Abstract

This Project is for IE5344-Statistical Data Analysis. Our Main Objective is to find significant Predictors for bar exam passes rates. So, the bar school can focus more on those factors while taking bar exam and get more passing rate. We did a Regression Analysis on UBE and from the fitted model we got significant variables. As UBE is dependent on MPT, MEE, MBE value, we did Regression Analysis on those as well and concluded the significant predictors variables from the model. Throughout the finding significant predictors’ process, we did multicollinearity check, outliers check, adequacy check, transformation where it required, AIC checking for subset models. 

Introduction

The data we have to do analysis is about a bar exam. The data includes all students in the program who took the exam in 2021 and 2022, both those who passed and failed the exam. We need to recommend on which variables they need to focus more to increase the rate of passing in bar exam.

In our regression analysis, we observed there is not much importance for “LSAT exam score”, “Accom”, “Num of workshops” attended are not much important for regression. “LSAT exam score” is just entrance score. So, it does not impact law school exam that much. And also “accom” value is not compulsory for students and it is set mainly for disabled people, so we can put this variable apart from the regression.

As OneLCUM is cumulative value of civpro, LP1, LP2, we can set them apart from the regression analysis, and directly regress only the “OneLCUM” variable.

“Probation” is another important variable because the result of a student may depend on the students’ behaviour, and it may impact on their focus on study.

“LegalAnalysis”, “AdvLegalPerf”, “AdvLegalAnalysis” are elective courses. These three may or may not be significant according to our response what we have taken for regression analysis.

“Barpep” is compulsory course completion so it will impact our analysis.

“PctBarPrepCompelete” is also a course that every law student wants to complete, so it is also a main predictor.

“NumPrepWorkshops” is not a mandatory factor for all students to take. It is optional to take. It may create difference in our regression when we consider this as predictor.

“StudentSuccessInitiative” variable is not for all students as well. The student who has got poor marks, it is for them to be beneficial.

BarPrepMentor is a variable to decide whether the student has a bar preparation mentor or not.

Below are the responses:

MPRE: Mulitstate Professional Responsibility Exam

MPT: Multistate Performance Exam

MEE: Mutistate Essay Exam

MBE: Multistate Bar Exam

UBE: Uniform Bar Exam.  A composite score from the MPT, MEE, MBE examinations

Pass: Whether or not the student passed the bar exam.  The minimum score on the UBE for bar passage varies slightly from year to year. When we observe our data, we can see most of students passed but their performance on different exams was not the same. Some of them got good results in some exams at the same time but also, they performed bad on other exams. Overall, when we observe the given data very few students was failed.

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'forcats' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tibble    3.2.1
## ✔ purrr     1.0.1     ✔ tidyr     1.3.0
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all conflicts to become errors
library(readxl)
## Warning: package 'readxl' was built under R version 4.2.3
library(dplyr)
library(tidyr)
library(purrr)
library(MASS)
## Warning: package 'MASS' was built under R version 4.2.3
## 
## Attaching package: 'MASS'
## 
## The following object is masked from 'package:dplyr':
## 
##     select
library(car)
## Warning: package 'car' was built under R version 4.2.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.3
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## The following object is masked from 'package:purrr':
## 
##     some
library(MASS)
sheet1<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2022Fail")
sheet1
## # A tibble: 18 × 24
##     LSAT  UGPA Class CivPro LP1   LP2   OneLCUM  FGPA Accom Probation
##    <dbl> <dbl> <dbl> <chr>  <chr> <chr>   <dbl> <dbl> <chr> <chr>    
##  1   154  3.18  2019 C+     C+    C+       2.47  2.92 N     Y        
##  2   152  2.56  2019 B      C+    C        2.5   3.06 N     N        
##  3   158  2.78  2019 C      B+    CR       3.22  3.14 Y     N        
##  4   153  3.47  2019 A      B+    A        3.5   3.42 N     N        
##  5   159  2.97  2019 C      C     C+       2.28  2.64 N     Y        
##  6   148  3.59  2019 B      A     B+       2.72  3.05 N     N        
##  7   155  3.45  2019 B      D+    CR       2.76  2.99 N     N        
##  8   152  3.39  2019 C      A     B        2.65  3.15 N     N        
##  9   151  3.61  2019 C      D     C+       2.58  2.77 N     N        
## 10   157  3.11  2019 C      B+    B        2.67  3.19 N     N        
## 11   155  3.95  2019 D      B     B        2.43  2.88 N     Y        
## 12   151  3.94  2019 C      B     CR       2.69  3.15 N     N        
## 13   149  3.41  2019 C      B     B        2.93  3.27 N     N        
## 14   153  3.5   2019 C+     C+    C+       2.67  3.06 N     N        
## 15   149  4.06  2019 B      A     A        2.88  3.36 N     N        
## 16   149  3.6   2019 C+     C+    CR       3.06  3.25 Y     N        
## 17   157  2.94  2019 B+     B+    CR       3.66  3.20 N     N        
## 18   153  3.55  2019 B      B     CR       2.84  2.55 N     N        
## # ℹ 14 more variables: LegalAnalysis <chr>, AdvLegalPerf <chr>,
## #   AdvLegalAnalysis <chr>, BarPrep <chr>, PctBarPrepComplete <chr>,
## #   NumPrepWorkshops <dbl>, StudentSuccessInitiative <chr>,
## #   BarPrepMentor <chr>, MPRE <chr>, MPT <dbl>, MEE <dbl>, MBE <dbl>,
## #   UBE <dbl>, PASS <dbl>
sheet2<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2022Pass")
sheet2
## # A tibble: 89 × 24
##     LSAT  UGPA Class CivPro LP1   LP2   OneLCUM  FGPA Accom Probation
##    <dbl> <dbl> <dbl> <chr>  <chr> <chr>   <dbl> <dbl> <chr> <chr>    
##  1   155  3.29  2019 C+     C+    CR       3.5   3.09 N     N        
##  2   153  3.73  2019 B      A     B+       3.28  3.40 N     N        
##  3   154  3.39  2019 C+     B+    CR       3.09  2.99 N     N        
##  4   155  3.7   2019 C      C+    CR       2.84  3.28 N     N        
##  5   158  2.82  2019 C+     C     B+       3.12  3.45 N     N        
##  6   156  3.54  2019 B      B+    CR       3.21  3.43 N     N        
##  7   160  3.87  2019 B      B     CR       3.45  3.36 N     N        
##  8   157  3.2   2019 A      A     A        3.62  3.60 N     N        
##  9   156  3.09  2019 B      C     CR       3     3.18 N     N        
## 10   153  3.66  2019 B+     A     A        3.62  3.72 N     N        
## # ℹ 79 more rows
## # ℹ 14 more variables: LegalAnalysis <chr>, AdvLegalPerf <chr>,
## #   AdvLegalAnalysis <chr>, BarPrep <chr>, PctBarPrepComplete <chr>,
## #   NumPrepWorkshops <dbl>, StudentSuccessInitiative <chr>,
## #   BarPrepMentor <chr>, MPRE <chr>, MPT <dbl>, MEE <dbl>, MBE <dbl>,
## #   UBE <dbl>, PASS <dbl>
sheet3<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2021Fail")
sheet3
## # A tibble: 9 × 24
##    LSAT  UGPA Class CivPro LP1   LP2   OneLCUM  FGPA Accom Probation
##   <dbl> <dbl> <dbl> <chr>  <chr> <chr>   <dbl> <dbl> <chr> <chr>    
## 1   152  3.42  2018 B+     A     A        3.21  3.29 N     N        
## 2   155  2.82  2018 B+     B     B        2.43  3.20 Y     Y        
## 3   157  3.46  2018 C      B     B        2.62  2.91 N     N        
## 4   156  3.13  2018 D+     C     C+       2.28  2.77 N     Y        
## 5   145  3.49  2018 C      C+    C+       2.29  2.90 N     Y        
## 6   154  2.85  2018 B+     F     CR       2.54  2.82 N     N        
## 7   149  3.43  2018 C      C     B        2.28  3.00 N     Y        
## 8   160  3.29  2018 C      C+    B        2.66  3.09 N     Y        
## 9   152  3.62  2018 C+     B     B        2.60  3.21 N     N        
## # ℹ 14 more variables: LegalAnalysis <chr>, AdvLegalPerf <chr>,
## #   AdvLegalAnalysis <chr>, BarPrep <chr>, PctBarPrepComplete <dbl>,
## #   NumPrepWorkshops <dbl>, StudentSuccessInitiative <chr>,
## #   BarPrepMentor <chr>, MPRE <chr>, MPT <dbl>, MEE <dbl>, MBE <dbl>,
## #   UBE <dbl>, PASS <dbl>
sheet4<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2021Pass")
sheet4
## # A tibble: 107 × 24
##     LSAT  UGPA Class CivPro LP1   LP2   OneLCUM  FGPA Accom Probation
##    <dbl> <dbl> <dbl> <chr>  <chr> <chr>   <dbl> <dbl> <chr> <chr>    
##  1   150  3.07  2018 C      B     C        2.36  2.74 N     Y        
##  2   148  3.57  2018 C+     A     B+       2.95  3.44 N     N        
##  3   155  3.26  2018 C+     B     C        2.83  3.17 N     N        
##  4   152  3.96  2018 A      B+    A        3.60  3.80 N     N        
##  5   156  3.41  2018 B      B     C+       2.88  3.26 N     N        
##  6   153  3.64  2018 B      C+    B        2.52  3.32 Y     Y        
##  7   151  3.67  2018 B      B+    B        2.79  3.26 N     N        
##  8   156  3.52  2018 B+     B     A        3.16  3.58 Y     N        
##  9   157  2.62  2018 B      A     A        3.22  3.35 N     N        
## 10   163  3.45  2018 A      B     B        3.60  3.76 N     N        
## # ℹ 97 more rows
## # ℹ 14 more variables: LegalAnalysis <chr>, AdvLegalPerf <chr>,
## #   AdvLegalAnalysis <chr>, BarPrep <chr>, PctBarPrepComplete <chr>,
## #   NumPrepWorkshops <dbl>, StudentSuccessInitiative <chr>,
## #   BarPrepMentor <chr>, MPRE <chr>, MPT <dbl>, MEE <dbl>, MBE <dbl>,
## #   UBE <dbl>, PASS <dbl>
sheet1[sheet1=='NA']<-NA
sheet2[sheet2=='NA']<-NA
sheet3[sheet3=='NA']<-NA
sheet4[sheet4=='NA']<-NA
sheet1<-na.omit(sheet1)
sheet2<-na.omit(sheet2)
sheet3<-na.omit(sheet3)
sheet4<-na.omit(sheet4)
view(sheet1)
view(sheet2)
view(sheet3)
view(sheet4)
data<-rbind(sheet1,sheet2,sheet3,sheet4)
View(data)
str(data)
## tibble [195 × 24] (S3: tbl_df/tbl/data.frame)
##  $ LSAT                    : num [1:195] 154 152 158 153 159 148 155 152 151 157 ...
##  $ UGPA                    : num [1:195] 3.18 2.56 2.78 3.47 2.97 3.59 3.45 3.39 3.61 3.11 ...
##  $ Class                   : num [1:195] 2019 2019 2019 2019 2019 ...
##  $ CivPro                  : chr [1:195] "C+" "B" "C" "A" ...
##  $ LP1                     : chr [1:195] "C+" "C+" "B+" "B+" ...
##  $ LP2                     : chr [1:195] "C+" "C" "CR" "A" ...
##  $ OneLCUM                 : num [1:195] 2.47 2.5 3.23 3.5 2.28 ...
##  $ FGPA                    : num [1:195] 2.92 3.06 3.14 3.42 2.64 ...
##  $ Accom                   : chr [1:195] "N" "N" "Y" "N" ...
##  $ Probation               : chr [1:195] "Y" "N" "N" "N" ...
##  $ LegalAnalysis           : chr [1:195] "N" "N" "N" "N" ...
##  $ AdvLegalPerf            : chr [1:195] "N" "N" "N" "N" ...
##  $ AdvLegalAnalysis        : chr [1:195] "N" "N" "Y" "N" ...
##  $ BarPrep                 : chr [1:195] "Themis" "Themis" "Barbri" "Themis" ...
##  $ PctBarPrepComplete      : chr [1:195] "0.76700000000000002" "0.58199999999999996" "0.83" "0.69620000000000004" ...
##  $ NumPrepWorkshops        : num [1:195] 4 0 0 0 5 1 0 5 5 0 ...
##  $ StudentSuccessInitiative: chr [1:195] "Y" "Y" "N" "N" ...
##  $ BarPrepMentor           : chr [1:195] "N" "N" "N" "N" ...
##  $ MPRE                    : chr [1:195] "79" "95" "86" "95" ...
##  $ MPT                     : num [1:195] 3 2.5 2 2 3 2 2.5 3.5 3 2.5 ...
##  $ MEE                     : num [1:195] 3.17 3.67 3 3.17 3 ...
##  $ MBE                     : num [1:195] 135 126 135 140 129 ...
##  $ UBE                     : num [1:195] 266 260 254 262 258 ...
##  $ PASS                    : num [1:195] 0 0 0 0 0 0 0 0 0 0 ...
##  - attr(*, "na.action")= 'omit' Named int [1:2] 12 17
##   ..- attr(*, "names")= chr [1:2] "12" "17"
summary(data) 
##       LSAT            UGPA           Class         CivPro         
##  Min.   :145.0   Min.   :2.210   Min.   :2018   Length:195        
##  1st Qu.:152.0   1st Qu.:3.225   1st Qu.:2018   Class :character  
##  Median :155.0   Median :3.440   Median :2018   Mode  :character  
##  Mean   :154.7   Mean   :3.428   Mean   :2018                     
##  3rd Qu.:157.0   3rd Qu.:3.660   3rd Qu.:2019                     
##  Max.   :165.0   Max.   :4.140   Max.   :2019                     
##      LP1                LP2               OneLCUM           FGPA      
##  Length:195         Length:195         Min.   :2.200   Min.   :2.551  
##  Class :character   Class :character   1st Qu.:2.808   1st Qu.:3.132  
##  Mode  :character   Mode  :character   Median :3.145   Median :3.359  
##                                        Mean   :3.132   Mean   :3.346  
##                                        3rd Qu.:3.463   3rd Qu.:3.554  
##                                        Max.   :4.000   Max.   :3.983  
##     Accom            Probation         LegalAnalysis      AdvLegalPerf      
##  Length:195         Length:195         Length:195         Length:195        
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##  AdvLegalAnalysis     BarPrep          PctBarPrepComplete NumPrepWorkshops
##  Length:195         Length:195         Length:195         Min.   :0.000   
##  Class :character   Class :character   Class :character   1st Qu.:0.000   
##  Mode  :character   Mode  :character   Mode  :character   Median :1.000   
##                                                           Mean   :1.708   
##                                                           3rd Qu.:3.000   
##                                                           Max.   :5.000   
##  StudentSuccessInitiative BarPrepMentor          MPRE                MPT       
##  Length:195               Length:195         Length:195         Min.   :2.000  
##  Class :character         Class :character   Class :character   1st Qu.:3.000  
##  Mode  :character         Mode  :character   Mode  :character   Median :4.000  
##                                                                 Mean   :3.705  
##                                                                 3rd Qu.:4.500  
##                                                                 Max.   :5.500  
##       MEE             MBE             UBE             PASS       
##  Min.   :2.167   Min.   :103.6   Min.   :229.1   Min.   :0.0000  
##  1st Qu.:3.333   1st Qu.:139.4   1st Qu.:279.9   1st Qu.:1.0000  
##  Median :3.667   Median :146.3   Median :292.5   Median :1.0000  
##  Mean   :3.667   Mean   :145.8   Mean   :291.9   Mean   :0.8769  
##  3rd Qu.:4.000   3rd Qu.:153.1   3rd Qu.:305.4   3rd Qu.:1.0000  
##  Max.   :5.333   Max.   :171.8   Max.   :344.8   Max.   :1.0000

