library(papaja)library(xtable)library(tidyr)library(purrr)library(ggplot2)library(brms)library(bayestestR)library(rstan)library(readxl)library(sjPlot)library(cmdstanr)library(plotly)library(corrplot)library(htmlwidgets)library(bayestestR)library(formatR)library(kableExtra)library(tidybayes)library(blavaan)library(rmarkdown)library(tidySEM)library(ggcorrplot)library(ggprism)library(htmlTable)library(table1)library(data.table)library(semPlot)library(correlation)library(dplyr)library(lavaan)library(dplyr)library(tibble)library(stringi)library(tidyr)library(kableExtra)library(sjPlot)library(purrr)library(stringi)library(ggplot2)library(tidyverse)locfunc <-function(data, to) {which(colnames({{ data }}) == {{ to }})}load("Experiment_4_Analysis.RData")rape_myth_analysis_df <-read.csv("rape_myths_df.csv")rape_myth_analysis_df$DEMO_GENDER <-as.factor(rape_myth_analysis_df$DEMO_GENDER)
Show code
d2 <- rape_myths_df %>%mutate_at(vars(locfunc(rape_myths_df, "DEMO_GENDER")), ~as.factor(recode(., "Female"="1", "Male"="2", "Trans Male"="5", "Trans Female"="6"))) %>%mutate_at(vars(locfunc(rape_myths_df, "DEMO_ETHNICITY")), ~as.factor(recode(.,"1"="White","2"="Mixed or Multi-ethnic","3"="Asian or Asian Scottish or Asian British","4"="African","5"="Caribbean or Black","6"="Arab ","7"="Other ethnicity","8"="Prefer not to respond" ))) %>%mutate_at(vars(locfunc(rape_myths_df, "DEMO_ETHNIC_ORIGIN")), ~as.factor(recode(.,"1"="Scottish","2"="English","3"="European","4"="Latin American","5"="Asian","6"="Arab","7"="African","8"="Other","9"="Prefer not to respond" ))) %>%mutate_at(vars(locfunc(rape_myths_df, "DEMO_EDUCATION")), ~as.factor(recode(.,"1"="Primary School ","2"="GCSEs or Equivalent","3"="A-Levels or Equivalent","4"="University Undergraduate Program","5"="University Post-Graduate Program","6"="Doctoral Degree","7"="Prefer not to respond" )))