# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310703 -0.0029350930  0.0366062698  0.052133686  4.992342e-02
## 2013-02-28  0.0058910689 -0.0231052854 -0.0129693233  0.016175286  1.267801e-02
## 2013-03-28  0.0009854895 -0.0102349970  0.0129693233  0.040258053  3.726814e-02
## 2013-04-30  0.0096393072  0.0120846536  0.0489679329  0.001222269  1.902985e-02
## 2013-05-31 -0.0202142694 -0.0494833093 -0.0306556320  0.041976522  2.333576e-02
## 2013-06-28 -0.0157785966 -0.0547283206 -0.0271445692 -0.001403290 -1.343455e-02
## 2013-07-31  0.0026876313  0.0131598422  0.0518603709  0.063541878  5.038635e-02
## 2013-08-30 -0.0082977809 -0.0257058403 -0.0197462980 -0.034743741 -3.045143e-02
## 2013-09-30  0.0111437361  0.0695890335  0.0753384185  0.063873984  3.115551e-02
## 2013-10-31  0.0082924548  0.0408611599  0.0320818492  0.034233646  4.526709e-02
## 2013-11-29 -0.0025105069 -0.0025938709  0.0054496382  0.041661426  2.920696e-02
## 2013-12-31 -0.0055831725 -0.0040746186  0.0215279917  0.012891998  2.559600e-02
## 2014-01-31  0.0152917985 -0.0903227464 -0.0534134224 -0.035775401 -3.588483e-02
## 2014-02-28  0.0037568560  0.0332207754  0.0595051752  0.045257346  4.451051e-02
## 2014-03-31 -0.0014813305  0.0380215019 -0.0046023124  0.013315482  8.261305e-03
## 2014-04-30  0.0081831216  0.0077727969  0.0165292059 -0.023184216  6.927463e-03
## 2014-05-30  0.0117219021  0.0290910773  0.0158282194  0.006205363  2.294118e-02
## 2014-06-30 -0.0005759825  0.0237340696  0.0091654908  0.037718504  2.043464e-02
## 2014-07-31 -0.0025124222  0.0135554643 -0.0263797850 -0.052009633 -1.352859e-02
## 2014-08-29  0.0114307630  0.0279047915  0.0018005131  0.043658139  3.870454e-02
## 2014-09-30 -0.0061673351 -0.0808568916 -0.0395986731 -0.061260322 -1.389226e-02
## 2014-10-31  0.0105849471  0.0140965415 -0.0026546542  0.068874703  2.327798e-02
## 2014-11-28  0.0065488393 -0.0155413222  0.0006252355  0.004773328  2.710113e-02
## 2014-12-31  0.0014747912 -0.0404422187 -0.0407466701  0.025296120 -2.539677e-03
## 2015-01-30  0.0203157578 -0.0068956277  0.0062265031 -0.054627823 -3.007659e-02
## 2015-02-27 -0.0089886625  0.0431362557  0.0614504485  0.056914653  5.468151e-02
## 2015-03-31  0.0037403191 -0.0150861199 -0.0143886933  0.010156131 -1.583022e-02
## 2015-04-30 -0.0032333102  0.0662811397  0.0358165769 -0.018417621  9.786066e-03
## 2015-05-29 -0.0043834166 -0.0419108998  0.0019527483  0.007510009  1.277400e-02
## 2015-06-30 -0.0108253781 -0.0297466579 -0.0316789392  0.004171395 -2.052116e-02
## 2015-07-31  0.0085845478 -0.0651782658  0.0201145890 -0.027375157  2.233773e-02
## 2015-08-31 -0.0033636943 -0.0925125037 -0.0771524538 -0.047268606 -6.288642e-02
## 2015-09-30  0.0080814237 -0.0318248686 -0.0451950173 -0.038464759 -2.584720e-02
## 2015-10-30  0.0006855144  0.0618083483  0.0640260956  0.063589750  8.163461e-02
## 2015-11-30 -0.0038983760 -0.0255601899 -0.0075559415  0.024415191  3.648509e-03
## 2015-12-31 -0.0019190861 -0.0389472916 -0.0235950350 -0.052157054 -1.743355e-02
## 2016-01-29  0.0123297267 -0.0516366854 -0.0567577476 -0.060306595 -5.106862e-02
## 2016-02-29  0.0088324313 -0.0082116151 -0.0339138891  0.020604869 -8.260927e-04
## 2016-03-31  0.0087087121  0.1218791532  0.0637457573  0.089910599  6.510026e-02
## 2016-04-29  0.0025458739  0.0040792898  0.0219749504  0.021044286  3.933452e-03
## 2016-05-31  0.0001356125 -0.0376287021 -0.0008561427  0.004396886  1.686847e-02
## 2016-06-30  0.0191664860  0.0445823354 -0.0244913881  0.008292097  3.469641e-03
## 2016-07-29  0.0054300247  0.0524423160  0.0390001962  0.049348456  3.582204e-02
## 2016-08-31 -0.0021564408  0.0087984104  0.0053269239  0.011261141  1.196879e-03
## 2016-09-30  0.0005158552  0.0248730027  0.0132791037  0.008614747  5.789918e-05