We need to convert data format because some of them are character, some of them are grades , strings; So convertion is required to essential form.

data$CivPro<-factor(data$CivPro,c("D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$LP1<-factor(data$LP1,c("D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$LP2<-factor(data$LP2,c("CR","D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$Accom<-as.factor(data$Accom)
data$Probation<-as.factor(data$Probation)
data$LegalAnalysis<-as.factor(data$LegalAnalysis)
data$AdvLegalPerf<-as.factor(data$AdvLegalPerf)
data$AdvLegalAnalysis<-as.factor(data$AdvLegalAnalysis)
data$BarPrep<-as.factor(data$BarPrep)
data$PctBarPrepComplete<-as.numeric(data$PctBarPrepComplete)
data$NumPrepWorkshops<-factor(data$NumPrepWorkshops,c("0","1","2","3","4","5"),ordered=TRUE)
data$StudentSuccessInitiative<-as.factor(data$StudentSuccessInitiative)
data$BarPrepMentor<-as.factor(data$BarPrepMentor)

There is a question mark in the row 80. So, we need to omit this row.

data<-data[-80,]
view(data)
data$MPRE<-as.numeric(data$MPRE)
data[,1:23]<-sapply(data[,1:23],as.numeric)

Now the data is perfect in structure we can start our analysis

str(data)
## tibble [194 × 24] (S3: tbl_df/tbl/data.frame)
##  $ LSAT                    : num [1:194] 154 152 158 153 159 148 155 152 151 157 ...
##  $ UGPA                    : num [1:194] 3.18 2.56 2.78 3.47 2.97 3.59 3.45 3.39 3.61 3.11 ...
##  $ Class                   : num [1:194] 2019 2019 2019 2019 2019 ...
##  $ CivPro                  : num [1:194] 4 5 3 7 3 5 5 3 3 3 ...
##  $ LP1                     : num [1:194] 4 4 6 6 3 7 2 7 1 6 ...
##  $ LP2                     : num [1:194] 5 4 1 8 5 7 1 6 5 6 ...
##  $ OneLCUM                 : num [1:194] 2.47 2.5 3.23 3.5 2.28 ...
##  $ FGPA                    : num [1:194] 2.92 3.06 3.14 3.42 2.64 ...
##  $ Accom                   : num [1:194] 1 1 2 1 1 1 1 1 1 1 ...
##  $ Probation               : num [1:194] 2 1 1 1 2 1 1 1 1 1 ...
##  $ LegalAnalysis           : num [1:194] 1 1 1 1 2 1 1 1 2 1 ...
##  $ AdvLegalPerf            : num [1:194] 1 1 1 1 2 1 1 1 2 1 ...
##  $ AdvLegalAnalysis        : num [1:194] 1 1 2 1 2 2 1 1 2 1 ...
##  $ BarPrep                 : num [1:194] 2 2 1 2 2 2 1 1 1 2 ...
##  $ PctBarPrepComplete      : num [1:194] 0.767 0.582 0.83 0.696 0.749 ...
##  $ NumPrepWorkshops        : num [1:194] 5 1 1 1 6 2 1 6 6 1 ...
##  $ StudentSuccessInitiative: num [1:194] 2 2 1 1 2 2 2 2 2 1 ...
##  $ BarPrepMentor           : num [1:194] 1 1 1 1 1 1 1 1 1 2 ...
##  $ MPRE                    : num [1:194] 79 95 86 95 79 87 86 85 85 87 ...
##  $ MPT                     : num [1:194] 3 2.5 2 2 3 2 2.5 3.5 3 2.5 ...
##  $ MEE                     : num [1:194] 3.17 3.67 3 3.17 3 ...
##  $ MBE                     : num [1:194] 135 126 135 140 129 ...
##  $ UBE                     : num [1:194] 266 260 254 262 258 ...
##  $ PASS                    : num [1:194] 0 0 0 0 0 0 0 0 0 0 ...
##  - attr(*, "na.action")= 'omit' Named int [1:2] 12 17
##   ..- attr(*, "names")= chr [1:2] "12" "17"
view(data)

We need to standardize the data to bring them on the same level.

datanew<-data.frame(scale(data[,c(1,2,3,7,8,15,16)],center=TRUE,scale=TRUE),data[,c(4,5,6,9,10,11,12,13,14,17,18,19,20,21,22,23)])
view(datanew)

now data has proper same level scaling now we can do regression analysis

fit.UBE<-lm(UBE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE)
## 
## Call:
## lm(formula = UBE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.929  -8.035   0.296   9.556  38.130 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              269.5151    13.3463  20.194  < 2e-16 ***
## LSAT                       1.3444     1.1220   1.198 0.232460    
## UGPA                      -0.6114     1.1249  -0.544 0.587473    
## Class                     -4.0198     1.2181  -3.300 0.001171 ** 
## CivPro                     0.7758     1.1065   0.701 0.484153    
## LP1                       -2.2246     1.0901  -2.041 0.042785 *  
## LP2                       -0.2754     0.5024  -0.548 0.584319    
## OneLCUM                    5.9401     2.5704   2.311 0.022000 *  
## FGPA                      11.3045     2.4032   4.704 5.16e-06 ***
## Accom                     -3.3516     3.3587  -0.998 0.319704    
## Probation                  5.9178     4.6300   1.278 0.202890    
## LegalAnalysis             -6.4304     6.1636  -1.043 0.298255    
## AdvLegalPerf               6.0221     4.1357   1.456 0.147149    
## AdvLegalAnalysis           1.3725     2.0957   0.655 0.513394    
## BarPrep                    8.6507     2.2296   3.880 0.000148 ***
## PctBarPrepComplete         4.0463     1.1245   3.598 0.000417 ***
## NumPrepWorkshops          -0.4260     1.1814  -0.361 0.718833    
## StudentSuccessInitiative   5.6121     3.4151   1.643 0.102107    
## BarPrepMentor              5.3007     2.6255   2.019 0.045018 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.69 on 175 degrees of freedom
## Multiple R-squared:  0.577,  Adjusted R-squared:  0.5335 
## F-statistic: 13.26 on 18 and 175 DF,  p-value: < 2.2e-16
plot(fit.UBE)

As the residuals are scattered randomly against fitted values and residuals are normally distributed; the model is adequate. So there is no need for transformation, also there is no influencer point. We will check the VIF values to check the multicollinearty.

vif(fit.UBE)
##                     LSAT                     UGPA                    Class 
##                 1.296326                 1.303024                 1.527821 
##                   CivPro                      LP1                      LP2 
##                 2.263784                 1.955095                 1.505454 
##                  OneLCUM                     FGPA                    Accom 
##                 6.803458                 5.947323                 1.220199 
##                Probation            LegalAnalysis             AdvLegalPerf 
##                 2.051705                 1.922441                 1.106845 
##         AdvLegalAnalysis                  BarPrep       PctBarPrepComplete 
##                 1.119117                 1.281510                 1.302029 
##         NumPrepWorkshops StudentSuccessInitiative            BarPrepMentor 
##                 1.437288                 2.247827                 1.251218

After observing the VIF value, onelcum , fgpa is highly correlated as they have very high VIF number. so we will remove those terms and regress again.

