP.1")
explanatory_B=c("Rox_H1","Rox_H24","Rox_H48","Rox_H72")
explanatory_C=c("Duree_Hospit","Duree_SI_Rea")
explanatory_E=c("var_RoxH24_H1", "var_RoxH48_H1","var_RoxH72_H1")

Relation IOT/mortalité J90 avec CPAP/OHD

res_glm_uni_A1 <- Oxy_cov%>%
    glmuni(dependent_2, explanatory_A) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_A1,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
CPAP.1Oui 1.49 (0.46-6.70, p=0.550)
OHD_CPAP.1OHD_CPAP 1.49 (0.46-6.70, p=0.550)

Relation IOT/mortalité J28 avec ROX

res_glm_uni_B1<- Oxy_cov%>%
    glmuni(dependent_2, explanatory_B) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_B1,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
Rox_H1 0.90 (0.77-1.04, p=0.153)
Rox_H24 0.55 (0.42-0.69, p<0.001)
Rox_H48 0.68 (0.56-0.82, p<0.001)
Rox_H72 0.73 (0.56-0.93, p=0.015)

Relation IOT/mortalité J28 avec durée d’hospitalisation et de séjour

res_glm_uni_C1 <- Oxy_cov%>%
    glmuni(dependent_2, explanatory_C) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_C,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
Duree_Hospit 1.10 (1.06-1.16, p<0.001)
Duree_SI_Rea 1.19 (1.12-1.28, p<0.001)

Relation IOT/mortalité J90 avec variation Rox dans le temps

res_glm_uni_E1 <- Oxy_cov%>%
    glmuni(dependent_2, explanatory_E) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_E1,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
var_RoxH24_H1 0.79 (0.67-0.91, p=0.002)
var_RoxH48_H1 0.80 (0.67-0.93, p=0.009)
var_RoxH72_H1 0.81 (0.62-1.02, p=0.094)

impact des criteres secondaire sur l’IOT/mortalité à J28

dependent_1="IOT_mortalite_J28"
explanatory_AT=c("Age","sexe","Poids","IMC","Vaccination","ATCD_Diabète","ATCD_HTA","ATCD_ID","ATCD_Path_respi","ATCD_Cardiopathie","ATCD_IR_Dialyse","J_symptome_hospit","TDM_severité","TA_Tocilizumab","TA_plasma_conv","var_RoxH72_H1","var_RoxH48_H1","var_RoxH24_H1")

Analyse univariées

res_glm_uni_AT <- Oxy_cov%>%
    glmuni(dependent_1, explanatory_AT) %>% 
    fit2df(estimate_suffix=" (univarié)")
kable(res_glm_uni_AT,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
explanatory OR (univarié)
Age 1.02 (1.00-1.06, p=0.115)
sexeM 0.78 (0.36-1.73, p=0.529)
Poids 1.00 (0.98-1.02, p=0.841)
IMCIMC<30 0.79 (0.11-16.00, p=0.838)
IMCIMC>30 1.71 (0.23-34.79, p=0.640)
VaccinationOui 0.90 (0.13-3.81, p=0.899)
ATCD_DiabèteOui 1.41 (0.59-3.23, p=0.421)
ATCD_HTAOui 1.61 (0.76-3.44, p=0.218)
ATCD_IDOui 3.15 (0.74-12.59, p=0.101)
ATCD_Path_respiOui 2.42 (0.97-5.82, p=0.051)
ATCD_CardiopathieOui 1.18 (0.40-3.07, p=0.752)
ATCD_IR_DialyseOui 1.22 (0.06-9.84, p=0.868)
J_symptome_hospit 0.96 (0.85-1.04, p=0.423)
TDM_severitéminime 0.13 (0.02-0.75, p=0.028)
TDM_severitémodérée 0.13 (0.02-0.58, p=0.009)
TDM_severitésévère 0.18 (0.03-0.84, p=0.032)
TA_TocilizumabOui 1.19 (0.50-2.68, p=0.687)
TA_plasma_convOui 1.22 (0.06-9.84, p=0.868)
var_RoxH72_H1 0.79 (0.60-1.01, p=0.076)
var_RoxH48_H1 0.80 (0.67-0.94, p=0.011)
var_RoxH24_H1 0.77 (0.66-0.89, p=0.001)

Analyse multivariées

res_glm_uni_multi_AT <- Oxy_cov %>%
    finalfit(dependent_1, explanatory_AT)