## 2016-10-31 -0.0082051791 -0.0083121374 -0.0224037236 -0.038134835 -1.748894e-02
## 2016-11-30 -0.0259894974 -0.0451618458 -0.0179745945  0.125246347  3.617603e-02
## 2016-12-30  0.0025380375 -0.0025300917  0.0267030151  0.031491872  2.006908e-02
## 2017-01-31  0.0021262875  0.0644312358  0.0323817970 -0.012143844  1.773643e-02
## 2017-02-28  0.0064375136  0.0172578955  0.0118366182  0.013428703  3.853925e-02
## 2017-03-31 -0.0005527966  0.0361892342  0.0318055175 -0.006533150  1.249205e-03
## 2017-04-28  0.0090292883  0.0168663683  0.0239523849  0.005107584  9.877109e-03
## 2017-05-31  0.0068474034  0.0280599886  0.0348100506 -0.022862503  1.401433e-02
## 2017-06-30 -0.0001826614  0.0092236117  0.0029558687  0.029151959  6.354854e-03
## 2017-07-31  0.0033345462  0.0565944936  0.0261880937  0.007481186  2.034571e-02
## 2017-08-31  0.0093692250  0.0232438852 -0.0004484189 -0.027564256  2.913533e-03
## 2017-09-29 -0.0057323664 -0.0004461534  0.0233427730  0.082321832  1.994898e-02
## 2017-10-31  0.0009779708  0.0322784833  0.0166536400  0.005915767  2.329065e-02
## 2017-11-30 -0.0014840591 -0.0038972207  0.0068700036  0.036913182  3.010823e-02
## 2017-12-29  0.0047402234  0.0369256775  0.0133983684 -0.003731205  1.205483e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398488e-05 0.0001042097 4.178223e-05 -7.812013e-05 -9.031881e-06
## EEM  1.042097e-04 0.0017547136 1.039020e-03  6.437765e-04  6.795434e-04
## EFA  4.178223e-05 0.0010390195 1.064238e-03  6.490319e-04  6.975404e-04
## IJS -7.812013e-05 0.0006437765 6.490319e-04  1.565452e-03  8.290257e-04
## SPY -9.031881e-06 0.0006795434 6.975404e-04  8.290257e-04  7.408279e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347493
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874119 0.009257156 0.005815639 0.005684477 0.002330247
rowSums(component_contribution)
## [1] 0.02347493
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310703 -0.0029350930  0.0366062698  0.052133686  4.992342e-02
## 2013-02-28  0.0058910689 -0.0231052854 -0.0129693233  0.016175286  1.267801e-02
## 2013-03-28  0.0009854895 -0.0102349970  0.0129693233  0.040258053  3.726814e-02
## 2013-04-30  0.0096393072  0.0120846536  0.0489679329  0.001222269  1.902985e-02
## 2013-05-31 -0.0202142694 -0.0494833093 -0.0306556320  0.041976522  2.333576e-02
## 2013-06-28 -0.0157785966 -0.0547283206 -0.0271445692 -0.001403290 -1.343455e-02
## 2013-07-31  0.0026876313  0.0131598422  0.0518603709  0.063541878  5.038635e-02
## 2013-08-30 -0.0082977809 -0.0257058403 -0.0197462980 -0.034743741 -3.045143e-02
## 2013-09-30  0.0111437361  0.0695890335  0.0753384185  0.063873984  3.115551e-02
## 2013-10-31  0.0082924548  0.0408611599  0.0320818492  0.034233646  4.526709e-02
## 2013-11-29 -0.0025105069 -0.0025938709  0.0054496382  0.041661426  2.920696e-02
## 2013-12-31 -0.0055831725 -0.0040746186  0.0215279917  0.012891998  2.559600e-02
## 2014-01-31  0.0152917985 -0.0903227464 -0.0534134224 -0.035775401 -3.588483e-02
## 2014-02-28  0.0037568560  0.0332207754  0.0595051752  0.045257346  4.451051e-02
## 2014-03-31 -0.0014813305  0.0380215019 -0.0046023124  0.013315482  8.261305e-03
## 2014-04-30  0.0081831216  0.0077727969  0.0165292059 -0.023184216  6.927463e-03
## 2014-05-30  0.0117219021  0.0290910773  0.0158282194  0.006205363  2.294118e-02
## 2014-06-30 -0.0005759825  0.0237340696  0.0091654908  0.037718504  2.043464e-02
## 2014-07-31 -0.0025124222  0.0135554643 -0.0263797850 -0.052009633 -1.352859e-02
## 2014-08-29  0.0114307630  0.0279047915  0.0018005131  0.043658139  3.870454e-02
## 2014-09-30 -0.0061673351 -0.0808568916 -0.0395986731 -0.061260322 -1.389226e-02
## 2014-10-31  0.0105849471  0.0140965415 -0.0026546542  0.068874703  2.327798e-02
## 2014-11-28  0.0065488393 -0.0155413222  