fit.UBE1<-lm(UBE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE1)
## 
## Call:
## lm(formula = UBE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     Accom + Probation + LegalAnalysis + AdvLegalPerf + AdvLegalAnalysis + 
##     BarPrep + PctBarPrepComplete + NumPrepWorkshops + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -58.156  -9.266   0.341   9.991  37.861 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              252.6157    15.1887  16.632  < 2e-16 ***
## LSAT                       3.3451     1.2532   2.669 0.008309 ** 
## UGPA                       1.2026     1.2730   0.945 0.346103    
## Class                     -2.9105     1.3577  -2.144 0.033420 *  
## CivPro                     5.4750     1.0387   5.271 3.92e-07 ***
## LP1                        0.9127     1.1403   0.800 0.424542    
## LP2                        0.3080     0.5682   0.542 0.588473    
## Accom                     -2.5323     3.8105  -0.665 0.507195    
## Probation                  1.3910     5.2330   0.266 0.790687    
## LegalAnalysis             -0.7131     7.0908  -0.101 0.920009    
## AdvLegalPerf               3.0358     4.7709   0.636 0.525388    
## AdvLegalAnalysis          -0.3234     2.3733  -0.136 0.891768    
## BarPrep                    7.4908     2.5691   2.916 0.004007 ** 
## PctBarPrepComplete         4.9531     1.2937   3.829 0.000179 ***
## NumPrepWorkshops          -0.6713     1.3520  -0.497 0.620128    
## StudentSuccessInitiative  -8.9822     3.2783  -2.740 0.006776 ** 
## BarPrepMentor              2.8271     3.0122   0.939 0.349229    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.86 on 177 degrees of freedom
## Multiple R-squared:  0.4259, Adjusted R-squared:  0.374 
## F-statistic: 8.207 on 16 and 177 DF,  p-value: 1.526e-14
vif(fit.UBE1)
##                     LSAT                     UGPA                    Class 
##                 1.205068                 1.243400                 1.414449 
##                   CivPro                      LP1                      LP2 
##                 1.486551                 1.593903                 1.435223 
##                    Accom                Probation            LegalAnalysis 
##                 1.170321                 1.953007                 1.895951 
##             AdvLegalPerf         AdvLegalAnalysis                  BarPrep 
##                 1.097585                 1.069523                 1.267820 
##       PctBarPrepComplete         NumPrepWorkshops StudentSuccessInitiative 
##                 1.284262                 1.402588                 1.543548 
##            BarPrepMentor 
##                 1.227225

after removing those two terms, it is impacting r square value to decrease and p value is increasing. So it is better to keep onelcum, fgpa and some significant factors and some near significant factors remain in model. There is no significant impact by removing these terms.

fit.UBE2<-lm(UBE~Class+OneLCUM+UGPA+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE2)
## 
## Call:
## lm(formula = UBE ~ Class + OneLCUM + UGPA + FGPA + Probation + 
##     LegalAnalysis + AdvLegalPerf + BarPrep + PctBarPrepComplete + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.817  -8.547  -0.220   9.747  37.988 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               258.961      9.075  28.534  < 2e-16 ***
## Class                      -3.410      1.091  -3.126 0.002061 ** 
## OneLCUM                     6.317      2.195   2.878 0.004479 ** 
## UGPA                       -1.352      1.060  -1.275 0.203843    
## FGPA                       10.169      2.248   4.524 1.09e-05 ***
## Probation                   6.386      4.581   1.394 0.164998    
## LegalAnalysis              -6.716      5.853  -1.147 0.252739    
## AdvLegalPerf                6.702      4.107   1.632 0.104464    
## BarPrep                     9.047      2.210   4.093 6.39e-05 ***
## PctBarPrepComplete          4.162      1.101   3.781 0.000211 ***
## StudentSuccessInitiative    4.949      3.290   1.504 0.134243    
## BarPrepMentor               4.669      2.485   1.879 0.061841 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.82 on 182 degrees of freedom
## Multiple R-squared:  0.5518, Adjusted R-squared:  0.5247 
## F-statistic: 20.37 on 11 and 182 DF,  p-value: < 2.2e-16
vif(fit.UBE2)
##                    Class                  OneLCUM                     UGPA 
##                 1.202470                 4.868515                 1.135282 
##                     FGPA                Probation            LegalAnalysis 
##                 5.107159                 1.971100                 1.701459 
##             AdvLegalPerf                  BarPrep       PctBarPrepComplete 
##                 1.071283                 1.235934                 1.224628 
## StudentSuccessInitiative            BarPrepMentor 
##                 2.047741                 1.100122

By observing now vif is better. we cannot remove fgpa because it is important for analysis

Now select model based on AIC for UBE response

library(MuMIn)
## Warning: package 'MuMIn' was built under R version 4.2.3
fullmodelUBE<-lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fitdredgeUBE<-dredge(fullmodelUBE)
## Fixed term is "(Intercept)"
plot(summary.fitdredgeUBE)

modelAICUBE736<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.736<-summary(modelAICUBE736)
summary.736
## 
## Call:
## lm(formula = UBE ~ Class + UGPA + OneLCUM + FGPA + AdvLegalPerf + 
##     BarPrep + PctBarPrepComplete + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.803  -8.806  -0.440   9.404  37.136 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               259.624      7.664  33.874  < 2e-16 ***
## Class                      -3.556      1.087  -3.271 0.001278 ** 
## UGPA                       -1.542      1.052  -1.465 0.144534    
## OneLCUM                     5.788      2.059   2.811 0.005477 ** 
## FGPA                       10.371      2.226   4.659 6.08e-06 ***
## AdvLegalPerf                6.080      4.079   1.490 0.137837    
## BarPrep                     9.198      2.209   4.164 4.80e-05 ***
## PctBarPrepComplete          4.245      1.099   3.864 0.000154 ***
## StudentSuccessInitiative    5.006      3.239   1.545 0.123997    
## BarPrepMentor               4.410      2.472   1.784 0.076077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.83 on 184 degrees of freedom
## Multiple R-squared:  0.5463, Adjusted R-squared:  0.5242 
## F-statistic: 24.62 on 9 and 184 DF,  p-value: < 2.2e-16
modelAICUBE224<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.224<-summary(modelAICUBE224)
summary.224
## 
## Call:
## lm(formula = UBE ~ Class + UGPA + OneLCUM + FGPA + AdvLegalPerf + 
##     BarPrep + PctBarPrepComplete + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.137  -8.306  -0.138   9.452  40.165 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         266.361      6.328  42.095  < 2e-16 ***
## Class                -3.530      1.091  -3.236 0.001436 ** 
## UGPA                 -1.527      1.056  -1.447 0.149722    
## OneLCUM               5.582      2.062   2.706 0.007439 ** 
## FGPA                  9.082      2.072   4.384 1.95e-05 ***
## AdvLegalPerf          5.650      4.085   1.383 0.168270    
## BarPrep               9.496      2.209   4.299 2.77e-05 ***
## PctBarPrepComplete    4.200      1.102   3.810 0.000189 ***
## BarPrepMentor         4.010      2.467   1.625 0.105803    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.88 on 185 degrees of freedom
## Multiple R-squared:  0.5405, Adjusted R-squared:  0.5206 
## F-statistic:  27.2 on 8 and 185 DF,  p-value: < 2.2e-16
modelAICUBE223<-lm(UBE~Class+UGPA+OneLCUM+FGPA+BarPrep+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.223<-summary(modelAICUBE223)
summary.223
## 
## Call:
## lm(formula = UBE ~ Class + UGPA + OneLCUM + FGPA + BarPrep + 
##     PctBarPrepComplete + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.618  -8.290  -0.183   9.581  39.864 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         272.696      4.376  62.310  < 2e-16 ***
## Class                -3.462      1.092  -3.169 0.001789 ** 
## UGPA                 -1.717      1.050  -1.636 0.103511    
## OneLCUM               5.419      2.064   2.625 0.009373 ** 
## FGPA                  9.123      2.077   4.393 1.87e-05 ***
## BarPrep               9.356      2.212   4.230 3.67e-05 ***
## PctBarPrepComplete    4.038      1.099   3.675 0.000311 ***
## BarPrepMentor         3.935      2.473   1.591 0.113255    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.91 on 186 degrees of freedom
## Multiple R-squared:  0.5357, Adjusted R-squared:  0.5182 
## F-statistic: 30.66 on 7 and 186 DF,  p-value: < 2.2e-16

From the AIC selection our best model contains Class + UGPA + OneLCUM + FGPA + AdvLegalPerf + BarPrep + PctBarPrepComplete + StudentSuccessInitiative + BarPrepMentor for UBE response

Find “best” subset of all possible models using ols_step_best_subset

library(olsrr)
## Warning: package 'olsrr' was built under R version 4.2.3
## 
## Attaching package: 'olsrr'
## The following object is masked from 'package:MASS':
## 
##     cement
## The following object is masked from 'package:datasets':
## 
##     rivers
modelUBEsubset <- lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitUBEsubset<-ols_step_best_subset(modelUBEsubset)
summary.fitUBEsubset
##                                                            Best Subsets Regression                                                           
## ---------------------------------------------------------------------------------------------------------------------------------------------
## Model Index    Predictors
## ---------------------------------------------------------------------------------------------------------------------------------------------
##      1         FGPA                                                                                                                           
##      2         FGPA BarPrep                                                                                                                   
##      3         FGPA BarPrep PctBarPrepComplete                                                                                                
##      4         Class FGPA BarPrep PctBarPrepComplete                                                                                          
##      5         Class OneLCUM FGPA BarPrep PctBarPrepComplete                                                                                  
##      6         Class UGPA OneLCUM FGPA BarPrep PctBarPrepComplete                                                                             
##      7         Class UGPA OneLCUM FGPA BarPrep PctBarPrepComplete BarPrepMentor                                                               
##      8         Class OneLCUM FGPA AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                              
##      9         Class UGPA OneLCUM FGPA AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                         
##     10         Class UGPA OneLCUM FGPA Probation AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor               
##     11         Class UGPA OneLCUM FGPA Probation LegalAnalysis AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor 
## ---------------------------------------------------------------------------------------------------------------------------------------------
## 
##                                                        Subsets Regression Summary                                                        
## -----------------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                                   
## Model    R-Square    R-Square    R-Square     C(p)         AIC         SBIC          SBC          MSEP         FPE        HSP       APC  
## -----------------------------------------------------------------------------------------------------------------------------------------
##   1        0.4370      0.4341      0.4253    38.5953    1607.3001    1056.1008    1617.1037    44111.1882    229.7212    1.1905    0.5747 
##   2        0.4577      0.4520      0.4406    32.1891    1602.0316    1050.7415    1615.1031    42712.7035    223.5670    1.1587    0.5593 
##   3        0.4949      0.4869      0.4721    19.0908    1590.2510    1039.2644    1606.5903    39994.3970    210.3956    1.0907    0.5264 
##   4        0.5072      0.4968      0.4791    16.0867    1587.4588    1036.6046    1607.0660    39226.1032    207.3903    1.0754    0.5188 
##   5        0.5228      0.5101      0.4883    11.7657    1583.2312    1032.6975    1606.1062    38190.0285    202.9214    1.0526    0.5077 
##   6        0.5294      0.5143      0.4913    11.0926    1582.5362    1032.2006    1608.6791    37865.6714    202.1982    1.0492    0.5059 
##   7        0.5357      0.5182      0.4927    10.5262    1581.9131    1031.8278    1611.3238    37559.0564    201.5529    1.0463    0.5042 
##   8        0.5410      0.5212       0.487    10.3555    1581.6664    1031.8533    1614.3450    37328.3793    201.3008    1.0455    0.5036 
##   9        0.5463      0.5242       0.489    10.2058    1581.4156    1031.9252    1617.3621    37099.4182    201.0457    1.0448    0.5030 
##  10        0.5485      0.5239      0.4847    11.3164    1582.4767    1033.2039    1621.6910    37123.1480    202.1544    1.0511    0.5057 
##  11        0.5518      0.5247      0.4832    12.0000    1583.0785    1034.1040    1625.5606    37060.1861    202.7898    1.0551    0.5073 
## -----------------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria
plot(summary.fitUBEsubset)

modelbestUBE<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestUBE)
## 
## Call:
## lm(formula = UBE ~ Class + UGPA + OneLCUM + FGPA + AdvLegalPerf + 
##     BarPrep + PctBarPrepComplete + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -51.803  -8.806  -0.440   9.404  37.136 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               259.624      7.664  33.874  < 2e-16 ***
## Class                      -3.556      1.087  -3.271 0.001278 ** 
## UGPA                       -1.542      1.052  -1.465 0.144534    
## OneLCUM                     5.788      2.059   2.811 0.005477 ** 
## FGPA                       10.371      2.226   4.659 6.08e-06 ***
## AdvLegalPerf                6.080      4.079   1.490 0.137837    
## BarPrep                     9.198      2.209   4.164 4.80e-05 ***
## PctBarPrepComplete          4.245      1.099   3.864 0.000154 ***
## StudentSuccessInitiative    5.006      3.239   1.545 0.123997    
## BarPrepMentor               4.410      2.472   1.784 0.076077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.83 on 184 degrees of freedom
## Multiple R-squared:  0.5463, Adjusted R-squared:  0.5242 
## F-statistic: 24.62 on 9 and 184 DF,  p-value: < 2.2e-16