kable(res_glm_uni_multi_AT,row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
Dependent: IOT_mortalite_J28 Non Oui OR (univariable) OR (multivariable)
Age Mean (SD) 59.4 (13.7) 63.5 (11.9) 1.02 (1.00-1.06, p=0.115) 1.03 (0.88-1.22, p=0.722)
sexe F 40 (75.5) 13 (24.5) - -
M 87 (79.8) 22 (20.2) 0.78 (0.36-1.73, p=0.529) 0.56 (0.03-15.43, p=0.700)
Poids Mean (SD) 85.6 (19.1) 86.3 (19.3) 1.00 (0.98-1.02, p=0.841) 0.99 (0.89-1.12, p=0.906)
IMC 4 (80.0) 1 (20.0) - -
IMC<30 81 (83.5) 16 (16.5) 0.79 (0.11-16.00, p=0.838) -
IMC>30 42 (70.0) 18 (30.0) 1.71 (0.23-34.79, p=0.640) 4.33 (0.15-367.64, p=0.436)
Vaccination Non 119 (78.3) 33 (21.7) - -
Oui 8 (80.0) 2 (20.0) 0.90 (0.13-3.81, p=0.899) 0.00 (NA-48714314526816672236800088282668802042468264446422620086886040286800446068000068226868860008622208408260442608226022.00, p=0.997)
ATCD_Diabète Non 99 (79.8) 25 (20.2) - -
Oui 28 (73.7) 10 (26.3) 1.41 (0.59-3.23, p=0.421) 0.53 (0.01-8.70, p=0.682)
ATCD_HTA Non 73 (82.0) 16 (18.0) - -
Oui 54 (74.0) 19 (26.0) 1.61 (0.76-3.44, p=0.218) 0.16 (0.00-2.69, p=0.243)
ATCD_ID Non 122 (79.7) 31 (20.3) - -
Oui 5 (55.6) 4 (44.4) 3.15 (0.74-12.59, p=0.101) 22.78 (0.06-54506.73, p=0.330)
ATCD_Path_respi Non 109 (81.3) 25 (18.7) - -
Oui 18 (64.3) 10 (35.7) 2.42 (0.97-5.82, p=0.051) 77.61 (4.05-23686.37, p=0.028)
ATCD_Cardiopathie Non 108 (78.8) 29 (21.2) - -
Oui 19 (76.0) 6 (24.0) 1.18 (0.40-3.07, p=0.752) 1.03 (0.02-26.06, p=0.985)
ATCD_IR_Dialyse Non 124 (78.5) 34 (21.5) - -
Oui 3 (75.0) 1 (25.0) 1.22 (0.06-9.84, p=0.868) 0.00 (NA-7432908025791255637606082884460060228046808028628040640688204648404264404220408668024026044626804686244246428204666206882406808066682068804260424.00, p=0.997)
J_symptome_hospit Mean (SD) 8.2 (5.2) 7.4 (3.7) 0.96 (0.85-1.04, p=0.423) 1.03 (0.79-1.26, p=0.788)
TDM_severité majeur 3 (37.5) 5 (62.5) - -
minime 18 (81.8) 4 (18.2) 0.13 (0.02-0.75, p=0.028) 5.98 (0.03-4331.26, p=0.527)
modérée 66 (82.5) 14 (17.5) 0.13 (0.02-0.58, p=0.009) 0.16 (0.00-14.41, p=0.430)
sévère 40 (76.9) 12 (23.1) 0.18 (0.03-0.84, p=0.032) 0.40 (0.00-35.54, p=0.681)
TA_Tocilizumab Non 95 (79.2) 25 (20.8) - -
Oui 32 (76.2) 10 (23.8) 1.19 (0.50-2.68, p=0.687) 2.48 (0.03-378.92, p=0.671)
TA_plasma_conv Non 124 (78.5) 34 (21.5) - -
Oui 3 (75.0) 1 (25.0) 1.22 (0.06-9.84, p=0.868) 0.00 (NA-3644767661526009483204064840020004864448220626002202626882004462446468222244068266082468422246688684602246060464420208684200460006.00, p=0.995)
var_RoxH72_H1 Mean (SD) -0.4 (2.9) -2.1 (1.9) 0.79 (0.60-1.01, p=0.076) 0.83 (0.44-1.46, p=0.511)
var_RoxH48_H1 Mean (SD) 0.1 (3.4) -2.2 (3.3) 0.80 (0.67-0.94, p=0.011) 1.30 (0.73-2.63, p=0.381)
var_RoxH24_H1 Mean (SD) 0.0 (3.0) -2.2 (2.8) 0.77 (0.66-0.89, p=0.001) 0.46 (0.15-0.90, p=0.071)

odds ratio de tous les modèles

Il s’agit ici d’obtenir et de présenter les odds ratio :

des modèles de régression univariés, du modèle de régression multivarié complet, d’un modèle de régression multicarié restreint (obtenu par sélection des variables)

dependent_1="IOT_mortalite_J28"
explanatory_full=c("Age","sexe","Poids","IMC","Vaccination","ATCD_Diabète","ATCD_HTA","ATCD_ID","ATCD_Path_respi","ATCD_Cardiopathie","ATCD_IR_Dialyse","J_symptome_hospit","TDM_severité","TA_Tocilizumab","TA_plasma_conv","var_RoxH72_H1","var_RoxH48_H1","var_RoxH24_H1")
explanatory_final = c("IMC","TDM_severité","ATCD_Path_respi","var_RoxH72_H1","var_RoxH48_H1")
res_summary <- Oxy_cov %>% 
     summary_factorlist(dependent_1, explanatory_full, fit_id=TRUE) 

res_uni <- Oxy_cov%>%
    glmuni(dependent_1, explanatory_full) %>%
    fit2df(estimate_suffix="(univarié)") 