0.0006252355  0.004773328  2.710113e-02
## 2014-12-31  0.0014747912 -0.0404422187 -0.0407466701  0.025296120 -2.539677e-03
## 2015-01-30  0.0203157578 -0.0068956277  0.0062265031 -0.054627823 -3.007659e-02
## 2015-02-27 -0.0089886625  0.0431362557  0.0614504485  0.056914653  5.468151e-02
## 2015-03-31  0.0037403191 -0.0150861199 -0.0143886933  0.010156131 -1.583022e-02
## 2015-04-30 -0.0032333102  0.0662811397  0.0358165769 -0.018417621  9.786066e-03
## 2015-05-29 -0.0043834166 -0.0419108998  0.0019527483  0.007510009  1.277400e-02
## 2015-06-30 -0.0108253781 -0.0297466579 -0.0316789392  0.004171395 -2.052116e-02
## 2015-07-31  0.0085845478 -0.0651782658  0.0201145890 -0.027375157  2.233773e-02
## 2015-08-31 -0.0033636943 -0.0925125037 -0.0771524538 -0.047268606 -6.288642e-02
## 2015-09-30  0.0080814237 -0.0318248686 -0.0451950173 -0.038464759 -2.584720e-02
## 2015-10-30  0.0006855144  0.0618083483  0.0640260956  0.063589750  8.163461e-02
## 2015-11-30 -0.0038983760 -0.0255601899 -0.0075559415  0.024415191  3.648509e-03
## 2015-12-31 -0.0019190861 -0.0389472916 -0.0235950350 -0.052157054 -1.743355e-02
## 2016-01-29  0.0123297267 -0.0516366854 -0.0567577476 -0.060306595 -5.106862e-02
## 2016-02-29  0.0088324313 -0.0082116151 -0.0339138891  0.020604869 -8.260927e-04
## 2016-03-31  0.0087087121  0.1218791532  0.0637457573  0.089910599  6.510026e-02
## 2016-04-29  0.0025458739  0.0040792898  0.0219749504  0.021044286  3.933452e-03
## 2016-05-31  0.0001356125 -0.0376287021 -0.0008561427  0.004396886  1.686847e-02
## 2016-06-30  0.0191664860  0.0445823354 -0.0244913881  0.008292097  3.469641e-03
## 2016-07-29  0.0054300247  0.0524423160  0.0390001962  0.049348456  3.582204e-02
## 2016-08-31 -0.0021564408  0.0087984104  0.0053269239  0.011261141  1.196879e-03
## 2016-09-30  0.0005158552  0.0248730027  0.0132791037  0.008614747  5.789918e-05
## 2016-10-31 -0.0082051791 -0.0083121374 -0.0224037236 -0.038134835 -1.748894e-02
## 2016-11-30 -0.0259894974 -0.0451618458 -0.0179745945  0.125246347  3.617603e-02
## 2016-12-30  0.0025380375 -0.0025300917  0.0267030151  0.031491872  2.006908e-02
## 2017-01-31  0.0021262875  0.0644312358  0.0323817970 -0.012143844  1.773643e-02
## 2017-02-28  0.0064375136  0.0172578955  0.0118366182  0.013428703  3.853925e-02
## 2017-03-31 -0.0005527966  0.0361892342  0.0318055175 -0.006533150  1.249205e-03
## 2017-04-28  0.0090292883  0.0168663683  0.0239523849  0.005107584  9.877109e-03
## 2017-05-31  0.0068474034  0.0280599886  0.0348100506 -0.022862503  1.401433e-02
## 2017-06-30 -0.0001826614  0.0092236117  0.0029558687  0.029151959  6.354854e-03
## 2017-07-31  0.0033345462  0.0565944936  0.0261880937  0.007481186  2.034571e-02
## 2017-08-31  0.0093692250  0.0232438852 -0.0004484189 -0.027564256  2.913533e-03
## 2017-09-29 -0.0057323664 -0.0004461534  0.0233427730  0.082321832  1.994898e-02
## 2017-10-31  0.0009779708  0.0322784833  0.0166536400  0.005915767  2.329065e-02
## 2017-11-30 -0.0014840591 -0.0038972207  0.0068700036  0.036913182  3.010823e-02
## 2017-12-29  0.0047402234  0.0369256775  0.0133983684 -0.003731205  1.205483e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
    
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
   
}

aasset_reutrns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, 1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, 1)) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(aaccuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, 1)) %>%
    
    # Transform to long from
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weights 
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(aaccuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
         y = "Precent",
         x = NULL)

6 Rolling Component Contribution