It is best based on 9th subset model having lower AIC value. This model has the predictors Class UGPA OneLCUM FGPA AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor

Now we will regress on MBE

fit.MBE<-lm(MBE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE)
## 
## Call:
## lm(formula = MBE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.382  -5.524   0.284   4.662  19.520 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               1.350e+02  7.928e+00  17.030  < 2e-16 ***
## LSAT                      7.667e-01  6.665e-01   1.150  0.25155    
## UGPA                     -5.302e-01  6.682e-01  -0.793  0.42858    
## Class                    -2.303e+00  7.236e-01  -3.183  0.00172 ** 
## CivPro                   -3.694e-01  6.573e-01  -0.562  0.57488    
## LP1                      -1.469e+00  6.476e-01  -2.269  0.02450 *  
## LP2                       3.583e-04  2.984e-01   0.001  0.99904    
## OneLCUM                   4.623e+00  1.527e+00   3.028  0.00284 ** 
## FGPA                      5.998e+00  1.428e+00   4.202 4.22e-05 ***
## Accom                    -2.429e+00  1.995e+00  -1.218  0.22505    
## Probation                 5.056e+00  2.750e+00   1.838  0.06770 .  
## LegalAnalysis            -1.141e+00  3.661e+00  -0.312  0.75572    
## AdvLegalPerf              3.987e+00  2.457e+00   1.623  0.10644    
## AdvLegalAnalysis          2.902e-01  1.245e+00   0.233  0.81598    
## BarPrep                   3.984e+00  1.325e+00   3.008  0.00302 ** 
## PctBarPrepComplete        1.996e+00  6.680e-01   2.988  0.00321 ** 
## NumPrepWorkshops         -5.614e-02  7.018e-01  -0.080  0.93634    
## StudentSuccessInitiative  3.723e+00  2.029e+00   1.835  0.06818 .  
## BarPrepMentor             2.595e+00  1.560e+00   1.664  0.09792 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.133 on 175 degrees of freedom
## Multiple R-squared:  0.5156, Adjusted R-squared:  0.4658 
## F-statistic: 10.35 on 18 and 175 DF,  p-value: < 2.2e-16
plot(fit.MBE)

Adequacy check:

As the residuals are scattered randomly against fitted values and residuals are normally distributed; the model is adequate. So there is no need for transformation, also there is no influencer point.

We will check the VIF values to check the multicollinearty.

vif(fit.MBE)
##                     LSAT                     UGPA                    Class 
##                 1.296326                 1.303024                 1.527821 
##                   CivPro                      LP1                      LP2 
##                 2.263784                 1.955095                 1.505454 
##                  OneLCUM                     FGPA                    Accom 
##                 6.803458                 5.947323                 1.220199 
##                Probation            LegalAnalysis             AdvLegalPerf 
##                 2.051705                 1.922441                 1.106845 
##         AdvLegalAnalysis                  BarPrep       PctBarPrepComplete 
##                 1.119117                 1.281510                 1.302029 
##         NumPrepWorkshops StudentSuccessInitiative            BarPrepMentor 
##                 1.437288                 2.247827                 1.251218

After observing the VIF value, onelcum , fgpa is highly correlated as they have very high VIF number. so we will remove those terms and regress again.

fit.MBE1<-lm(MBE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE1)
## 
## Call:
## lm(formula = MBE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     Accom + Probation + LegalAnalysis + AdvLegalPerf + AdvLegalAnalysis + 
##     BarPrep + PctBarPrepComplete + NumPrepWorkshops + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -39.392  -5.625   0.809   5.947  20.597 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              124.2822     9.0684  13.705  < 2e-16 ***
## LSAT                       2.0396     0.7482   2.726  0.00705 ** 
## UGPA                       0.5328     0.7600   0.701  0.48420    
## Class                     -1.5072     0.8106  -1.859  0.06464 .  
## CivPro                     2.5741     0.6202   4.151 5.14e-05 ***
## LP1                        0.5282     0.6808   0.776  0.43890    
## LP2                        0.3184     0.3393   0.939  0.34924    
## Accom                     -2.2194     2.2750  -0.976  0.33061    
## Probation                  1.9714     3.1243   0.631  0.52888    
## LegalAnalysis              2.3182     4.2335   0.548  0.58467    
## AdvLegalPerf               2.1769     2.8484   0.764  0.44574    
## AdvLegalAnalysis          -0.5691     1.4170  -0.402  0.68843    
## BarPrep                    3.2096     1.5339   2.092  0.03782 *  
## PctBarPrepComplete         2.5157     0.7724   3.257  0.00135 ** 
## NumPrepWorkshops          -0.2807     0.8072  -0.348  0.72844    
## StudentSuccessInitiative  -4.8665     1.9573  -2.486  0.01383 *  
## BarPrepMentor              1.0250     1.7984   0.570  0.56943    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.469 on 177 degrees of freedom
## Multiple R-squared:  0.3359, Adjusted R-squared:  0.2759 
## F-statistic: 5.596 on 16 and 177 DF,  p-value: 1.206e-09
vif(fit.MBE1)
##                     LSAT                     UGPA                    Class 
##                 1.205068                 1.243400                 1.414449 
##                   CivPro                      LP1                      LP2 
##                 1.486551                 1.593903                 1.435223 
##                    Accom                Probation            LegalAnalysis 
##                 1.170321                 1.953007                 1.895951 
##             AdvLegalPerf         AdvLegalAnalysis                  BarPrep 
##                 1.097585                 1.069523                 1.267820 
##       PctBarPrepComplete         NumPrepWorkshops StudentSuccessInitiative 
##                 1.284262                 1.402588                 1.543548 
##            BarPrepMentor 
##                 1.227225

After removing those two terms, it is impacting r square value to decrease and p value is increasing. So it is better to keep onelcum, fgpa and some significant factors and some near significant factors remain in model. There is no significant impact by removing these terms.

fit.MBE2<-lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE2)
## 
## Call:
## lm(formula = UBE ~ Class + UGPA + OneLCUM + FGPA + Probation + 
##     LegalAnalysis + AdvLegalPerf + BarPrep + PctBarPrepComplete + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -50.817  -8.547  -0.220   9.747  37.988 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               258.961      9.075  28.534  < 2e-16 ***
## Class                      -3.410      1.091  -3.126 0.002061 ** 
## UGPA                       -1.352      1.060  -1.275 0.203843    
## OneLCUM                     6.317      2.195   2.878 0.004479 ** 
## FGPA                       10.169      2.248   4.524 1.09e-05 ***
## Probation                   6.386      4.581   1.394 0.164998    
## LegalAnalysis              -6.716      5.853  -1.147 0.252739    
## AdvLegalPerf                6.702      4.107   1.632 0.104464    
## BarPrep                     9.047      2.210   4.093 6.39e-05 ***
## PctBarPrepComplete          4.162      1.101   3.781 0.000211 ***
## StudentSuccessInitiative    4.949      3.290   1.504 0.134243    
## BarPrepMentor               4.669      2.485   1.879 0.061841 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.82 on 182 degrees of freedom
## Multiple R-squared:  0.5518, Adjusted R-squared:  0.5247 
## F-statistic: 20.37 on 11 and 182 DF,  p-value: < 2.2e-16
vif(fit.MBE2)
##                    Class                     UGPA                  OneLCUM 
##                 1.202470                 1.135282                 4.868515 
##                     FGPA                Probation            LegalAnalysis 
##                 5.107159                 1.971100                 1.701459 
##             AdvLegalPerf                  BarPrep       PctBarPrepComplete 
##                 1.071283                 1.235934                 1.224628 
## StudentSuccessInitiative            BarPrepMentor 
##                 2.047741                 1.100122

By observing vif value now, we see that it is better now. So, we cannot remove fgpa because it is important for analysis.

Now select model based on AIC for MBE

library(MuMIn)
fullmodelMBE<-lm(MBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fit1MBE<-dredge(fullmodelMBE)
## Fixed term is "(Intercept)"
plot(summary.fit1MBE)

modelAICMBE992<-lm(MBE~Class+OneLCUM+FGPA+AdvLegalPerf+Probation+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.992<-summary(modelAICMBE992)
summary.992
## 
## Call:
## lm(formula = MBE ~ Class + OneLCUM + FGPA + AdvLegalPerf + Probation + 
##     BarPrep + PctBarPrepComplete + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -34.895  -5.117   0.549   4.839  18.952 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              122.2251     5.1346  23.804  < 2e-16 ***
## Class                     -1.9669     0.6458  -3.046 0.002662 ** 
## OneLCUM                    4.1047     1.2986   3.161 0.001841 ** 
## FGPA                       4.9808     1.3167   3.783 0.000209 ***
## AdvLegalPerf               4.7994     2.4002   2.000 0.047015 *  
## Probation                  5.0554     2.3426   2.158 0.032225 *  
## BarPrep                    4.0335     1.3021   3.098 0.002256 ** 
## PctBarPrepComplete         2.0339     0.6511   3.124 0.002075 ** 
## StudentSuccessInitiative   3.1850     1.9425   1.640 0.102779    
## BarPrepMentor              2.1738     1.4753   1.473 0.142331    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.204 on 184 degrees of freedom
## Multiple R-squared:  0.4817, Adjusted R-squared:  0.4564 
## F-statistic:    19 on 9 and 184 DF,  p-value: < 2.2e-16
modelAICUBE988<-lm(MBE~Class+OneLCUM+FGPA+AdvLegalPerf+BarPrep+Probation+PctBarPrepComplete+StudentSuccessInitiative,data=datanew)
summary.988<-summary(modelAICUBE988)
summary.988
## 
## Call:
## lm(formula = MBE ~ Class + OneLCUM + FGPA + AdvLegalPerf + BarPrep + 
##     Probation + PctBarPrepComplete + StudentSuccessInitiative, 
##     data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -35.624  -4.817   0.122   4.860  18.591 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              125.3400     4.6940  26.702  < 2e-16 ***
## Class                     -1.8545     0.6433  -2.883 0.004409 ** 
## OneLCUM                    3.8181     1.2881   2.964 0.003434 ** 
## FGPA                       5.1590     1.3152   3.922 0.000123 ***
## AdvLegalPerf               4.6908     2.4066   1.949 0.052796 .  
## BarPrep                    4.2898     1.2945   3.314 0.001107 ** 
## Probation                  4.6802     2.3361   2.003 0.046593 *  
## PctBarPrepComplete         2.2121     0.6418   3.447 0.000702 ***
## StudentSuccessInitiative   2.9360     1.9412   1.512 0.132125    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.23 on 185 degrees of freedom
## Multiple R-squared:  0.4756, Adjusted R-squared:  0.453 
## F-statistic: 20.98 on 8 and 185 DF,  p-value: < 2.2e-16
modelAICUBE476<-lm(MBE~Class+OneLCUM+FGPA+BarPrep+PctBarPrepComplete+BarPrepMentor+Probation,data=datanew)
summary.476<-summary(modelAICUBE476)
summary.476
## 
## Call:
## lm(formula = MBE ~ Class + OneLCUM + FGPA + BarPrep + PctBarPrepComplete + 
##     BarPrepMentor + Probation, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -36.673  -5.279  -0.094   5.245  21.901 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        131.0963     3.7565  34.898  < 2e-16 ***
## Class               -1.8891     0.6524  -2.896 0.004236 ** 
## OneLCUM              3.9414     1.3113   3.006 0.003014 ** 
## FGPA                 4.1270     1.2263   3.365 0.000929 ***
## BarPrep              4.0601     1.3099   3.099 0.002240 ** 
## PctBarPrepComplete   1.8669     0.6540   2.854 0.004802 ** 
## BarPrepMentor        1.8939     1.4860   1.274 0.204086    
## Probation            5.5319     2.3439   2.360 0.019306 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.298 on 186 degrees of freedom
## Multiple R-squared:  0.4641, Adjusted R-squared:  0.4439 
## F-statistic: 23.01 on 7 and 186 DF,  p-value: < 2.2e-16

