INTRODUCTION - MODEL PROJECT 3

Prediction task is to determine whether a person makes over 50k a year.

Applying principal component analysis, k-means, and a gradient boosting model using data from the 1994 Census.

# https://www.openml.org/d/1590

raw_income = read_csv("https://raw.githubusercontent.com/chanks06/ml-model3/main/datasets/openml_1590.csv", na=c("?"))
## Rows: 48842 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (9): workclass, education, marital-status, occupation, relationship, rac...
## dbl (6): age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
income = read_csv("https://raw.githubusercontent.com/chanks06/ml-model3/main/datasets/openml_1590.csv", na=c("?")) %>%
  drop_na() %>%
  mutate(income_above_50k = class==">50K") %>%
  select(-class) %>%
  dummy_cols(remove_selected_columns = T)
## Rows: 48842 Columns: 15
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (9): workclass, education, marital-status, occupation, relationship, rac...
## dbl (6): age, fnlwgt, education-num, capital-gain, capital-loss, hours-per-week
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#formatting col names: 
raw_income = raw_income %>% rename_all(funs(str_replace_all(.,"-","_"))) %>% 
                rename_all(funs(tolower(.)))
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## ℹ Please use a list of either functions or lambdas:
## 
## # Simple named list: list(mean = mean, median = median)
## 
## # Auto named with `tibble::lst()`: tibble::lst(mean, median)
## 
## # Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## ℹ Please use a list of either functions or lambdas:
## 
## # Simple named list: list(mean = mean, median = median)
## 
## # Auto named with `tibble::lst()`: tibble::lst(mean, median)
## 
## # Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
income = income %>% rename_all(funs(str_replace_all(.,"-","_"))) %>% 
                rename_all(funs(tolower(.)))
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## ℹ Please use a list of either functions or lambdas:
## 
## # Simple named list: list(mean = mean, median = median)
## 
## # Auto named with `tibble::lst()`: tibble::lst(mean, median)
## 
## # Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: `funs()` was deprecated in dplyr 0.8.0.
## ℹ Please use a list of either functions or lambdas:
## 
## # Simple named list: list(mean = mean, median = median)
## 
## # Auto named with `tibble::lst()`: tibble::lst(mean, median)
## 
## # Using lambdas list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
options(scipen=999)

Exploratory Data Analysis

Examining distibution of sex:

n_sex = raw_income %>% 
  group_by(sex) %>% 
    count()
raw_income %>% group_by(sex, class) %>% count() %>% mutate(prop = n/nrow(raw_income))
## # A tibble: 4 × 4
## # Groups:   sex, class [4]
##   sex    class     n   prop
##   <chr>  <chr> <int>  <dbl>
## 1 Female <=50K 14423 0.295 
## 2 Female >50K   1769 0.0362
## 3 Male   <=50K 22732 0.465 
## 4 Male   >50K   9918 0.203
#Only 3.6 % of this dataset includes women who make more than 50k. 
#may want to equalize these classes by upsampling/downsampling 

Occupation by sex:

raw_income %>% 
  group_by(occupation,sex) %>% 
          count() %>% 
          ggplot(aes(x = occupation, y = n, fill = sex)) + geom_col() + coord_flip()

#craft-repair, farming/fishing, executive mostly male, admin mostly female 
#there are some ethical considerations to unpack here in building this model...
raw_income %>% group_by(education, workclass) %>% count() %>% ggplot(aes(x = n, y = education, fill = workclass)) + geom_col()

# Age

ggplot(income, aes(x = income_above_50k, y = age, fill = income_above_50k)) + geom_boxplot()

income %>% group_by(income_above_50k) %>% summarize(med_age = median(age), avg_age = mean(age))
## # A tibble: 2 × 3
##   income_above_50k med_age avg_age
##   <lgl>              <dbl>   <dbl>
## 1 FALSE                 34    36.7
## 2 TRUE                  43    44.0
ggplot(income, aes(x = age)) + geom_histogram(binwidth = 10)

#income$age_bin = factor(income$age_bin, levels = c("teen", "20-29","30-39","40-50","50-65","65+"))