res_multi_full <- Oxy_cov%>%
    glmmulti(dependent_1, explanatory_full) %>%
    fit2df(estimate_suffix="(ajustés - modèle complet)") 

res_multi_final <- Oxy_cov%>%
    glmmulti(dependent_1, explanatory_final) %>%
    fit2df(estimate_suffix="(ajustés - modèle final)") 

tab_res <- res_summary %>% 
              finalfit_merge(res_uni) %>%
              finalfit_merge(res_multi_full) %>% 
              finalfit_merge(res_multi_final) %>% 
              dplyr::select(-levels, fit_id, -index) 
      
tab_res
##                  fit_id             label         Non         Oui
## 1                   Age               Age 59.4 (13.7) 63.5 (11.9)
## 19                sexeF              sexe   40 (31.5)   13 (37.1)
## 20                sexeM                     87 (68.5)   22 (62.9)
## 18                Poids             Poids 85.6 (19.1) 86.3 (19.3)
## 14                  IMC               IMC     4 (3.1)     1 (2.9)
## 15            IMCIMC<30                     81 (63.8)   16 (45.7)
## 16            IMCIMC>30                     42 (33.1)   18 (51.4)
## 29       VaccinationNon       Vaccination  119 (93.7)   33 (94.3)
## 30       VaccinationOui                       8 (6.3)     2 (5.7)
## 4       ATCD_DiabèteNon      ATCD_Diabète   99 (78.0)   25 (71.4)
## 5       ATCD_DiabèteOui                     28 (22.0)   10 (28.6)
## 6           ATCD_HTANon          ATCD_HTA   73 (57.5)   16 (45.7)
## 7           ATCD_HTAOui                     54 (42.5)   19 (54.3)
## 8            ATCD_IDNon           ATCD_ID  122 (96.1)   31 (88.6)
## 9            ATCD_IDOui                       5 (3.9)    4 (11.4)
## 12   ATCD_Path_respiNon   ATCD_Path_respi  109 (85.8)   25 (71.4)
## 13   ATCD_Path_respiOui                     18 (14.2)   10 (28.6)
## 2  ATCD_CardiopathieNon ATCD_Cardiopathie  108 (85.0)   29 (82.9)
## 3  ATCD_CardiopathieOui                     19 (15.0)    6 (17.1)
## 10   ATCD_IR_DialyseNon   ATCD_IR_Dialyse  124 (97.6)   34 (97.1)
## 11   ATCD_IR_DialyseOui                       3 (2.4)     1 (2.9)
## 17    J_symptome_hospit J_symptome_hospit   8.2 (5.2)   7.4 (3.7)
## 25   TDM_severitémajeur      TDM_severité     3 (2.4)    5 (14.3)
## 26   TDM_severitéminime                     18 (14.2)    4 (11.4)
## 27  TDM_severitémodérée                     66 (52.0)   14 (40.0)
## 28   TDM_severitésévère                     40 (31.5)   12 (34.3)
## 23    TA_TocilizumabNon    TA_Tocilizumab   95 (74.8)   25 (71.4)
## 24    TA_TocilizumabOui                     32 (25.2)   10 (28.6)
## 21    TA_plasma_convNon    TA_plasma_conv  124 (97.6)   34 (97.1)
## 22    TA_plasma_convOui                       3 (2.4)     1 (2.9)
## 33        var_RoxH72_H1     var_RoxH72_H1  -0.4 (2.9)  -2.1 (1.9)
## 32        var_RoxH48_H1     var_RoxH48_H1   0.1 (3.4)  -2.2 (3.3)
## 31        var_RoxH24_H1     var_RoxH24_H1   0.0 (3.0)  -2.2 (2.8)
##                  OR(univarié)
## 1   1.02 (1.00-1.06, p=0.115)
## 19                          -
## 20  0.78 (0.36-1.73, p=0.529)
## 18  1.00 (0.98-1.02, p=0.841)
## 14                          -
## 15 0.79 (0.11-16.00, p=0.838)
## 16 1.71 (0.23-34.79, p=0.640)
## 29                          -
## 30  0.90 (0.13-3.81, p=0.899)
## 4                           -
## 5   1.41 (0.59-3.23, p=0.421)
## 6                           -
## 7   1.61 (0.76-3.44, p=0.218)
## 8                           -
## 9  3.15 (0.74-12.59, p=0.101)
## 12                          -
## 13  2.42 (0.97-5.82, p=0.051)
## 2                           -
## 3   1.18 (0.40-3.07, p=0.752)
## 10                          -
## 11  1.22 (0.06-9.84, p=0.868)
## 17  0.96 (0.85-1.04, p=0.423)
## 25                          -
## 26  0.13 (0.02-0.75, p=0.028)
## 27  0.13 (0.02-0.58, p=0.009)
## 28  0.18 (0.03-0.84, p=0.032)
## 23                          -
## 24  1.19 (0.50-2.68, p=0.687)
## 21                          -
## 22  1.22 (0.06-9.84, p=0.868)
## 33  0.79 (0.60-1.01, p=0.076)
## 32  0.80 (0.67-0.94, p=0.011)
## 31  0.77 (0.66-0.89, p=0.001)
##                                                                                                                                               OR(ajustés - modèle complet)
## 1                                                                                                                                                1.03 (0.88-1.22, p=0.722)
## 19                                                                                                                                                                       -
## 20                                                                                                                                              0.56 (0.03-15.43, p=0.700)
## 18                                                                                                                                               0.99 (0.89-1.12, p=0.906)
## 14                                                                                                                                                                       -
## 15                                                                                                                                                                       -
## 16                                                                                                                                             4.33 (0.15-367.64, p=0.436)
## 29                                                                                                                                                                       -
## 30                              0.00 (NA-48714314526816672236800088282668802042468264446422620086886040286800446068000068226868860008622208408260442608226022.00, p=0.997)
## 4                                                                                                                                                                        -
## 5                                                                                                                                                0.53 (0.01-8.70, p=0.682)
## 6                                                                                                                                                                        -
## 7                                                                                                                                                0.16 (0.00-2.69, p=0.243)
## 8                                                                                                                                                                        -
## 9                                                                                                                                           22.78 (0.06-54506.73, p=0.330)
## 12                                                                                                                                                                       -
## 13                                                                                                                                          77.61 (4.05-23686.37, p=0.028)
## 2                                                                                                                                                                        -
## 3                                                                                                                                               1.03 (0.02-26.06, p=0.985)
## 10                                                                                                                                                                       -
## 11 0.00 (NA-7432908025791255637606082884460060228046808028628040640688204648404264404220408668024026044626804686244246428204666206882406808066682068804260424.00, p=0.997)
## 17                                                                                                                                               1.03 (0.79-1.26, p=0.788)
## 25                                                                                                                                                                       -
## 26                                                                                                                                            5.98 (0.03-4331.26, p=0.527)
## 27                                                                                                                                              0.16 (0.00-14.41, p=0.430)
## 28                                                                                                                                              0.40 (0.00-35.54, p=0.681)
## 23                                                                                                                                                                       -
## 24                                                                                                                                             2.48 (0.03-378.92, p=0.671)
## 21                                                                                                                                                                       -
## 22                0.00 (NA-3644767661526009483204064840020004864448220626002202626882004462446468222244068266082468422246688684602246060464420208684200460006.00, p=0.995)
## 33                                                                                                                                               0.83 (0.44-1.46, p=0.511)
## 32                                                                                                                                               1.30 (0.73-2.63, p=0.381)
## 31                                                                                                                                               0.46 (0.15-0.90, p=0.071)
##    OR(ajustés - modèle final)
## 1                           -
## 19                          -
## 20                          -
## 18                          -
## 14                          -
## 15  0.26 (0.01-8.88, p=0.380)
## 16 0.41 (0.02-14.30, p=0.566)
## 29                          -
## 30                          -
## 4                           -
## 5                           -
## 6                           -
## 7                           -
## 8                           -
## 9                           -
## 12                          -
## 13 6.54 (1.54-30.50, p=0.012)
## 2                           -
## 3                           -
## 10                          -
## 11                          -
## 17                          -
## 25                          -
## 26  0.15 (0.00-6.76, p=0.303)
## 27  0.09 (0.00-2.99, p=0.136)
## 28  0.20 (0.01-6.61, p=0.316)
## 23                          -
## 24                          -
## 21                          -
## 22                          -
## 33  0.78 (0.51-1.14, p=0.223)
## 32  0.93 (0.63-1.29, p=0.669)
## 31                          -
tab_res
##                  fit_id             label         Non         Oui
## 1                   Age               Age 59.4 (13.7) 63.5 (11.9)
## 19                sexeF              sexe   40 (31.5)   13 (37.1)
## 20                sexeM                     87 (68.5)   22 (62.9)
## 18                Poids             Poids 85.6 (19.1) 86.3 (19.3)
## 14                  IMC               IMC     4 (3.1)     1 (2.9)
## 15            IMCIMC<30                     81 (63.8)   16 (45.7)
## 16            IMCIMC>30                     42 (33.1)   18 (51.4)
## 29       VaccinationNon       Vaccination  119 (93.7)   33 (94.3)
## 30       VaccinationOui                       8 (6.3)     2 (5.7)
## 4       ATCD_DiabèteNon      ATCD_Diabète   99 (78.0)   25 (71.4)
## 5       ATCD_DiabèteOui                     28 (22.0)   10 (28.6)
## 6           ATCD_HTANon          ATCD_HTA   73 (57.5)   16 (45.7)
## 7           ATCD_HTAOui                     54 (42.5)   19 (54.3)
## 8            ATCD_IDNon           ATCD_ID  122 (96.1)   31 (88.6)
## 9            ATCD_IDOui                       5 (3.9)    4 (11.4)
## 12   ATCD_Path_respiNon   ATCD_Path_respi  109 (85.8)   25 (71.4)
## 13   ATCD_Path_respiOui                     18 (14.2)   10 (28.6)
## 2  ATCD_CardiopathieNon ATCD_Cardiopathie  108 (85.0)   29 (82.9)
## 3  ATCD_CardiopathieOui                     19 (15.0)    6 (17.1)
## 10   