based on AIC selection our best model contains Class + OneLCUM + FGPA + AdvLegalPerf + Probation + BarPrep + PctBarPrepComplete + StudentSuccessInitiative + BarPrepMentor

we need to find “best” subset of all possible models using ols_step_best_subset For MBE response

library(olsrr)
modelMBEsubset <- lm(MBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitMBEsubset<-ols_step_best_subset(modelMBEsubset)
summary.fitMBEsubset
##                                                            Best Subsets Regression                                                           
## ---------------------------------------------------------------------------------------------------------------------------------------------
## Model Index    Predictors
## ---------------------------------------------------------------------------------------------------------------------------------------------
##      1         FGPA                                                                                                                           
##      2         Class FGPA                                                                                                                     
##      3         FGPA BarPrep PctBarPrepComplete                                                                                                
##      4         Class FGPA BarPrep PctBarPrepComplete                                                                                          
##      5         Class OneLCUM FGPA BarPrep PctBarPrepComplete                                                                                  
##      6         Class OneLCUM FGPA Probation BarPrep PctBarPrepComplete                                                                        
##      7         Class OneLCUM FGPA Probation AdvLegalPerf BarPrep PctBarPrepComplete                                                           
##      8         Class OneLCUM FGPA Probation AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative                                  
##      9         Class OneLCUM FGPA Probation AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                    
##     10         Class UGPA OneLCUM FGPA Probation AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor               
##     11         Class UGPA OneLCUM FGPA Probation LegalAnalysis AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor 
## ---------------------------------------------------------------------------------------------------------------------------------------------
## 
##                                                       Subsets Regression Summary                                                       
## ---------------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                                 
## Model    R-Square    R-Square    R-Square     C(p)         AIC         SBIC         SBC          MSEP         FPE       HSP       APC  
## ---------------------------------------------------------------------------------------------------------------------------------------
##   1        0.3763      0.3730      0.3633    31.4546    1398.8232    847.7485    1408.6268    15060.7258    78.4329    0.4065    0.6367 
##   2        0.3906      0.3842      0.3714    28.3656    1396.3132    845.1234    1409.3846    14792.0795    77.4248    0.4013    0.6286 
##   3        0.4163      0.4071       0.392    21.2409    1389.9541    838.8867    1406.2934    14243.2228    74.9283    0.3884    0.6083 
##   4        0.4308      0.4187      0.4004    18.0954    1387.0766    836.1247    1406.6838    13963.4666    73.8255    0.3828    0.5993 
##   5        0.4452      0.4304      0.4084    14.9775    1384.1004    833.3704    1406.9754    13682.6323    72.7022    0.3771    0.5902 
##   6        0.4594      0.4421      0.4168    11.9335    1381.0680    830.6703    1407.2109    13403.9419    71.5755    0.3714    0.5811 
##   7        0.4691      0.4492      0.4189    10.4742    1379.5395    829.4588    1408.9503    13233.5038    71.0148    0.3687    0.5765 
##   8        0.4756      0.4530      0.4141    10.1722    1379.1554    829.3606    1411.8340    13142.9138    70.8758    0.3681    0.5754 
##   9        0.4817      0.4564      0.4157    10.0011    1378.8797    829.4125    1414.8262    13060.6219    70.7769    0.3678    0.5746 
##  10        0.4873      0.4593      0.4159    10.0367    1378.7974    829.6865    1418.0117    12992.1828    70.7490    0.3679    0.5744 
##  11        0.4874      0.4564      0.4082    12.0000    1380.7584    831.7839    1423.2405    13061.3310    71.4704    0.3719    0.5802 
## ---------------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria
plot(summary.fitMBEsubset)

modelbestMBE<-lm(MBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestMBE)
## 
## Call:
## lm(formula = MBE ~ Class + UGPA + OneLCUM + FGPA + AdvLegalPerf + 
##     BarPrep + PctBarPrepComplete + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -35.966  -4.993   0.606   5.467  21.660 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              127.4675     4.5769  27.850  < 2e-16 ***
## Class                     -2.0346     0.6491  -3.134  0.00200 ** 
## UGPA                      -0.9410     0.6283  -1.498  0.13592    
## OneLCUM                    3.1007     1.2296   2.522  0.01253 *  
## FGPA                       5.6649     1.3293   4.262 3.24e-05 ***
## AdvLegalPerf               4.2860     2.4360   1.759  0.08016 .  
## BarPrep                    4.3612     1.3191   3.306  0.00114 ** 
## PctBarPrepComplete         2.0696     0.6561   3.154  0.00188 ** 
## StudentSuccessInitiative   3.8181     1.9344   1.974  0.04990 *  
## BarPrepMentor              1.8402     1.4761   1.247  0.21410    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.257 on 184 degrees of freedom
## Multiple R-squared:  0.475,  Adjusted R-squared:  0.4494 
## F-statistic:  18.5 on 9 and 184 DF,  p-value: < 2.2e-16

It is best based on 9th subset model having lower AIC value. This model has the predictors Class, UGPA, OneLCUM, FGPA, Probation, AdvLegalPerf, BarPrep, PctBarPrepComplete ,StudentSuccessInitiative, BarPrepMentor.

Now we will regress on MEE

fit.MEE<-lm(MEE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE)
## 
## Call:
## lm(formula = MEE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.02832 -0.25106 -0.01273  0.29375  1.23924 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.3294561  0.4045347   8.230 4.14e-14 ***
## LSAT                      0.0091621  0.0340085   0.269 0.787935    
## UGPA                     -0.0230543  0.0340963  -0.676 0.499836    
## Class                    -0.0079563  0.0369204  -0.215 0.829630    
## CivPro                    0.0008258  0.0335382   0.025 0.980384    
## LP1                      -0.0035320  0.0330432  -0.107 0.914997    
## LP2                      -0.0201943  0.0152271  -1.326 0.186501    
## OneLCUM                   0.0838415  0.0779104   1.076 0.283352    
## FGPA                      0.2848538  0.0728436   3.910 0.000132 ***
## Accom                    -0.1398260  0.1018037  -1.373 0.171358    
## Probation                 0.0604397  0.1403389   0.431 0.667239    
## LegalAnalysis            -0.3564462  0.1868219  -1.908 0.058035 .  
## AdvLegalPerf             -0.0153986  0.1253553  -0.123 0.902375    
## AdvLegalAnalysis          0.0806325  0.0635222   1.269 0.205998    
## BarPrep                   0.2594135  0.0675821   3.838 0.000173 ***
## PctBarPrepComplete        0.0558548  0.0340832   1.639 0.103057    
## NumPrepWorkshops         -0.0157097  0.0358099  -0.439 0.661422    
## StudentSuccessInitiative  0.1807875  0.1035129   1.747 0.082475 .  
## BarPrepMentor             0.1535731  0.0795801   1.930 0.055250 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.415 on 175 degrees of freedom
## Multiple R-squared:  0.4233, Adjusted R-squared:  0.3639 
## F-statistic: 7.135 on 18 and 175 DF,  p-value: 1.81e-13
plot(fit.MEE)

Adequacy check:

As the residuals are scattered randomly against fitted values and residuals are normally distributed; the model is adequate. So there is no need for transformation, also there is no influencer point.

We will check the VIF values to check the multicollinearty.

vif(fit.MEE)
##                     LSAT                     UGPA                    Class 
##                 1.296326                 1.303024                 1.527821 
##                   CivPro                      LP1                      LP2 
##                 2.263784                 1.955095                 1.505454 
##                  OneLCUM                     FGPA                    Accom 
##                 6.803458                 5.947323                 1.220199 
##                Probation            LegalAnalysis             AdvLegalPerf 
##                 2.051705                 1.922441                 1.106845 
##         AdvLegalAnalysis                  BarPrep       PctBarPrepComplete 
##                 1.119117                 1.281510                 1.302029 
##         NumPrepWorkshops StudentSuccessInitiative            BarPrepMentor 
##                 1.437288                 2.247827                 1.251218

After observing the VIF value, onelcum , fgpa is highly correlated as they have very high VIF number. so we will remove those terms and regress again.

fit.MEE1<-lm(MEE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE1)
## 
## Call:
## lm(formula = MEE ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     Accom + Probation + LegalAnalysis + AdvLegalPerf + AdvLegalAnalysis + 
##     BarPrep + PctBarPrepComplete + NumPrepWorkshops + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.10486 -0.29226 -0.03909  0.31969  1.24177 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.982699   0.431031   6.920 7.98e-11 ***
## LSAT                      0.050122   0.035563   1.409 0.160481    
## UGPA                      0.018156   0.036124   0.503 0.615881    
## Class                     0.010701   0.038529   0.278 0.781529    
## CivPro                    0.099100   0.029477   3.362 0.000948 ***
## LP1                       0.060635   0.032359   1.874 0.062603 .  
## LP2                      -0.005876   0.016125  -0.364 0.715990    
## Accom                    -0.109113   0.108135  -1.009 0.314331    
## Probation                -0.023065   0.148504  -0.155 0.876752    
## LegalAnalysis            -0.231417   0.201224  -1.150 0.251676    
## AdvLegalPerf             -0.080565   0.135389  -0.595 0.552563    
## AdvLegalAnalysis          0.036085   0.067351   0.536 0.592792    
## BarPrep                   0.237314   0.072906   3.255 0.001358 ** 
## PctBarPrepComplete        0.076981   0.036713   2.097 0.037430 *  
## NumPrepWorkshops         -0.017667   0.038367  -0.460 0.645752    
## StudentSuccessInitiative -0.149126   0.093033  -1.603 0.110732    
## BarPrepMentor             0.102768   0.085480   1.202 0.230877    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4501 on 177 degrees of freedom
## Multiple R-squared:  0.3138, Adjusted R-squared:  0.2518 
## F-statistic: 5.059 on 16 and 177 DF,  p-value: 1.381e-08
vif(fit.MEE1)
##                     LSAT                     UGPA                    Class 
##                 1.205068                 1.243400                 1.414449 
##                   CivPro                      LP1                      LP2 
##                 1.486551                 1.593903                 1.435223 
##                    Accom                Probation            LegalAnalysis 
##                 1.170321                 1.953007                 1.895951 
##             AdvLegalPerf         AdvLegalAnalysis                  BarPrep 
##                 1.097585                 1.069523                 1.267820 
##       PctBarPrepComplete         NumPrepWorkshops StudentSuccessInitiative 
##                 1.284262                 1.402588                 1.543548 
##            BarPrepMentor 
##                 1.227225

After removing those two terms, it is impacting r square value to decrease and p value is increasing. So it is better to keep onelcum, fgpa and some significant factors and some near significant factors remain in model. There is no significant impact by removing these terms.

fit.MEE2<-lm(MEE~Class+OneLCUM+UGPA+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE2)
## 
## Call:
## lm(formula = MEE ~ Class + OneLCUM + UGPA + FGPA + Probation + 
##     LegalAnalysis + AdvLegalPerf + BarPrep + PctBarPrepComplete + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07631 -0.25627 -0.01437  0.26746  1.20848 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.27504    0.27091  12.089  < 2e-16 ***
## Class                     0.01540    0.03256   0.473 0.636736    
## OneLCUM                   0.11241    0.06552   1.716 0.087919 .  
## UGPA                     -0.02033    0.03164  -0.643 0.521352    
## FGPA                      0.23023    0.06710   3.431 0.000744 ***
## Probation                 0.04286    0.13674   0.313 0.754339    
## LegalAnalysis            -0.33196    0.17472  -1.900 0.059024 .  
## AdvLegalPerf             -0.03825    0.12260  -0.312 0.755393    
## BarPrep                   0.27041    0.06598   4.098 6.26e-05 ***
## PctBarPrepComplete        0.06340    0.03286   1.929 0.055246 .  
## StudentSuccessInitiative  0.13858    0.09822   1.411 0.159968    
## BarPrepMentor             0.11944    0.07418   1.610 0.109102    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4125 on 182 degrees of freedom
## Multiple R-squared:  0.4072, Adjusted R-squared:  0.3714 
## F-statistic: 11.37 on 11 and 182 DF,  p-value: 5.786e-16
vif(fit.MEE2)
##                    Class                  OneLCUM                     UGPA 
##                 1.202470                 4.868515                 1.135282 
##                     FGPA                Probation            LegalAnalysis 
##                 5.107159                 1.971100                 1.701459 
##             AdvLegalPerf                  BarPrep       PctBarPrepComplete 
##                 1.071283                 1.235934                 1.224628 
## StudentSuccessInitiative            BarPrepMentor 
##                 2.047741                 1.100122

By observing vif value now, we see that it is better now. So, we cannot remove fgpa because it is important for analysis.