#distribution of people by age bin
#ggplot(income, aes(x = age_bin, fill = age_bin)) + geom_histogram(stat= 'count')
#the largest age group in this dataset is 30-39

#ggplot(income, aes(x = age_bin)) + geom_histogram(stat = 'count',aes(fill = income_above_50k)) + facet_wrap(~income_above_50k)
#People in their forties are most likely to be making above 50k. 
raw_income %>% group_by(occupation, class, sex) %>% count() %>% filter(class == '>50K' ) %>% arrange(desc(n))
## # A tibble: 28 × 4
## # Groups:   occupation, class, sex [28]
##    occupation        class sex        n
##    <chr>             <chr> <chr>  <int>
##  1 Exec-managerial   >50K  Male    2487
##  2 Prof-specialty    >50K  Male    2202
##  3 Craft-repair      >50K  Male    1350
##  4 Sales             >50K  Male    1341
##  5 Prof-specialty    >50K  Female   582
##  6 Transport-moving  >50K  Male     468
##  7 Adm-clerical      >50K  Male     459
##  8 Exec-managerial   >50K  Female   421
##  9 Tech-support      >50K  Male     353
## 10 Machine-op-inspct >50K  Male     344
## # ℹ 18 more rows

Given that this dataset is imbalanced in terms of sex, it is likely that a predictive model will select male, between 30-50 years old, in executive-managerial, prof-speciality, craft-repair, or sales.

Changing response variable to a factor:

income = income %>% mutate(income_above_50k = factor(income_above_50k)) %>% relocate(income_above_50k)

Log Transforming capital gain and capital loss:

“You have a capital gain if you sell the asset for more than your adjusted basis. You have a capital loss if you sell the asset for less than your adjusted basis.” https://www.irs.gov/taxtopics/tc409#:~:text=You%20have%20a%20capital%20gain,%2C%20aren't%20tax%20deductible.

#ggplot(income, aes(x = capital_loss)) + geom_histogram()
#definition: capital gain refers to the increase in the value of a capital asset when it is sold. A capital gain occurs when you sell an asset for more than what you originally paid for it. 

income = income %>% mutate(l_capital_gain = log(capital_gain), 
                  l_capital_loss = log(capital_loss)) %>% 
                        select(-capital_gain,-capital_loss) %>% relocate(income_above_50k, l_capital_gain, l_capital_loss)

ggplot(income, aes(x = l_capital_loss)) + geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 43082 rows containing non-finite values (`stat_bin()`).

#changing -Inf back to 0 for log transformed vars: 
income = income %>% mutate(l_capital_gain = ifelse(l_capital_gain == -Inf, 0, l_capital_gain),
                  l_capital_loss = ifelse(l_capital_loss == -Inf, 0, l_capital_loss))

#Now checking out shape of log transformed data: 
ggplot(income, aes(x = l_capital_gain)) + geom_histogram() + xlim(5,12)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 41440 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 2 rows containing missing values (`geom_bar()`).

ggplot(income, aes(x = l_capital_loss)) + geom_histogram() + xlim(5,12)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 43082 rows containing non-finite values (`stat_bin()`).
## Removed 2 rows containing missing values (`geom_bar()`).

income %>% group_by(income_above_50k) %>% summarize(avg_cap_gain = mean(l_capital_gain), avg_cap_loss = mean(l_capital_loss))
## # A tibble: 2 × 3
##   income_above_50k avg_cap_gain avg_cap_loss
##   <fct>                   <dbl>        <dbl>
## 1 FALSE                   0.333        0.228
## 2 TRUE                    1.98         0.743
#people making above over 50k will have greater log capital gain/loss on average  

PART I Principal Component Analysis on Income Dataset

We will apply Principal Component Analysis to our dataset in order to reduce the number of features needed to explain the variation in the data. We reduce the number of dimensions in our feature space through a linear combination of features that share co-variance. This process is based on a calculation of distances within the feature space. Is is therefore essential that we scale and center our numerical data.

Instead of having to manually assess correlation among variables, we call the prcomp() function on our dataset to group our variables together.

The result is that this new combination feature - the ‘principal component’ - captures the variation in the data according to the variables that it represents. Each principal component does not correlate with another - they are as distinct from one another as possible. If we were to graph these linear combination of features, they would form a right angle extend out from the center of the data’s spread.