ATCD_IR_DialyseNon   ATCD_IR_Dialyse  124 (97.6)   34 (97.1)
## 11   ATCD_IR_DialyseOui                       3 (2.4)     1 (2.9)
## 17    J_symptome_hospit J_symptome_hospit   8.2 (5.2)   7.4 (3.7)
## 25   TDM_severitémajeur      TDM_severité     3 (2.4)    5 (14.3)
## 26   TDM_severitéminime                     18 (14.2)    4 (11.4)
## 27  TDM_severitémodérée                     66 (52.0)   14 (40.0)
## 28   TDM_severitésévère                     40 (31.5)   12 (34.3)
## 23    TA_TocilizumabNon    TA_Tocilizumab   95 (74.8)   25 (71.4)
## 24    TA_TocilizumabOui                     32 (25.2)   10 (28.6)
## 21    TA_plasma_convNon    TA_plasma_conv  124 (97.6)   34 (97.1)
## 22    TA_plasma_convOui                       3 (2.4)     1 (2.9)
## 33        var_RoxH72_H1     var_RoxH72_H1  -0.4 (2.9)  -2.1 (1.9)
## 32        var_RoxH48_H1     var_RoxH48_H1   0.1 (3.4)  -2.2 (3.3)
## 31        var_RoxH24_H1     var_RoxH24_H1   0.0 (3.0)  -2.2 (2.8)
##                  OR(univarié)
## 1   1.02 (1.00-1.06, p=0.115)
## 19                          -
## 20  0.78 (0.36-1.73, p=0.529)
## 18  1.00 (0.98-1.02, p=0.841)
## 14                          -
## 15 0.79 (0.11-16.00, p=0.838)
## 16 1.71 (0.23-34.79, p=0.640)
## 29                          -
## 30  0.90 (0.13-3.81, p=0.899)
## 4                           -
## 5   1.41 (0.59-3.23, p=0.421)
## 6                           -
## 7   1.61 (0.76-3.44, p=0.218)
## 8                           -
## 9  3.15 (0.74-12.59, p=0.101)
## 12                          -
## 13  2.42 (0.97-5.82, p=0.051)
## 2                           -
## 3   1.18 (0.40-3.07, p=0.752)
## 10                          -
## 11  1.22 (0.06-9.84, p=0.868)
## 17  0.96 (0.85-1.04, p=0.423)
## 25                          -
## 26  0.13 (0.02-0.75, p=0.028)
## 27  0.13 (0.02-0.58, p=0.009)
## 28  0.18 (0.03-0.84, p=0.032)
## 23                          -
## 24  1.19 (0.50-2.68, p=0.687)
## 21                          -
## 22  1.22 (0.06-9.84, p=0.868)
## 33  0.79 (0.60-1.01, p=0.076)
## 32  0.80 (0.67-0.94, p=0.011)
## 31  0.77 (0.66-0.89, p=0.001)
##                                                                                                                                               OR(ajustés - modèle complet)
## 1                                                                                                                                                1.03 (0.88-1.22, p=0.722)
## 19                                                                                                                                                                       -
## 20                                                                                                                                              0.56 (0.03-15.43, p=0.700)
## 18                                                                                                                                               0.99 (0.89-1.12, p=0.906)
## 14                                                                                                                                                                       -
## 15                                                                                                                                                                       -
## 16                                                                                                                                             4.33 (0.15-367.64, p=0.436)
## 29                                                                                                                                                                       -
## 30                              0.00 (NA-48714314526816672236800088282668802042468264446422620086886040286800446068000068226868860008622208408260442608226022.00, p=0.997)
## 4                                                                                                                                                                        -
## 5                                                                                                                                                0.53 (0.01-8.70, p=0.682)
## 6                                                                                                                                                                        -
## 7                                                                                                                                                0.16 (0.00-2.69, p=0.243)
## 8                                                                                                                                                                        -
## 9                                                                                                                                           22.78 (0.06-54506.73, p=0.330)
## 12                                                                                                                                                                       -
## 13                                                                                                                                          77.61 (4.05-23686.37, p=0.028)
## 2                                                                                                                                                                        -
## 3                                                                                                                                               1.03 (0.02-26.06, p=0.985)
## 10                                                                                                                                                                       -
## 11 0.00 (NA-7432908025791255637606082884460060228046808028628040640688204648404264404220408668024026044626804686244246428204666206882406808066682068804260424.00, p=0.997)
## 17                                                                                                                                               1.03 (0.79-1.26, p=0.788)
## 25                                                                                                                                                                       -
## 26                                                                                                                                            5.98 (0.03-4331.26, p=0.527)
## 27                                                                                                                                              0.16 (0.00-14.41, p=0.430)
## 28                                                                                                                                              0.40 (0.00-35.54, p=0.681)
## 23                                                                                                                                                                       -
## 24                                                                                                                                             2.48 (0.03-378.92, p=0.671)
## 21                                                                                                                                                                       -
## 22                0.00 (NA-3644767661526009483204064840020004864448220626002202626882004462446468222244068266082468422246688684602246060464420208684200460006.00, p=0.995)
## 33                                                                                                                                               0.83 (0.44-1.46, p=0.511)
## 32                                                                                                                                               1.30 (0.73-2.63, p=0.381)
## 31                                                                                                                                               0.46 (0.15-0.90, p=0.071)
##    OR(ajustés - modèle final)
## 1                           -
## 19                          -
## 20                          -
## 18                          -
## 14                          -
## 15  0.26 (0.01-8.88, p=0.380)
## 16 0.41 (0.02-14.30, p=0.566)
## 29                          -
## 30                          -
## 4                           -
## 5                           -
## 6                           -
## 7                           -
## 8                           -
## 9                           -
## 12                          -
## 13 6.54 (1.54-30.50, p=0.012)
## 2                           -
## 3                           -
## 10                          -
## 11                          -
## 17                          -
## 25                          -
## 26  0.15 (0.00-6.76, p=0.303)
## 27  0.09 (0.00-2.99, p=0.136)
## 28  0.20 (0.01-6.61, p=0.316)
## 23                          -
## 24                          -
## 21                          -
## 22                          -
## 33  0.78 (0.51-1.14, p=0.223)
## 32  0.93 (0.63-1.29, p=0.669)
## 31                          -
knitr::kable(tab_res, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r", "r")) 
fit_id label Non Oui OR(univarié) OR(ajustés - modèle complet) OR(ajustés - modèle final)
Age Age 59.4 (13.7) 63.5 (11.9) 1.02 (1.00-1.06, p=0.115) 1.03 (0.88-1.22, p=0.722) -
sexeF sexe 40 (31.5) 13 (37.1) - - -
sexeM 87 (68.5) 22 (62.9) 0.78 (0.36-1.73, p=0.529) 0.56 (0.03-15.43, p=0.700) -
Poids Poids 85.6 (19.1) 86.3 (19.3) 1.00 (0.98-1.02, p=0.841) 0.99 (0.89-1.12, p=0.906) -
IMC IMC 4 (3.1) 1 (2.9) - - -
IMCIMC<30 81 (63.8) 16 (45.7) 0.79 (0.11-16.00, p=0.838) - 0.26 (0.01-8.88, p=0.380)
IMCIMC>30 42 (33.1) 18 (51.4) 1.71 (0.23-34.79, p=0.640) 4.33 (0.15-367.64, p=0.436) 0.41 (0.02-14.30, p=0.566)
VaccinationNon Vaccination 119 (93.7) 33 (94.3) - - -
VaccinationOui 8 (6.3) 2 (5.7) 0.90 (0.13-3.81, p=0.899) 0.00 (NA-48714314526816672236800088282668802042468264446422620086886040286800446068000068226868860008622208408260442608226022.00, p=0.997) -
ATCD_DiabèteNon ATCD_Diabète 99 (78.0) 25 (71.4) - - -
ATCD_DiabèteOui 28 (22.0) 10 (28.6) 1.41 (0.59-3.23, p=0.421) 0.53 (0.01-8.70, p=0.682) -
ATCD_HTANon ATCD_HTA 73 (57.5) 16 (45.7) - - -
ATCD_HTAOui 54 (42.5) 19 (54.3) 1.61 (0.76-3.44, p=0.218) 0.16 (0.00-2.69, p=0.243) -
ATCD_IDNon ATCD_ID 122 (96.1) 31 (88.6) - - -
ATCD_IDOui 5 (3.9) 4 (11.4) 3.15 (0.74-12.59, p=0.101) 22.78 (0.06-54506.73, p=0.330) -
ATCD_Path_respiNon ATCD_Path_respi 109 (85.8) 25 (71.4) - - -
ATCD_Path_respiOui 18 (14.2) 10 (28.6) 2.42 (0.97-5.82, p=0.051) 77.61 (4.05-23686.37, p=0.028) 6.54 (1.54-30.50, p=0.012)
ATCD_CardiopathieNon ATCD_Cardiopathie 108 (85.0) 29 (82.9) - - -
ATCD_CardiopathieOui 19 (15.0) 6 (17.1) 1.18 (0.40-3.07, p=0.752) 1.03 (0.02-26.06, p=0.985) -
ATCD_IR_DialyseNon ATCD_IR_Dialyse 124 (97.6) 34 (97.1) - - -
ATCD_IR_DialyseOui 3 (2.4) 1 (2.9) 1.22 (0.06-9.84, p=0.868) 0.00 (NA-7432908025791255637606082884460060228046808028628040640688204648404264404220408668024026044626804686244246428204666206882406808066682068804260424.00, p=0.997) -
J_symptome_hospit J_symptome_hospit 8.2 (5.2) 7.4 (3.7) 0.96 (0.85-1.04, p=0.423) 1.03 (0.79-1.26, p=0.788) -
TDM_severitémajeur TDM_severité 3 (2.4) 5 (14.3) - - -
TDM_severitéminime 18 (14.2) 4 (11.4) 0.13 (0.02-0.75, p=0.028) 5.98 (0.03-4331.26, p=0.527) 0.15 (0.00-6.76, p=0.303)
TDM_severitémodérée 66 (52.0) 14 (40.0) 0.13 (0.02-0.58, p=0.009) 0.16 (0.00-14.41, p=0.430) 0.09 (0.00-2.99, p=0.136)
TDM_severitésévère 40 (31.5) 12 (34.3) 0.18 (0.03-0.84, p=0.032) 0.40 (0.00-35.54, p=0.681) 0.20 (0.01-6.61, p=0.316)
TA_TocilizumabNon TA_Tocilizumab 95 (74.8) 25 (71.4) - - -
TA_TocilizumabOui 32 (25.2) 10 (28.6) 1.19 (0.50-2.68, p=0.687) 2.48 (0.03-378.92, p=0.671) -
TA_plasma_convNon TA_plasma_conv 124 (97.6) 34 (97.1) - - -
TA_plasma_convOui 3 (2.4) 1 (2.9) 1.22 (0.06-9.84, p=0.868) 0.00 (NA-3644767661526009483204064840020004864448220626002202626882004462446468222244068266082468422246688684602246060464420208684200460006.00, p=0.995) -
var_RoxH72_H1 var_RoxH72_H1 -0.4 (2.9) -2.1 (1.9) 0.79 (0.60-1.01, p=0.076) 0.83 (0.44-1.46, p=0.511) 0.78 (0.51-1.14, p=0.223)
var_RoxH48_H1 var_RoxH48_H1 0.1 (3.4) -2.2 (3.3) 0.80 (0.67-0.94, p=0.011) 1.30 (0.73-2.63, p=0.381) 0.93 (0.63-1.29, p=0.669)
var_RoxH24_H1 var_RoxH24_H1 0.0 (3.0) -2.2 (2.8) 0.77 (0.66-0.89, p=0.001) 0.46 (0.15-0.90, p=0.071) -