Now select model based on AIC for MEE

fullmodelMEE<-lm(MEE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fit<-dredge(fullmodelMEE)
## Fixed term is "(Intercept)"
plot(summary.fit)

modelAICMEE759<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.759<-summary(modelAICMEE759)
summary.759
## 
## Call:
## lm(formula = MEE ~ OneLCUM + FGPA + BarPrep + LegalAnalysis + 
##     PctBarPrepComplete + StudentSuccessInitiative + BarPrepMentor, 
##     data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0472 -0.2414 -0.0225  0.2657  1.1840 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.25526    0.22391  14.538  < 2e-16 ***
## OneLCUM                   0.11858    0.05796   2.046 0.042176 *  
## FGPA                      0.21716    0.06192   3.507 0.000568 ***
## BarPrep                   0.26881    0.06464   4.159 4.89e-05 ***
## LegalAnalysis            -0.31238    0.14827  -2.107 0.036478 *  
## PctBarPrepComplete        0.06306    0.03231   1.952 0.052463 .  
## StudentSuccessInitiative  0.14327    0.09678   1.480 0.140455    
## BarPrepMentor             0.12128    0.07261   1.670 0.096543 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.409 on 186 degrees of freedom
## Multiple R-squared:  0.4046, Adjusted R-squared:  0.3822 
## F-statistic: 18.06 on 7 and 186 DF,  p-value: < 2.2e-16
modelAICMEE247<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.247<-summary(modelAICMEE247)
summary.247
## 
## Call:
## lm(formula = MEE ~ OneLCUM + FGPA + BarPrep + LegalAnalysis + 
##     PctBarPrepComplete + BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.04209 -0.23681 -0.01204  0.26660  1.27480 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.39617    0.20332  16.704  < 2e-16 ***
## OneLCUM             0.11694    0.05814   2.011  0.04571 *  
## FGPA                0.17950    0.05663   3.170  0.00178 ** 
## BarPrep             0.27766    0.06457   4.300 2.74e-05 ***
## LegalAnalysis      -0.27770    0.14688  -1.891  0.06021 .  
## PctBarPrepComplete  0.06273    0.03241   1.935  0.05445 .  
## BarPrepMentor       0.11132    0.07253   1.535  0.12648    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4103 on 187 degrees of freedom
## Multiple R-squared:  0.3976, Adjusted R-squared:  0.3783 
## F-statistic: 20.57 on 6 and 187 DF,  p-value: < 2.2e-16
modelAICMEE243<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete,data=datanew)
summary.243<-summary(modelAICMEE243)
summary.243
## 
## Call:
## lm(formula = MEE ~ OneLCUM + FGPA + BarPrep + LegalAnalysis + 
##     PctBarPrepComplete, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.01392 -0.23721 -0.01792  0.25315  1.24464 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.52804    0.18494  19.077  < 2e-16 ***
## OneLCUM             0.10917    0.05812   1.878  0.06189 .  
## FGPA                0.18769    0.05658   3.317  0.00109 ** 
## BarPrep             0.29100    0.06421   4.532 1.04e-05 ***
## LegalAnalysis      -0.29264    0.14708  -1.990  0.04808 *  
## PctBarPrepComplete  0.07208    0.03195   2.256  0.02522 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4117 on 188 degrees of freedom
## Multiple R-squared:   0.39,  Adjusted R-squared:  0.3738 
## F-statistic: 24.04 on 5 and 188 DF,  p-value: < 2.2e-16

based on AIC our best model contains OneLCUM + FGPA + BarPrep + LegalAnalysis + PctBarPrepComplete + StudentSuccessInitiative + BarPrepMentor

We will find the “best” subset of all possible models using ols_step_best_subset for MEE

library(olsrr)
modelMEEsubset <- lm(MEE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitMEEsubset<-ols_step_best_subset(modelMEEsubset)
summary.fitMEEsubset
##                                                            Best Subsets Regression                                                           
## ---------------------------------------------------------------------------------------------------------------------------------------------
## Model Index    Predictors
## ---------------------------------------------------------------------------------------------------------------------------------------------
##      1         FGPA                                                                                                                           
##      2         FGPA BarPrep                                                                                                                   
##      3         FGPA LegalAnalysis BarPrep                                                                                                     
##      4         FGPA LegalAnalysis BarPrep PctBarPrepComplete                                                                                  
##      5         OneLCUM FGPA LegalAnalysis BarPrep PctBarPrepComplete                                                                          
##      6         OneLCUM FGPA LegalAnalysis BarPrep PctBarPrepComplete BarPrepMentor                                                            
##      7         OneLCUM FGPA LegalAnalysis BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                                   
##      8         UGPA OneLCUM FGPA LegalAnalysis BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                              
##      9         Class UGPA OneLCUM FGPA LegalAnalysis BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor                        
##     10         Class UGPA OneLCUM FGPA Probation LegalAnalysis BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor              
##     11         Class UGPA OneLCUM FGPA Probation LegalAnalysis AdvLegalPerf BarPrep PctBarPrepComplete StudentSuccessInitiative BarPrepMentor 
## ---------------------------------------------------------------------------------------------------------------------------------------------
## 
##                                                    Subsets Regression Summary                                                    
## ---------------------------------------------------------------------------------------------------------------------------------
##                        Adj.        Pred                                                                                           
## Model    R-Square    R-Square    R-Square     C(p)        AIC         SBIC         SBC        MSEP       FPE       HSP      APC  
## ---------------------------------------------------------------------------------------------------------------------------------
##   1        0.2947      0.2910      0.2796    26.5553    234.3221    -316.6644    244.1256    37.2355    0.1939    0.0010    0.7200 
##   2        0.3414      0.3345      0.3205    14.2068    223.0224    -327.7725    236.0938    34.9513    0.1829    9e-04    0.6793 
##   3        0.3647      0.3547      0.3388     9.0575    218.0390    -332.5526    234.3783    33.8940    0.1783    9e-04    0.6620 
##   4        0.3786      0.3654      0.3475     6.8090    215.7669    -334.6145    235.3741    33.3321    0.1762    9e-04    0.6543 
##   5        0.3900      0.3738      0.3496     5.2943    214.1601    -335.9610    237.0351    32.8931    0.1748    9e-04    0.6489 
##   6        0.3976      0.3783      0.3496     4.9639    213.7311    -336.1379    239.8740    32.6585    0.1744    9e-04    0.6475 
##   7        0.4046      0.3822      0.3485     4.8098    213.4586    -336.1177    242.8693    32.4526    0.1742    9e-04    0.6466 
##   8        0.4059      0.3803      0.3457     6.4003    215.0235    -334.3880    247.7021    32.5559    0.1756    9e-04    0.6519 
##   9        0.4066      0.3775      0.3403     8.2110    216.8221    -332.4405    252.7685    32.6998    0.1772    9e-04    0.6579 
##  10        0.4069      0.3745      0.3306    10.0973    218.7010    -330.4177    257.9153    32.8590    0.1789    9e-04    0.6644 
##  11        0.4072      0.3714      0.3255    12.0000    220.5973    -328.3772    263.0794    33.0228    0.1807    9e-04    0.6709 
## ---------------------------------------------------------------------------------------------------------------------------------
## AIC: Akaike Information Criteria 
##  SBIC: Sawa's Bayesian Information Criteria 
##  SBC: Schwarz Bayesian Criteria 
##  MSEP: Estimated error of prediction, assuming multivariate normality 
##  FPE: Final Prediction Error 
##  HSP: Hocking's Sp 
##  APC: Amemiya Prediction Criteria
plot(summary.fitMEEsubset)

modelbestMEE<-lm(MEE~OneLCUM+FGPA+LegalAnalysis+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestMEE)
## 
## Call:
## lm(formula = MEE ~ OneLCUM + FGPA + LegalAnalysis + BarPrep + 
##     PctBarPrepComplete + StudentSuccessInitiative + BarPrepMentor, 
##     data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.0472 -0.2414 -0.0225  0.2657  1.1840 
## 
## Coefficients:
##                          Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               3.25526    0.22391  14.538  < 2e-16 ***
## OneLCUM                   0.11858    0.05796   2.046 0.042176 *  
## FGPA                      0.21716    0.06192   3.507 0.000568 ***
## LegalAnalysis            -0.31238    0.14827  -2.107 0.036478 *  
## BarPrep                   0.26881    0.06464   4.159 4.89e-05 ***
## PctBarPrepComplete        0.06306    0.03231   1.952 0.052463 .  
## StudentSuccessInitiative  0.14327    0.09678   1.480 0.140455    
## BarPrepMentor             0.12128    0.07261   1.670 0.096543 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.409 on 186 degrees of freedom
## Multiple R-squared:  0.4046, Adjusted R-squared:  0.3822 
## F-statistic: 18.06 on 7 and 186 DF,  p-value: < 2.2e-16

best subset is OneLCUM+FGPA+LegalAnalysis+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor for MEE response

Now we will Regress on MPT

fit.MPT<-lm(MPT~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT)
## 
## Call:
## lm(formula = MPT ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7329 -0.5170  0.0261  0.5329  1.5204 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               2.9821967  0.6980346   4.272 3.17e-05 ***
## LSAT                      0.0531737  0.0586826   0.906   0.3661    
## UGPA                      0.0284974  0.0588340   0.484   0.6287    
## Class                     0.0011638  0.0637071   0.018   0.9854    
## CivPro                    0.1129540  0.0578710   1.952   0.0526 .  
## LP1                      -0.0694845  0.0570168  -1.219   0.2246    
## LP2                       0.0003579  0.0262748   0.014   0.9891    
## OneLCUM                   0.0061277  0.1344364   0.046   0.9637    
## FGPA                      0.1333364  0.1256935   1.061   0.2902    
## Accom                     0.0994589  0.1756648   0.566   0.5720    
## Probation                 0.0178081  0.2421583   0.074   0.9415    
## LegalAnalysis            -0.0196917  0.3223658  -0.061   0.9514    
## AdvLegalPerf              0.2276680  0.2163036   1.053   0.2940    
## AdvLegalAnalysis         -0.0058959  0.1096091  -0.054   0.9572    
## BarPrep                   0.1050084  0.1166146   0.900   0.3691    
## PctBarPrepComplete        0.1273084  0.0588115   2.165   0.0318 *  
## NumPrepWorkshops         -0.0193981  0.0617908  -0.314   0.7539    
## StudentSuccessInitiative -0.0656857  0.1786141  -0.368   0.7135    
## BarPrepMentor             0.0608127  0.1373175   0.443   0.6584    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.716 on 175 degrees of freedom
## Multiple R-squared:  0.1712, Adjusted R-squared:  0.08593 
## F-statistic: 2.008 on 18 and 175 DF,  p-value: 0.01149
plot(fit.MPT)