In practice, this allows us to use only a handful of principal components to explain how the data behaves.

pr_income = prcomp(x = select(income,-income_above_50k), scale = T, center = T)
summary(pr_income) 
## Importance of components:
##                            PC1     PC2    PC3     PC4     PC5     PC6     PC7
## Standard deviation     2.13805 1.76182 1.6158 1.53246 1.39287 1.33471 1.30557
## Proportion of Variance 0.04395 0.02985 0.0251 0.02258 0.01865 0.01713 0.01639
## Cumulative Proportion  0.04395 0.07380 0.0989 0.12149 0.14014 0.15727 0.17366
##                            PC8     PC9   PC10   PC11    PC12  PC13    PC14
## Standard deviation     1.25616 1.19824 1.1762 1.1494 1.13345 1.117 1.10106
## Proportion of Variance 0.01517 0.01381 0.0133 0.0127 0.01235 0.012 0.01166
## Cumulative Proportion  0.18883 0.20264 0.2159 0.2286 0.24100 0.253 0.26465
##                           PC15    PC16   PC17    PC18    PC19    PC20    PC21
## Standard deviation     1.09652 1.09033 1.0842 1.08208 1.06551 1.06356 1.05277
## Proportion of Variance 0.01156 0.01143 0.0113 0.01126 0.01092 0.01088 0.01066
## Cumulative Proportion  0.27621 0.28764 0.2989 0.31020 0.32112 0.33200 0.34265
##                           PC22    PC23    PC24    PC25    PC26    PC27    PC28
## Standard deviation     1.05137 1.04406 1.04257 1.04098 1.03841 1.03694 1.03226
## Proportion of Variance 0.01063 0.01048 0.01045 0.01042 0.01037 0.01034 0.01025
## Cumulative Proportion  0.35328 0.36376 0.37422 0.38463 0.39500 0.40534 0.41559
##                           PC29    PC30   PC31    PC32    PC33    PC34    PC35
## Standard deviation     1.03101 1.02961 1.0250 1.02352 1.02314 1.02122 1.01912
## Proportion of Variance 0.01022 0.01019 0.0101 0.01007 0.01007 0.01003 0.00999
## Cumulative Proportion  0.42581 0.43600 0.4461 0.45618 0.46624 0.47627 0.48626
##                           PC36    PC37    PC38    PC39   PC40    PC41    PC42
## Standard deviation     1.01495 1.01376 1.01236 1.01039 1.0097 1.00492 1.00395
## Proportion of Variance 0.00991 0.00988 0.00985 0.00982 0.0098 0.00971 0.00969
## Cumulative Proportion  0.49616 0.50604 0.51590 0.52572 0.5355 0.54523 0.55492
##                           PC43    PC44    PC45    PC46    PC47    PC48    PC49
## Standard deviation     1.00257 1.00213 1.00184 1.00143 1.00142 1.00099 1.00090
## Proportion of Variance 0.00966 0.00966 0.00965 0.00964 0.00964 0.00963 0.00963
## Cumulative Proportion  0.56458 0.57424 0.58389 0.59353 0.60318 0.61281 0.62244
##                           PC50    PC51    PC52    PC53    PC54   PC55    PC56
## Standard deviation     1.00049 1.00035 1.00015 1.00000 0.99954 0.9994 0.99877
## Proportion of Variance 0.00962 0.00962 0.00962 0.00962 0.00961 0.0096 0.00959
## Cumulative Proportion  0.63207 0.64169 0.65131 0.66093 0.67053 0.6801 0.68973
##                           PC57    PC58    PC59    PC60    PC61    PC62    PC63
## Standard