変数の消去

rm(list = ls())

表示を科学表示から変更

options(scipen = 999)

# 変数の消去
rm(list = ls())

# 表示を科学表示から変更
 options(scipen = 999)
# パッケージ `pacman`を使って必要なパッケージをインストール
if(!require("pacman")) install.packages("pacman")
##  要求されたパッケージ pacman をロード中です
pacman::p_load("tidyverse", "skimr")
# データサイエンスのための基本パッケージセット 
# https://www.tidyverse.org/
library(tidyverse)
#  readr, readxl, googlesheet 4は tidyverseに含まれる

#  読み込んだデータのまとめ
library(skimr)
getwd()
## [1] "C:/Users/coo/Desktop/date"
ls("package:datasets")
##   [1] "ability.cov"           "airmiles"              "AirPassengers"        
##   [4] "airquality"            "anscombe"              "attenu"               
##   [7] "attitude"              "austres"               "beaver1"              
##  [10] "beaver2"               "BJsales"               "BJsales.lead"         
##  [13] "BOD"                   "cars"                  "ChickWeight"          
##  [16] "chickwts"              "co2"                   "CO2"                  
##  [19] "crimtab"               "discoveries"           "DNase"                
##  [22] "esoph"                 "euro"                  "euro.cross"           
##  [25] "eurodist"              "EuStockMarkets"        "faithful"             
##  [28] "fdeaths"               "Formaldehyde"          "freeny"               
##  [31] "freeny.x"              "freeny.y"              "HairEyeColor"         
##  [34] "Harman23.cor"          "Harman74.cor"          "Indometh"             
##  [37] "infert"                "InsectSprays"          "iris"                 
##  [40] "iris3"                 "islands"               "JohnsonJohnson"       
##  [43] "LakeHuron"             "ldeaths"               "lh"                   
##  [46] "LifeCycleSavings"      "Loblolly"              "longley"              
##  [49] "lynx"                  "mdeaths"               "morley"               
##  [52] "mtcars"                "nhtemp"                "Nile"                 
##  [55] "nottem"                "npk"                   "occupationalStatus"   
##  [58] "Orange"                "OrchardSprays"         "PlantGrowth"          
##  [61] "precip"                "presidents"            "pressure"             
##  [64] "Puromycin"             "quakes"                "randu"                
##  [67] "rivers"                "rock"                  "Seatbelts"            
##  [70] "sleep"                 "stack.loss"            "stack.x"              
##  [73] "stackloss"             "state.abb"             "state.area"           
##  [76] "state.center"          "state.division"        "state.name"           
##  [79] "state.region"          "state.x77"             "sunspot.month"        
##  [82] "sunspot.year"          "sunspots"              "swiss"                
##  [85] "Theoph"                "Titanic"               "ToothGrowth"          
##  [88] "treering"              "trees"                 "UCBAdmissions"        
##  [91] "UKDriverDeaths"        "UKgas"                 "USAccDeaths"          
##  [94] "USArrests"             "UScitiesD"             "USJudgeRatings"       
##  [97] "USPersonalExpenditure" "uspop"                 "VADeaths"             
## [100] "volcano"               "warpbreaks"            "women"                
## [103] "WorldPhones"           "WWWusage"
cars_temp <- cars

iris_temp <- iris
str(cars_temp)
## 'data.frame':    50 obs. of  2 variables:
##  $ speed: num  4 4 7 7 8 9 10 10 10 11 ...
##  $ dist : num  2 10 4 22 16 10 18 26 34 17 ...
str(iris_temp)
## 'data.frame':    150 obs. of  5 variables:
##  $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
##  $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
##  $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
##  $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
##  $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
skimr::skim(cars_temp)
Data summary
Name cars_temp
Number of rows 50
Number of columns 2
_______________________
Column type frequency:
numeric 2
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
speed 0 1 15.40 5.29 4 12 15 19 25 ▂▅▇▇▃
dist 0 1 42.98 25.77 2 26 36 56 120 ▅▇▅▂▁
skimr::skim(iris_temp)
Data summary
Name iris_temp
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
factor 1
numeric 4
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Species 0 1 FALSE 3 set: 50, ver: 50, vir: 50

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Sepal.Length 0 1 5.84 0.83 4.3 5.1 5.80 6.4 7.9 ▆▇▇▅▂
Sepal.Width 0 1 3.06 0.44 2.0 2.8 3.00 3.3 4.4 ▁▆▇▂▁
Petal.Length 0 1 3.76 1.77 1.0 1.6 4.35 5.1 6.9 ▇▁▆▇▂
Petal.Width 0 1 1.20 0.76 0.1 0.3 1.30 1.8 2.5 ▇▁▇▅▃
library(gt)

cars_temp |> head(n = 10) |>gt()
speed dist
4 2
4 10
7 4
7 22
8 16
9 10
10 18
10 26
10 34
11 17
iris_temp |> tail(n = 10) |> gt() |>
                   tab_header(
                      title = "アヤメデータ",
                      subtitle = "rに入っているデータの一つです") |>
                   cols_label(
                      Sepal.Length = "がく片の長さ",
                      Sepal.Width = "がく片の幅" )
アヤメデータ
rに入っているデータの一つです
がく片の長さ がく片の幅 Petal.Length Petal.Width Species
6.7 3.1 5.6 2.4 virginica
6.9 3.1 5.1 2.3 virginica
5.8 2.7 5.1 1.9 virginica
6.8 3.2 5.9 2.3 virginica
6.7 3.3 5.7 2.5 virginica
6.7 3.0 5.2 2.3 virginica
6.3 2.5 5.0 1.9 virginica
6.5 3.0 5.2 2.0 virginica
6.2 3.4 5.4 2.3 virginica
5.9 3.0 5.1 1.8 virginica