The model does not seem adequate as the residuals are not randomly scattered against fitted values and the residuals are not normally distributed. We can perform boxcox transformation in this model.

b<-boxcox(fit.MPT)

lambda<-b$x
likelihood<-b$y
q<-lambda[which.max(likelihood)]
q
## [1] 1.232323
newMPT<-datanew$MPT^1.232323
newMPT
##   [1] 3.872287 3.093076 2.349450 2.349450 3.872287 2.349450 3.093076 4.682390
##   [9] 3.872287 3.093076 3.093076 5.519915 3.872287 4.682390 3.872287 3.872287
##  [17] 4.682390 5.519915 6.382176 3.872287 4.682390 7.267028 3.093076 6.382176
##  [25] 4.682390 6.382176 5.519915 4.682390 3.872287 5.519915 3.872287 4.682390
##  [33] 3.872287 6.382176 6.382176 6.382176 6.382176 4.682390 7.267028 7.267028
##  [41] 4.682390 5.519915 6.382176 6.382176 6.382176 5.519915 6.382176 3.872287
##  [49] 5.519915 3.872287 3.872287 6.382176 6.382176 8.172708 7.267028 6.382176
##  [57] 5.519915 4.682390 5.519915 5.519915 3.093076 3.872287 6.382176 5.519915
##  [65] 5.519915 3.872287 6.382176 3.872287 4.682390 3.093076 5.519915 7.267028
##  [73] 5.519915 4.682390 5.519915 7.267028 3.093076 3.872287 6.382176 3.872287
##  [81] 6.382176 3.872287 4.682390 5.519915 6.382176 4.682390 3.093076 6.382176
##  [89] 6.382176 6.382176 4.682390 5.519915 3.872287 3.872287 3.872287 3.093076
##  [97] 4.682390 3.093076 3.093076 3.872287 3.093076 6.382176 4.682390 5.519915
## [105] 6.382176 5.519915 4.682390 6.382176 3.093076 4.682390 5.519915 6.382176
## [113] 6.382176 6.382176 5.519915 3.872287 5.519915 4.682390 7.267028 3.093076
## [121] 5.519915 5.519915 5.519915 3.872287 4.682390 5.519915 6.382176 5.519915
## [129] 4.682390 6.382176 5.519915 4.682390 5.519915 7.267028 3.872287 3.872287
## [137] 6.382176 5.519915 5.519915 5.519915 6.382176 3.093076 4.682390 5.519915
## [145] 4.682390 4.682390 4.682390 6.382176 6.382176 5.519915 3.093076 5.519915
## [153] 6.382176 4.682390 3.872287 6.382176 3.872287 3.872287 5.519915 6.382176
## [161] 3.872287 3.093076 4.682390 3.872287 5.519915 6.382176 5.519915 4.682390
## [169] 3.093076 4.682390 4.682390 3.872287 5.519915 5.519915 6.382176 4.682390
## [177] 4.682390 5.519915 7.267028 5.519915 6.382176 4.682390 6.382176 3.093076
## [185] 5.519915 5.519915 5.519915 7.267028 4.682390 5.519915 5.519915 6.382176
## [193] 3.872287 3.093076
fit.MPT<-lm(newMPT~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT)
## 
## Call:
## lm(formula = newMPT ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.75435 -0.87171  0.02102  0.88294  2.65838 
## 
## Coefficients:
##                            Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               3.8428980  1.1587802   3.316  0.00111 **
## LSAT                      0.0894566  0.0974166   0.918  0.35973   
## UGPA                      0.0412026  0.0976680   0.422  0.67364   
## Class                     0.0084816  0.1057578   0.080  0.93617   
## CivPro                    0.1857383  0.0960694   1.933  0.05480 . 
## LP1                      -0.1182039  0.0946514  -1.249  0.21339   
## LP2                       0.0024190  0.0436178   0.055  0.95584   
## OneLCUM                   0.0098561  0.2231726   0.044  0.96482   
## FGPA                      0.2296870  0.2086588   1.101  0.27251   
## Accom                     0.1704424  0.2916144   0.584  0.55965   
## Probation                 0.0319370  0.4019975   0.079  0.93677   
## LegalAnalysis            -0.0372415  0.5351470  -0.070  0.94460   
## AdvLegalPerf              0.3594853  0.3590773   1.001  0.31814   
## AdvLegalAnalysis         -0.0001692  0.1819578  -0.001  0.99926   
## BarPrep                   0.1778639  0.1935874   0.919  0.35948   
## PctBarPrepComplete        0.2097745  0.0976307   2.149  0.03304 * 
## NumPrepWorkshops         -0.0352871  0.1025765  -0.344  0.73125   
## StudentSuccessInitiative -0.0945023  0.2965104  -0.319  0.75032   
## BarPrepMentor             0.1021870  0.2279555   0.448  0.65451   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.189 on 175 degrees of freedom
## Multiple R-squared:  0.1707, Adjusted R-squared:  0.08536 
## F-statistic: 2.001 on 18 and 175 DF,  p-value: 0.01187
plot(fit.MPT)

After the boxcox transformation, we will check the VIF

vif(fit.MPT)
##                     LSAT                     UGPA                    Class 
##                 1.296326                 1.303024                 1.527821 
##                   CivPro                      LP1                      LP2 
##                 2.263784                 1.955095                 1.505454 
##                  OneLCUM                     FGPA                    Accom 
##                 6.803458                 5.947323                 1.220199 
##                Probation            LegalAnalysis             AdvLegalPerf 
##                 2.051705                 1.922441                 1.106845 
##         AdvLegalAnalysis                  BarPrep       PctBarPrepComplete 
##                 1.119117                 1.281510                 1.302029 
##         NumPrepWorkshops StudentSuccessInitiative            BarPrepMentor 
##                 1.437288                 2.247827                 1.251218

when we observe vif onelcum,fgpa has high vif so when we try to remove those high vif values

fit.MPT1<-lm(newMPT~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT1)
## 
## Call:
## lm(formula = newMPT ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     Accom + Probation + LegalAnalysis + AdvLegalPerf + AdvLegalAnalysis + 
##     BarPrep + PctBarPrepComplete + NumPrepWorkshops + StudentSuccessInitiative + 
##     BarPrepMentor, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.91286 -0.88023 -0.03875  0.89349  2.74294 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)   
## (Intercept)               3.632655   1.138282   3.191  0.00168 **
## LSAT                      0.114191   0.093917   1.216  0.22565   
## UGPA                      0.070486   0.095399   0.739  0.46097   
## Class                     0.015375   0.101749   0.151  0.88007   
## CivPro                    0.247318   0.077843   3.177  0.00176 **
## LP1                      -0.079523   0.085454  -0.931  0.35333   
## LP2                       0.013630   0.042584   0.320  0.74930   
## Accom                     0.204038   0.285566   0.715  0.47586   
## Probation                -0.008588   0.392174  -0.022  0.98255   
## LegalAnalysis             0.046877   0.531399   0.088  0.92981   
## AdvLegalPerf              0.315784   0.357540   0.883  0.37832   
## AdvLegalAnalysis         -0.037681   0.177864  -0.212  0.83246   
## BarPrep                   0.166295   0.192533   0.864  0.38891   
## PctBarPrepComplete        0.225298   0.096954   2.324  0.02127 * 
## NumPrepWorkshops         -0.033160   0.101322  -0.327  0.74385   
## StudentSuccessInitiative -0.327334   0.245685  -1.332  0.18446   
## BarPrepMentor             0.071330   0.225739   0.316  0.75239   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.189 on 177 degrees of freedom
## Multiple R-squared:  0.1613, Adjusted R-squared:  0.08553 
## F-statistic: 2.128 on 16 and 177 DF,  p-value: 0.009011
vif(fit.MPT1)
##                     LSAT                     UGPA                    Class 
##                 1.205068                 1.243400                 1.414449 
##                   CivPro                      LP1                      LP2 
##                 1.486551                 1.593903                 1.435223 
##                    Accom                Probation            LegalAnalysis 
##                 1.170321                 1.953007                 1.895951 
##             AdvLegalPerf         AdvLegalAnalysis                  BarPrep 
##                 1.097585                 1.069523                 1.267820 
##       PctBarPrepComplete         NumPrepWorkshops StudentSuccessInitiative 
##                 1.284262                 1.402588                 1.543548 
##            BarPrepMentor 
##                 1.227225

after removing, the VIF value for all predictors decreased. But there is not that many significant predictors variable. So we will proceed with stepwise regression in forward direction.

library(MuMIn)
modelMPTforw<-lm(newMPT~1,data=datanew)
formula(modelMPTforw)
## newMPT ~ 1
step(modelMPTforw,scope~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew,direction="forward")
## Start:  AIC=85.36
## newMPT ~ 1
## 
##                            Df Sum of Sq    RSS    AIC
## + CivPro                    1   31.0904 267.05 65.996
## + StudentSuccessInitiative  1   16.5587 281.58 76.276
## + PctBarPrepComplete        1   10.4621 287.68 80.431
## + LegalAnalysis             1    6.0437 292.09 83.388
## + Probation                 1    5.6812 292.46 83.629
## + LSAT                      1    4.8057 293.33 84.209
## <none>                                  298.14 85.361
## + BarPrepMentor             1    2.3761 295.76 85.809
## + LP1                       1    1.9281 296.21 86.103
## + NumPrepWorkshops          1    1.9144 296.22 86.112
## + LP2                       1    1.2580 296.88 86.541
## + BarPrep                   1    0.9414 297.20 86.748
## + AdvLegalAnalysis          1    0.8318 297.31 86.819
## + UGPA                      1    0.8064 297.33 86.836
## + Accom                     1    0.4377 297.70 87.076
## + AdvLegalPerf              1    0.3441 297.79 87.137
## + Class                     1    0.0017 298.14 87.360
## 
## Step:  AIC=66
## newMPT ~ CivPro
## 
##                            Df Sum of Sq    RSS    AIC
## + PctBarPrepComplete        1    6.7908 260.26 62.999
## + StudentSuccessInitiative  1    3.7275 263.32 65.269
## <none>                                  267.05 65.996
## + BarPrepMentor             1    1.2418 265.81 67.092
## + LSAT                      1    1.1996 265.85 67.123
## + AdvLegalPerf              1    0.7973 266.25 67.416
## + LP1                       1    0.7114 266.34 67.479
## + Accom                     1    0.4833 266.56 67.645
## + UGPA                      1    0.2322 266.81 67.828
## + LegalAnalysis             1    0.2036 266.84 67.848
## + NumPrepWorkshops          1    0.1577 266.89 67.882
## + Probation                 1    0.0459 267.00 67.963
## + LP2                       1    0.0263 267.02 67.977
## + AdvLegalAnalysis          1    0.0139 267.03 67.986
## + BarPrep                   1    0.0104 267.04 67.989
## + Class                     1    0.0000 267.05 67.996
## 
## Step:  AIC=63
## newMPT ~ CivPro + PctBarPrepComplete
## 
##                            Df Sum of Sq    RSS    AIC
## <none>                                  260.26 62.999
## + StudentSuccessInitiative  1   2.50802 257.75 63.121
## + LSAT                      1   2.32141 257.94 63.261
## + AdvLegalPerf              1   1.46760 258.79 63.902
## + LP1                       1   0.81213 259.44 64.393
## + BarPrep                   1   0.61718 259.64 64.539
## + Accom                     1   0.60573 259.65 64.547
## + BarPrepMentor             1   0.47851 259.78 64.642
## + NumPrepWorkshops          1   0.45469 259.80 64.660
## + UGPA                      1   0.09217 260.17 64.931
## + AdvLegalAnalysis          1   0.05160 260.20 64.961
## + LegalAnalysis             1   0.03836 260.22 64.971
## + LP2                       1   0.03047 260.23 64.977
## + Class                     1   0.02621 260.23 64.980
## + Probation                 1   0.00665 260.25 64.994
## 
## Call:
## lm(formula = newMPT ~ CivPro + PctBarPrepComplete, data = datanew)
## 
## Coefficients:
##        (Intercept)              CivPro  PctBarPrepComplete  
##             3.5830              0.2832              0.1889