deviation     0.99834 0.99739 0.99678 0.99479 0.99474 0.99436 0.99339
## Proportion of Variance 0.00958 0.00957 0.00955 0.00952 0.00951 0.00951 0.00949
## Cumulative Proportion  0.69931 0.70888 0.71843 0.72794 0.73746 0.74697 0.75646
##                           PC64    PC65   PC66    PC67    PC68    PC69    PC70
## Standard deviation     0.99163 0.98918 0.9887 0.98599 0.98565 0.98490 0.98190
## Proportion of Variance 0.00946 0.00941 0.0094 0.00935 0.00934 0.00933 0.00927
## Cumulative Proportion  0.76591 0.77532 0.7847 0.79407 0.80341 0.81273 0.82201
##                           PC71    PC72    PC73    PC74    PC75    PC76    PC77
## Standard deviation     0.98122 0.97881 0.97693 0.96958 0.96596 0.95790 0.95563
## Proportion of Variance 0.00926 0.00921 0.00918 0.00904 0.00897 0.00882 0.00878
## Cumulative Proportion  0.83126 0.84047 0.84965 0.85869 0.86766 0.87649 0.88527
##                           PC78    PC79    PC80    PC81    PC82    PC83   PC84
## Standard deviation     0.95348 0.94928 0.93713 0.92981 0.92669 0.91355 0.9006
## Proportion of Variance 0.00874 0.00866 0.00844 0.00831 0.00826 0.00802 0.0078
## Cumulative Proportion  0.89401 0.90267 0.91112 0.91943 0.92769 0.93571 0.9435
##                           PC85    PC86    PC87    PC88    PC89    PC90    PC91
## Standard deviation     0.89148 0.86012 0.85386 0.81333 0.78869 0.77364 0.73843
## Proportion of Variance 0.00764 0.00711 0.00701 0.00636 0.00598 0.00575 0.00524
## Cumulative Proportion  0.95115 0.95827 0.96528 0.97164 0.97762 0.98337 0.98862
##                           PC92    PC93    PC94    PC95               PC96
## Standard deviation     0.69662 0.65566 0.49844 0.14221 0.0000000000001363
## Proportion of Variance 0.00467 0.00413 0.00239 0.00019 0.0000000000000000
## Cumulative Proportion  0.99328 0.99742 0.99981 1.00000 1.0000000000000000
##                                      PC97                PC98
## Standard deviation     0.0000000000000326 0.00000000000002328
## Proportion of Variance 0.0000000000000000 0.00000000000000000
## Cumulative Proportion  1.0000000000000000 1.00000000000000000
##                                        PC99                PC100
## Standard deviation     0.000000000000007325 0.000000000000006332
## Proportion of Variance 0.000000000000000000 0.000000000000000000
## Cumulative Proportion  1.000000000000000000 1.000000000000000000
##                                      PC101                PC102
## Standard deviation     0.00000000000000627 0.000000000000005439
## Proportion of Variance 0.00000000000000000 0.000000000000000000
## Cumulative Proportion  1.00000000000000000 1.000000000000000000
##                                       PC103                PC104
## Standard deviation     0.000000000000003673 0.000000000000003176
## Proportion of Variance 0.000000000000000000 0.000000000000000000
## Cumulative Proportion  1.000000000000000000 1.000000000000000000