le graphique d’explanatory full (avec tous les critere secondaire est tres chargé, il faudra choisir les criteres à faire apparaitre dessus)

Oxy_cov %>%
    or_plot(dependent_1, explanatory_full)

Oxy_cov %>%
    or_plot(dependent_1, explanatory_final)

Courbe de survie ( DC/IOT à J28) selon durée de maladie

La durée de la maladie a été calculée en additionnant le nombre de jour de sympatome à l’arrivée + le nombre de jour d’hospitalisation Les données sont comptabilisées en jours sont noté oui les données de décès et ou IOT à J28

library(rmarkdown)
library(markdown)
library(tidyverse)
library(finalfit)
library(survival)
library(survminer)
library(ggplot2)
Surv_J28<-survfit(Surv(Survie_J,DC_IOT )~1,data=Oxy_cov)
Surv_J28
## Call: survfit(formula = Surv(Survie_J, DC_IOT) ~ 1, data = Oxy_cov)
## 
##        n events median 0.95LCL 0.95UCL
## [1,] 162     36     50      39      68
ggsurvplot(Surv_J28,xlab="Time(Days)")

Courbe de survie OHD CPAP

S_OHD_CPAP<-survfit(Surv(Survie_J,DC_IOT)~OHD_CPAP.1, data=Oxy_cov)
S_OHD_CPAP
## Call: survfit(formula = Surv(Survie_J, DC_IOT) ~ OHD_CPAP.1, data = Oxy_cov)
## 
##                        n events median 0.95LCL 0.95UCL
## OHD_CPAP.1=OHD seule  18      3     90      38      NA
## OHD_CPAP.1=OHD_CPAP  144     33     45      39      68

le test du logrank est utilisé ici afin de comparer des courbes de survie. La mortalité ches les patients diffère-t-elle significativement selon OHT /CPAP ?

survdiff(Surv(Survie_J,DC_IOT)~OHD_CPAP.1, data=Oxy_cov)
## Call:
## survdiff(formula = Surv(Survie_J, DC_IOT) ~ OHD_CPAP.1, data = Oxy_cov)
## 
##                        N Observed Expected (O-E)^2/E (O-E)^2/V
## OHD_CPAP.1=OHD seule  18        3     6.13     1.597      2.32
## OHD_CPAP.1=OHD_CPAP  144       33    29.87     0.328      2.32
## 
##  Chisq= 2.3  on 1 degrees of freedom, p= 0.1
ggsurvplot(S_OHD_CPAP, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = Oxy_cov)

Courbe de survie OHD DV

S_OHD_DV<-survfit(Surv(Survie_J,DC_IOT)~OHD_DV, data=Oxy_cov)
S_OHD_DV
## Call: survfit(formula = Surv(Survie_J, DC_IOT) ~ OHD_DV, data = Oxy_cov)
## 
##                    n events median 0.95LCL 0.95UCL
## OHD_DV=OHD seule  50     14     64      29      NA
## OHD_DV=OHD_DV    112     22     45      39      86

le test du logrank est utilisé ici afin de comparer des courbes de survie. La mortalité ches les patients diffère-t-elle significativement selon OHT /CPAP ?