After doing the stepwise forward regression for MPT, the lowest AIC is for the model:

modelMPTforw<-lm(newMPT ~ CivPro + PctBarPrepComplete, data = datanew)
summary(modelMPTforw)
## 
## Call:
## lm(formula = newMPT ~ CivPro + PctBarPrepComplete, data = datanew)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.93817 -0.86198  0.00356  0.88741  2.75210 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.58301    0.33855  10.583  < 2e-16 ***
## CivPro              0.28319    0.06313   4.486 1.25e-05 ***
## PctBarPrepComplete  0.18885    0.08459   2.232   0.0267 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.167 on 191 degrees of freedom
## Multiple R-squared:  0.1271, Adjusted R-squared:  0.1179 
## F-statistic:  13.9 on 2 and 191 DF,  p-value: 2.312e-06

So, for MPT the significant predictors are CivPro and PctBarPrepComplete

logistic regression pass as response

datanew2<-data.frame(scale(data[,c(1,2,3,7,8,15,16)],center=TRUE,scale=TRUE),data[,c(4,5,6,9,10,11,12,13,14,17,18,19,20,21,22,23,24)])
view(datanew2)
mod<-glm(PASS~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew2,family=binomial(link="logit"))
summary(mod)
## 
## Call:
## glm(formula = PASS ~ LSAT + UGPA + Class + CivPro + LP1 + LP2 + 
##     OneLCUM + FGPA + Accom + Probation + LegalAnalysis + AdvLegalPerf + 
##     AdvLegalAnalysis + BarPrep + PctBarPrepComplete + NumPrepWorkshops + 
##     StudentSuccessInitiative + BarPrepMentor, family = binomial(link = "logit"), 
##     data = datanew2)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.42283   0.02875   0.10340   0.31007   1.84562  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)   
## (Intercept)               -1.2416     3.8162  -0.325  0.74491   
## LSAT                       0.6671     0.4563   1.462  0.14374   
## UGPA                       0.3206     0.4246   0.755  0.45024   
## Class                     -1.3771     0.4327  -3.182  0.00146 **
## CivPro                     0.4698     0.3383   1.389  0.16489   
## LP1                       -0.2596     0.3434  -0.756  0.44968   
## LP2                       -0.4393     0.2072  -2.120  0.03403 * 
## OneLCUM                    1.4609     0.8364   1.747  0.08069 . 
## FGPA                       0.6312     0.6692   0.943  0.34557   
## Accom                     -1.2808     0.9934  -1.289  0.19728   
## Probation                  0.5020     1.2510   0.401  0.68825   
## LegalAnalysis             -0.1482     1.2999  -0.114  0.90925   
## AdvLegalPerf               1.6165     1.5084   1.072  0.28385   
## AdvLegalAnalysis           0.4194     0.7539   0.556  0.57796   
## BarPrep                    2.0040     0.8346   2.401  0.01635 * 
## PctBarPrepComplete         0.5490     0.3101   1.771  0.07662 . 
## NumPrepWorkshops          -0.1779     0.3965  -0.449  0.65371   
## StudentSuccessInitiative  -0.5428     1.0153  -0.535  0.59288   
## BarPrepMentor              2.2938     1.2897   1.779  0.07530 . 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 145.211  on 193  degrees of freedom
## Residual deviance:  73.265  on 175  degrees of freedom
## AIC: 111.26
## 
## Number of Fisher Scoring iterations: 7

After doing the logistic regression for the model, the significant variables are Class, LP2 and Barprep.

Discussion:

After getting several best model with its significant variable, bar school should focus on more Class, UGPA, OneLCUM, FGPA, AdvLegalPerf, BarPrep, PctBarPrepComplete , StudentSuccessInitiative, BarPrepMentor,LegalAnalysis, CivPro and PctBarPrepComplete which was found through regressing UBE value and also MBE, MEE and MPT variables as these three variables are calculated to determine UBE value.

Unevaluated code:

library(ggplot2)
library(tidyverse)
library(readxl)
library(dplyr)
library(tidyr)
library(purrr)
library(MASS)
library(car)
library(MASS)
sheet1<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2022Fail")
sheet1
sheet2<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2022Pass")
sheet2
sheet3<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2021Fail")
sheet3
sheet4<-read_excel("C:/Users/sampa/OneDrive - Texas Tech University/Courses/Statistical Data Analysis/Project/BarDataSet.xlsx", sheet = "2021Pass")
sheet4
sheet1[sheet1=='NA']<-NA
sheet2[sheet2=='NA']<-NA
sheet3[sheet3=='NA']<-NA
sheet4[sheet4=='NA']<-NA
sheet1<-na.omit(sheet1)
sheet2<-na.omit(sheet2)
sheet3<-na.omit(sheet3)
sheet4<-na.omit(sheet4)
view(sheet1)
view(sheet2)
view(sheet3)
view(sheet4)
data<-rbind(sheet1,sheet2,sheet3,sheet4)
View(data)
str(data)
summary(data) 

data$CivPro<-factor(data$CivPro,c("D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$LP1<-factor(data$LP1,c("D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$LP2<-factor(data$LP2,c("CR","D","D+","C","C+","B","B+","A"),ordered=TRUE)
data$Accom<-as.factor(data$Accom)
data$Probation<-as.factor(data$Probation)
data$LegalAnalysis<-as.factor(data$LegalAnalysis)
data$AdvLegalPerf<-as.factor(data$AdvLegalPerf)
data$AdvLegalAnalysis<-as.factor(data$AdvLegalAnalysis)
data$BarPrep<-as.factor(data$BarPrep)
data$PctBarPrepComplete<-as.numeric(data$PctBarPrepComplete)
data$NumPrepWorkshops<-factor(data$NumPrepWorkshops,c("0","1","2","3","4","5"),ordered=TRUE)
data$StudentSuccessInitiative<-as.factor(data$StudentSuccessInitiative)
data$BarPrepMentor<-as.factor(data$BarPrepMentor)

data<-data[-80,]
view(data)
data$MPRE<-as.numeric(data$MPRE)
data[,1:23]<-sapply(data[,1:23],as.numeric)
str(data)
view(data)
datanew<-data.frame(scale(data[,c(1,2,3,7,8,15,16)],center=TRUE,scale=TRUE),data[,c(4,5,6,9,10,11,12,13,14,17,18,19,20,21,22,23)])
view(datanew)

fit.UBE<-lm(UBE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE)
plot(fit.UBE)

vif(fit.UBE)
fit.UBE1<-lm(UBE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE1)
vif(fit.UBE1)
fit.UBE2<-lm(UBE~Class+OneLCUM+UGPA+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.UBE2)
vif(fit.UBE2)
library(MuMIn)
fullmodelUBE<-lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fitdredgeUBE<-dredge(fullmodelUBE)
## Fixed term is "(Intercept)"
plot(summary.fitdredgeUBE)

modelAICUBE736<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.736<-summary(modelAICUBE736)
summary.736
modelAICUBE224<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.224<-summary(modelAICUBE224)
summary.224
modelAICUBE223<-lm(UBE~Class+UGPA+OneLCUM+FGPA+BarPrep+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.223<-summary(modelAICUBE223)
summary.223
library(olsrr)
modelUBEsubset <- lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitUBEsubset<-ols_step_best_subset(modelUBEsubset)
summary.fitUBEsubset
plot(summary.fitUBEsubset)

modelbestUBE<-lm(UBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestUBE)
fit.MBE<-lm(MBE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE)
plot(fit.MBE)

vif(fit.MBE)
fit.MBE1<-lm(MBE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE1)
vif(fit.MBE1)
fit.MBE2<-lm(UBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MBE2)
vif(fit.MBE2)
library(MuMIn)
fullmodelMBE<-lm(MBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fit1MBE<-dredge(fullmodelMBE)
## Fixed term is "(Intercept)"
plot(summary.fit1MBE)

modelAICMBE992<-lm(MBE~Class+OneLCUM+FGPA+AdvLegalPerf+Probation+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.992<-summary(modelAICMBE992)
summary.992
modelAICUBE988<-lm(MBE~Class+OneLCUM+FGPA+AdvLegalPerf+BarPrep+Probation+PctBarPrepComplete+StudentSuccessInitiative,data=datanew)
summary.988<-summary(modelAICUBE988)
summary.988
modelAICUBE476<-lm(MBE~Class+OneLCUM+FGPA+BarPrep+PctBarPrepComplete+BarPrepMentor+Probation,data=datanew)
summary.476<-summary(modelAICUBE476)
summary.476
library(olsrr)
modelMBEsubset <- lm(MBE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitMBEsubset<-ols_step_best_subset(modelMBEsubset)
summary.fitMBEsubset
plot(summary.fitMBEsubset)

modelbestMBE<-lm(MBE~Class+UGPA+OneLCUM+FGPA+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestMBE)
fit.MEE<-lm(MEE~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE)
plot(fit.MEE)

vif(fit.MEE)
fit.MEE1<-lm(MEE~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE1)
vif(fit.MEE1)
fit.MEE2<-lm(MEE~Class+OneLCUM+UGPA+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MEE2)
vif(fit.MEE2)
fullmodelMEE<-lm(MEE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew,na.action = "na.fail")
summary.fit<-dredge(fullmodelMEE)
## Fixed term is "(Intercept)"
plot(summary.fit)

modelAICMEE759<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.759<-summary(modelAICMEE759)
summary.759
modelAICMEE247<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete+BarPrepMentor,data=datanew)
summary.247<-summary(modelAICMEE247)
summary.247
modelAICMEE243<-lm(MEE~OneLCUM+FGPA+BarPrep+LegalAnalysis+PctBarPrepComplete,data=datanew)
summary.243<-summary(modelAICMEE243)
summary.243
library(olsrr)
modelMEEsubset <- lm(MEE~Class+UGPA+OneLCUM+FGPA+Probation+LegalAnalysis+AdvLegalPerf+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary.fitMEEsubset<-ols_step_best_subset(modelMEEsubset)
summary.fitMEEsubset
plot(summary.fitMEEsubset)

modelbestMEE<-lm(MEE~OneLCUM+FGPA+LegalAnalysis+BarPrep+PctBarPrepComplete+StudentSuccessInitiative+BarPrepMentor,dat=datanew)
summary(modelbestMEE)
fit.MPT<-lm(MPT~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT)
plot(fit.MPT)

b<-boxcox(fit.MPT)

lambda<-b$x
likelihood<-b$y
q<-lambda[which.max(likelihood)]
q
newMPT<-datanew$MPT^1.232323
newMPT
fit.MPT<-lm(newMPT~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT)
plot(fit.MPT)

vif(fit.MPT)
fit.MPT1<-lm(newMPT~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew)
summary(fit.MPT1)
vif(fit.MPT1)

library(MuMIn)
modelMPTforw<-lm(newMPT~1,data=datanew)
formula(modelMPTforw)
step(modelMPTforw,scope~LSAT+UGPA+Class+CivPro+LP1+LP2+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew,direction="forward")
modelMPTforw<-lm(newMPT ~ CivPro + PctBarPrepComplete, data = datanew)
summary(modelMPTforw)

datanew2<-data.frame(scale(data[,c(1,2,3,7,8,15,16)],center=TRUE,scale=TRUE),data[,c(4,5,6,9,10,11,12,13,14,17,18,19,20,21,22,23,24)])
view(datanew2)
mod<-glm(PASS~LSAT+UGPA+Class+CivPro+LP1+LP2+OneLCUM+FGPA+Accom+Probation+LegalAnalysis+AdvLegalPerf+AdvLegalAnalysis+BarPrep+PctBarPrepComplete+NumPrepWorkshops+StudentSuccessInitiative+BarPrepMentor,data=datanew2,family=binomial(link="logit"))
summary(mod)