We need 37 principal components to explain half of the variation of the data.

Visualizing Principle Components’ Ability to Explain Variation

Looking at at the plot below, we can see a visual ranking of how much of the variation each component captures. Each component is ranked according to its Eigenvalue. The eigenvalue is a measure of the proportion of variance explain by that component.

The scree plot helps us select a cut off point for determining how we can explain the most variation with the fewest components as possible. We evaluate the slope of the line connecting the components, and find the point when the absolute value of the slope becomes small, and each component following continues that trend. The ‘elbow’ in the plot below is at PC5. The components after PC5 do much less for us in accounting for the variance the income dataset.

screeplot(pr_income, type = "lines")

#elbow is around pc5

Interpretation of the Top 5 Principal Components

We will look at the factor loadings for each component to determine what each component is telling us about the data.

We can interpret factor loadings as coefficients of our linear combination for each feature within the principal component. They tell us the relative (transformed) value of each original feature. For example, a factor loading of -.75 for age would mean that this component contains the observations of younger people.

Component Interpretation

We want to find the most influential original features within our top 5 PCs. To this we will filter to show only those where at least one of the PCs has a factor loading greater than or equal to the absolute value of 0.25. This gives us the highlights of each component. Here are descriptions of the type of workers these principal components:

PC1: middle-aged husbands PC2: young men with little formal education PC3: Asian and Pacific Islander PC4: Career-focus males without family PC5: Mexican people

Note: these components are all quite male-dominated.

rownames_to_column(as.data.frame(pr_income$rotation)) %>%
select(1:6) %>%
filter(abs(PC1) >= 0.25 | abs(PC2) >= 0.25 | abs(PC3) >= 0.25 | abs(PC4) >= 0.25 | abs(PC5) >= 0.25) %>% rename("husbands" = PC1, "low_ed_male_laborer" = PC2, "asian_pac_isl" = PC3, "male_yopros" = PC4, "mexican" = PC5)
##                              rowname    husbands low_ed_male_laborer
## 1                                age  0.18536748        -0.091194280
## 2                      education_num  0.10559165        -0.456305049
## 3            marital_status_divorced -0.12297307        -0.121245468
## 4  marital_status_married_civ_spouse  0.39812029         0.064962147
## 5       marital_status_never_married -0.27611175         0.026881327
## 6          occupation_prof_specialty  0.06030228        -0.283025307
## 7               relationship_husband  0.41562618         0.100400172
## 8             relationship_own_child -0.18619502         0.088025922
## 9             relationship_unmarried -0.15438415        -0.061035972
## 10           race_asian_pac_islander -0.01133707         0.006958696
## 11                        race_black -0.11602195         0.029250746
## 12                        race_white  0.11374015        -0.046471243
## 13                        sex_female -0.33225474        -0.195130792
## 14                          sex_male  0.33225474         0.195130792
## 15             native_country_mexico -0.01221202         0.197502680
## 16      native_country_united_states  0.02207168        -0.180839129
##    asian_pac_isl  male_yopros      mexican
## 1     0.14546866 -0.351735676  0.043968457
## 2     0.02123203  0.229444433 -0.001380269
## 3     0.01730921 -0.254545406  0.075931750
## 4     0.06343668 -0.060996695 -0.082585727
## 5    -0.14483745  0.374119315  0.008549345
## 6     0.10002404  0.130027759  0.106651957
## 7     0.02193476 -0.015109831 -0.091256658
## 8    -0.16118057  0.290041931 -0.093754589
## 9     0.10824314 -0.277233657 -0.043232822
## 10    0.39994102  0.219542435 -0.113266352
## 11    0.16183171 -0.066337055 -0.451022089
## 12   -0.36865300 -0.048990952  0.459449764
## 13    0.08166583 -0.201765893  0.065149987
## 14   -0.08166583  0.201765893 -0.065149987
## 15    0.14470615  0.006009948  0.297613434
## 16   -0.44698474 -0.128490322 -0.288966406

Let us now determine if these principle components are good predictors of income_above_50k.

prc = bind_cols(select(income, income_above_50k), as.data.frame(pr_income$x)) %>%
  select(1:6) %>% 
filter(abs(PC1) >= 0.25 | abs(PC2) >= 0.25 | abs(PC3) >= 0.25 | abs(PC4) >= 0.25 | abs(PC5) >= 0.25) %>% rename("husbands" = PC1, "low_ed_male_laborer" = PC2, "asian_pac_isl" = PC3, "male_yopros" = PC4, "mexican" = PC5)

prc %>%
pivot_longer(cols = -income_above_50k, names_to = "component", values_to = "loading") %>% mutate(income_above_50k = as.factor(income_above_50k)) %>%
ggplot(aes(loading, fill=income_above_50k)) +
geom_density(alpha = 0.5) +
facet_grid(.~component)

Based on the density plots above, PC1 ‘husbands’ followed by PC2 ‘low_ed_male_laborer’ seem most predictive of income_above_50k.

