This word cloud analysis offer a glimpse of the most important terms used in the scientific literature on rights. Here I used the terms:
This search provided 775 documents
Data cleaning and wrangling
FOR ABSTRACTS
dtm.ab <- TermDocumentMatrix(docs)
m.ab <- as.matrix(dtm.ab)
v.ab <- sort(rowSums(m.ab),decreasing=TRUE)
d.ab <- data.frame(word = names(v.ab),freq=v.ab)
head(d.ab, 20) # The 20th most important words
## word freq
## indigenous indigenous 1499
## rights rights 1113
## biodiversity biodiversity 901
## conservation conservation 727
## species species 708
## knowledge knowledge 545
## local local 495
## communities communities 475
## resources resources 461
## forest forest 452
## traditional traditional 426
## peoples peoples 391
## use use 386
## management management 376
## international international 370
## environmental environmental 359
## areas areas 357
## development development 347
## reserved reserved 332
## diversity diversity 329
set.seed(5)
wordcloud(words = d.ab$word, freq = d.ab$freq, min.freq = 1,
max.words=200, random.order=FALSE, rot.per=0.35,
colors=brewer.pal(8, "Dark2"))
Now excluding the search terms
d2.ab<-d.ab[-c(1:3),] # excluding the search terms itself
head (d2.ab, 20)
## word freq
## conservation conservation 727
## species species 708
## knowledge knowledge 545
## local local 495
## communities communities 475
## resources resources 461
## forest forest 452
## traditional traditional 426
## peoples peoples 391
## use use 386
## management management 376
## international international 370
## environmental environmental 359
## areas areas 357
## development development 347
## reserved reserved 332
## diversity diversity 329
## natural natural 318
## land land 317
## new new 291
wordcloud(words = d2.ab$word, freq = d2.ab$freq, min.freq = 1,
max.words=200, random.order=FALSE, rot.per=0.35,
colors=brewer.pal(8, "Dark2"))
FOR TITLES (I won’t generate a word cloud just for titles)
dtm.t <- TermDocumentMatrix(docs.t)
m.t <- as.matrix(dtm.t)
v.t <- sort(rowSums(m.t),decreasing=TRUE)
d.t <- data.frame(word = names(v.t),freq=v.t)
head(d.t, 20)
## word freq
## indigenous indigenous 199
## biodiversity biodiversity 134
## conservation conservation 106
## rights rights 106
## knowledge knowledge 72
## property property 62
## intellectual intellectual 56
## traditional traditional 53
## forest forest 50
## management management 48
## diversity diversity 45
## peoples peoples 39
## community community 38
## case case 36
## communities communities 33
## new new 33
## marine marine 33
## local local 32
## sustainable sustainable 30
## species species 30
d2.t<-d.t[-c(1,2,4),] # exclude search terms
head (d2.t, 20)
## word freq
## conservation conservation 106
## knowledge knowledge 72
## property property 62
## intellectual intellectual 56
## traditional traditional 53
## forest forest 50
## management management 48
## diversity diversity 45
## peoples peoples 39
## community community 38
## case case 36
## communities communities 33
## new new 33
## marine marine 33
## local local 32
## sustainable sustainable 30
## species species 30
## resources resources 30
## development development 28
## areas areas 27
FOR ABSTRACTS AND TITLES
d.all.nexus=as.data.frame(merge(d2.t,d2.ab, by="word"), sort = TRUE)
d.all.nexus<-d.all.nexus[order(-d.all.nexus$freq.y),]
d.all.nexus$sum<-rowSums(d.all.nexus[,c(2,3)])
d.all.nexus<-d.all.nexus[,c(1,3)]
colnames(d.all.nexus)<-c("word", "freq")
wordcloud(words = d.all.nexus$word, freq = d.all.nexus$freq, min.freq = 1,
max.words=200, random.order=FALSE, rot.per=0.35,
colors=brewer.pal(8, "Dark2"))