survdiff(Surv(Survie_J,DC_IOT)~OHD_DV, data=Oxy_cov)
## Call:
## survdiff(formula = Surv(Survie_J, DC_IOT) ~ OHD_DV, data = Oxy_cov)
## 
##                    N Observed Expected (O-E)^2/E (O-E)^2/V
## OHD_DV=OHD seule  50       14     12.4     0.217     0.368
## OHD_DV=OHD_DV    112       22     23.6     0.113     0.368
## 
##  Chisq= 0.4  on 1 degrees of freedom, p= 0.5
ggsurvplot(S_OHD_DV, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = Oxy_cov)

Courbe de survie DV

S_DV_DL<-survfit(Surv(Survie_J,DC_IOT)~X.DV_DL, data=Oxy_cov)
S_DV_DL
## Call: survfit(formula = Surv(Survie_J, DC_IOT) ~ X.DV_DL, data = Oxy_cov)
## 
##                    n events median 0.95LCL 0.95UCL
## X.DV_DL=Fait     112     22     45      39      86
## X.DV_DL=Non fait  50     14     64      29      NA

le test du logrank est utilisé ici afin de comparer des courbes de survie. La mortalité ches les patients diffère-t-elle significativement selon OHT /CPAP ?

survdiff(Surv(Survie_J,DC_IOT)~X.DV_DL, data=Oxy_cov)
## Call:
## survdiff(formula = Surv(Survie_J, DC_IOT) ~ X.DV_DL, data = Oxy_cov)
## 
##                    N Observed Expected (O-E)^2/E (O-E)^2/V
## X.DV_DL=Fait     112       22     23.6     0.113     0.368
## X.DV_DL=Non fait  50       14     12.4     0.217     0.368
## 
##  Chisq= 0.4  on 1 degrees of freedom, p= 0.5
ggsurvplot(S_DV_DL, conf.int = TRUE, risk.table = TRUE, pval = TRUE, data = Oxy_cov)

Rcherche significativité Rox

Rox H72_H1

 Rox_H72 <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/OxyCov/Rox_H72.csv", stringsAsFactors=TRUE)
qqPlot(Rox_H72$var_RoxH72_H1)

## [1] 16 69

la normalité est satisfaisante

shapiro.test(Rox_H72$var_RoxH72_H1)
## 
##  Shapiro-Wilk normality test
## 
## data:  Rox_H72$var_RoxH72_H1
## W = 0.97979, p-value = 0.2437

tLe te de Shapiro-Wilk ne rejette pas l’hypothèse de normalité. Au final, nous acceptons cette hypothèse. Nous allons donc pouvoir comparer les moyennes de Rox H1et H72

t.test(Rox_H72$Rox_H1,Rox_H72$Rox_H72, paired=TRUE)
## 
##  Paired t-test
## 
## data:  Rox_H72$Rox_H1 and Rox_H72$Rox_H72
## t = 2.1045, df = 78, p-value = 0.03856
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  0.03628853 1.30801526
## sample estimates:
## mean difference 
##       0.6721519

Rox H48_H1

Rox_H48 <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/OxyCov/Rox_H48.csv", stringsAsFactors=TRUE)
qqPlot(Rox_H48$var_RoxH48_H1)

## [1] 90 67

la normalité n’est pas parfaite mais satisfaisante

shapiro.test(Rox_H48$var_RoxH48_H1)
## 
##  Shapiro-Wilk normality test
## 
## data:  Rox_H48$var_RoxH48_H1
## W = 0.97691, p-value = 0.05701

tLe te de Shapiro-Wilk ne rejette pas l’hypothèse de normalité. Au final, nous acceptons cette hypothèse. Nous allons donc pouvoir comparer les moyennes de Rox H1et H72

t.test(Rox_H48$Rox_H1,Rox_H48$Rox_H48, paired=TRUE)
## 
##  Paired t-test
## 
## data:  Rox_H48$Rox_H1 and Rox_H48$Rox_H48
## t = 0.9546, df = 107, p-value = 0.3419
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.3479240  0.9942203
## sample estimates:
## mean difference 
##       0.3231481

la diffrence moyenne de Rox entre H48 et h1 est de 0.323, la p-value du t-test est >0.05, ainsi les résultats nous indiquent que Les Rox à H48 n’est pas significativement different de H1

Rox H24_H1

 Rox_H24 <- read.csv2("C:/Users/mallah.s/Desktop/Stats et Theses/OxyCov/Rox_H24.csv", stringsAsFactors=TRUE)
qqPlot(Rox_H24$var_RoxH24_H1)

## [1] 95 87

la normalité est satisfaisante

shapiro.test(Rox_H24$var_RoxH24_H1)
## 
##  Shapiro-Wilk normality test
## 
## data:  Rox_H24$var_RoxH24_H1
## W = 0.99072, p-value = 0.5064

tLe te de Shapiro-Wilk ne rejette pas l’hypothèse de normalité. Au final, nous acceptons cette hypothèse. Nous allons donc pouvoir comparer les moyennes de Rox H1et H24

t.test(Rox_H24$Rox_H1,Rox_H24$Rox_H24, paired=TRUE)
## 
##  Paired t-test
## 
## data:  Rox_H24$Rox_H1 and Rox_H24$Rox_H24
## t = 1.822, df = 135, p-value = 0.07067
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
##  -0.04179095  1.01973212
## sample estimates:
## mean difference 
##       0.4889706