Making a Logistic Regression Model using PC1 and PC2

What if we used only PC1 and PC2 to predict class using a logistic regression model?

prc$income_above_50k = factor(ifelse(prc$income_above_50k == 'TRUE', 'yes','no'),levels = c('yes','no'))

prc.pc1and2 = prc %>% select(income_above_50k, husbands, low_ed_male_laborer)

ctrl <- trainControl(method = "cv", number = 3, classProbs = TRUE, summaryFunction = twoClassSummary)

#splitting our data 
prc.pc1and2_index <- createDataPartition(prc.pc1and2$income_above_50k, p = 0.80, list = FALSE)
train <- prc.pc1and2[prc.pc1and2_index, ]
test <- prc.pc1and2[-prc.pc1and2_index, ]

fit.prc.pc1and2 = train(income_above_50k ~ .,
             data = train, 
             method = "glm",
             family = "binomial",
             metric = "ROC",
             trControl = ctrl)

confusionMatrix(predict(fit.prc.pc1and2, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1109  575
##        no  1132 6227
##                                                
##                Accuracy : 0.8112               
##                  95% CI : (0.803, 0.8193)      
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.4476               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.4949               
##             Specificity : 0.9155               
##          Pos Pred Value : 0.6586               
##          Neg Pred Value : 0.8462               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1226               
##    Detection Prevalence : 0.1862               
##       Balanced Accuracy : 0.7052               
##                                                
##        'Positive' Class : yes                  
## 

The Specificity (true negative rate) is much higher lower than the Sensitivity (true positive) rate. This makes sense given that there are roughly 3x more ‘<50k’ than ‘50k’ observations in the data.

income %>% group_by(income_above_50k) %>% count()
## # A tibble: 2 × 2
## # Groups:   income_above_50k [2]
##   income_above_50k     n
##   <fct>            <int>
## 1 FALSE            34014
## 2 TRUE             11208

What if we add the rest of the principal components to the LR model?

prc_index <- createDataPartition(prc$income_above_50k, p = 0.80, list = FALSE)
train <- prc[prc_index, ]
test <- prc[-prc_index, ]

fit.allpc = train(income_above_50k ~ .,
             data = train, 
             method = "glm",
             family = "binomial",
             metric = "ROC",
             trControl = ctrl)

confusionMatrix(predict(fit.allpc, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1108  533
##        no  1133 6269
##                                                
##                Accuracy : 0.8158               
##                  95% CI : (0.8076, 0.8237)     
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.4571               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.4944               
##             Specificity : 0.9216               
##          Pos Pred Value : 0.6752               
##          Neg Pred Value : 0.8469               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1225               
##    Detection Prevalence : 0.1815               
##       Balanced Accuracy : 0.7080               
##                                                
##        'Positive' Class : yes                  
## 

Not a significance increase in LR model performance. We will bring along PC1 and PC2 as guides for the rest of our journey.

PART II: K-means

Code adapted from This article on clustering

Major Assumptions: flnwgt does not include age information

#scaling all cols: 
income_scaled = as.data.frame(lapply(income %>% select(-income_above_50k), function(x) scale(x, center = TRUE, scale = TRUE)))

#adding PC1 and PC2
income_features = bind_cols(prc %>% select(2:3), income_scaled)

Choosing number of clusters

set.seed(503)

# Create 10 models with 1 to 10 clusters
kclusts <- tibble(k = 1:10) %>% 
  mutate(
    model = map(k, ~ kmeans(x = income_features, centers = .x)),
    glanced = map(model, glance)) %>% 
  unnest(cols = c(glanced))

# View results
kclusts
## # A tibble: 10 × 6
##        k model       totss tot.withinss betweenss  iter
##    <int> <list>      <dbl>        <dbl>     <dbl> <int>
##  1     1 <kmeans> 5050066.     5050066.  -2.22e-5     1
##  2     2 <kmeans> 5050066.     5002611.   4.75e+4     1
##  3     3 <kmeans> 5050066.     4599933.   4.50e+5     4
##  4     4 <kmeans> 5050066.     4525683.   5.24e+5     4
##  5     5 <kmeans> 5050066.     4497399.   5.53e+5     4
##  6     6 <kmeans> 5050066.     4397761.   6.52e+5     5
##  7     7 <kmeans> 5050066.     4321297.   7.29e+5     4
##  8     8 <kmeans> 5050066.     4312093.   7.38e+5     4
##  9     9 <kmeans> 5050066.     4302771.   7.47e+5     6
## 10    10 <kmeans> 5050066.     4215190.   8.35e+5     5
# Plot Total within-cluster sum of squares (tot.withinss)
kclusts %>% 
  ggplot(mapping = aes(x = k, y = tot.withinss)) +
  geom_line(size = 1.2, alpha = 0.5, color = "darkseagreen") +
  geom_point(size = 2, color = "darkseagreen")+
  theme_minimal()+
  labs(title = "Total within-cluster sum of squares (tot.withinss)")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

If we take a look at graph above, we can notice how the total within-cluster sum of squares decreases as the number of clusters increase. Considering the elbow method, which is the point where WCSS decreases much slower after adding another cluster, the number of clusters suggested is 7 (it appears that there is a bit of an elbow or “bend” at that point). A smaller WithinSS (or SSW) means there is less variance in that cluster’s data.

Analysis of cluster centers

set.seed(503)
# Fit and predict clusters with k = 3
final_kmeans <- kmeans(income_features, centers = 7, nstart = 100, iter.max = 1000)
## Warning: Quick-TRANSfer stage steps exceeded maximum (= 2261100)
final_kmeans
## K-means clustering with 7 clusters of sizes 9215, 1477, 8481, 2048, 5784, 6832, 11385
## 
## Cluster means:
##     husbands low_ed_male_laborer l_capital_gain l_capital_loss         age
## 1 -2.7297445          -0.2759099   -0.198069706   -0.119988857 -0.23157356
## 2 -0.6380062           4.2241956   -0.165536052   -0.107056924 -0.10619941
## 3 -1.0888871           0.9964358   -0.163410594   -0.087346410 -0.58354726
## 4 -0.5326338          -1.4560798    0.146150992    0.072624708  0.10967102
## 5 -0.8974086          -2.3127304    0.080449663    0.050697529  0.05030215
## 6  2.7423707          -1.3573604    0.402081043    0.240559416  0.45216429
## 7  2.0094291           1.1844507   -0.004924149   -0.007102903  0.31929125
##        fnlwgt education_num hours_per_week workclass_federal_gov
## 1 -0.01332680    -0.3260648     -0.4788903          -0.037829069
## 2  0.63117287    -1.9232894     -0.1255393          -0.159627228
## 3  0.06999104    -0.3913752     -0.1691089          -0.084702680
## 4 -0.08759274     0.2108513     -0.2880302          -0.007523982
## 5 -0.06136248     1.0436116      0.1416459           0.151577484
## 6 -0.05390728     1.1317791      0.4471669           0.134580614
## 7 -0.04395475    -0.4423143      0.2413852          -0.041988765
##   workclass_local_gov workclass_private workclass_self_emp_inc
## 1         -0.08404144        0.28598820            -0.17001422
## 2         -0.19626061        0.41059735            -0.14735394
## 3         -0.14296209        0.26861172            -0.12005897
## 4          0.15769330       -0.10463070            -0.03531089
## 5          0.32328507       -0.37992404             0.02074598
## 6          0.16952255       -0.53159418             0.54109066
## 7         -0.09435525        0.04599792            -0.08272872
##   workclass_self_emp_not_inc workclass_state_gov workclass_without_pay
## 1              -0.2111338665         -0.03718753           -0.01148029
## 2              -0.1317983346         -0.19203433           -0.02155415
## 3              -0.0850016092         -0.10746588            0.01675586
## 4               0.0195238546          0.03818573            0.04643704
## 5               0.0003009409          0.27527159           -0.02155415
## 6               0.1269504799          0.15652025           -0.01476034
## 7               0.1714635215         -0.10557625            0.01106092
##   education_1st_4th education_5th_6th education_7th_8th education_9th
## 1       -0.06402641       -0.09357358       -0.01599685  -0.006930832
## 2        2.04149225        2.78836734        0.40580600   0.451490424
## 3       -0.07023692       -0.10014062       -0.01706540   0.036167590
## 4       -0.07023692       -0.10014062       -0.05578506  -0.006496357
## 5       -0.07023692       -0.10014062       -0.13614714  -0.123186805
## 6       -0.07023692       -0.10014062       -0.13614714  -0.123186805
## 7       -0.07023692       -0.08242278        0.13391720   0.057769714
##   education_10th education_11th education_12th education_assoc_acdm
## 1     0.06207240    0.105187277    0.036184036         -0.006702235
## 2     0.07535966    0.004087475    0.109515504         -0.166806888
## 3     0.09641115    0.179198932    0.117441342         -0.054279697
## 4    -0.06437647   -0.105964954   -0.048425577          0.083658239
## 5    -0.16565392   -0.191760019   -0.109062011          0.149547676
## 6    -0.16491509   -0.191114961   -0.109770898          0.075292969
## 7     0.06286507    0.012009616   -0.000989485         -0.068707634
##   education_assoc_voc education_bachelors education_doctorate education_hs_grad
## 1        -0.001700628         -0.35071618        -0.108352936        0.19516671
## 2        -0.159579495         -0.39397735        -0.110343762       -0.35048421
## 3        -0.032662780         -0.35552841        -0.109262199        0.26558380
## 4         0.034253947          0.09700945        -0.002850822       -0.01716268
## 5         0.025850908          0.95342051         0.160841747       -0.62980551
## 6        -0.055333067          0.86581003         0.354200279       -0.64134340
## 7         0.060320160         -0.42156198        -0.110343762        0.39757489
##   education_masters education_preschool education_prof_school
## 1        -0.2321989         -0.03721127          -0.131248225
## 2        -0.2307989          1.16573482          -0.132910001
## 3        -0.2385014         -0.03993306          -0.132007203
## 4         0.1111233         -0.03993306           0.001679232
## 5         0.5413438         -0.03993306           0.145079747
## 6         0.5680097         -0.03993306           0.467785946
## 7        -0.2403181         -0.03993306          -0.132910001
##   education_some_college marital_status_divorced
## 1             0.26029978               0.4237359
## 2            -0.34762813              -0.2457561
## 3             0.14643227               0.1304589
## 4            -0.03696363              -0.4022052
## 5            -0.31153720               0.5950667
## 6            -0.31521844              -0.3945952
## 7             0.07941126              -0.4014441
##   marital_status_married_af_spouse marital_status_married_civ_spouse
## 1                     -0.018448501                       -0.91163128
## 2                     -0.026610254                       -0.01585235
## 3                     -0.022176192                       -0.91376690
## 4                      0.322266837                        1.05274544
## 5                     -0.026610254                       -0.92714757
## 6                     -0.015601683                        1.05990015
## 7                     -0.000185816                        1.06623754
##   marital_status_married_spouse_absent marital_status_never_married
## 1                           0.07759594                   0.40972990
## 2                           0.45608826                   0.04230271
## 3                           0.04775919                   0.86481240
## 4                          -0.11116210                  -0.69041612
## 5                           0.07147842                   0.48510266
## 6                          -0.10982914                  -0.68853779
## 7                          -0.10796251                  -0.69041612
##   marital_status_separated marital_status_widowed occupation_adm_clerical
## 1               0.26681319            0.374567691               0.5964540
## 2               0.13206986            0.005279633              -0.2559369
## 3               0.09316722           -0.087898422              -0.1416838
## 4              -0.17945978           -0.170465271               0.3888486
## 5               0.02737565            0.107153057              -0.1120948
## 6              -0.17440859           -0.165163778              -0.2504275
## 7              -0.17945978           -0.163042094              -0.2067430
##   occupation_armed_forces occupation_craft_repair occupation_exec_managerial
## 1             -0.01759752             -0.31711725                -0.19451677
## 2             -0.01759752              0.08845074                -0.32857404
## 3              0.03602117              0.24018832                -0.26176392
## 4             -0.01759752             -0.32862416                 0.09510417
## 5             -0.00776998             -0.33842916                 0.34625975
## 6              0.01568264             -0.30741735                 0.58702042
## 7             -0.01260477              0.48180311                -0.15022113
##   occupation_farming_fishing occupation_handlers_cleaners
## 1                -0.15039490                  -0.11117038
## 2                 0.39445923                   0.32632590
## 3                 0.09969586                   0.37175561
## 4                -0.13728679                  -0.15660200
## 5                -0.14604356                  -0.20936570
## 6                -0.09180305                  -0.19585259
## 7                 0.15027052                   0.02277991
##   occupation_machine_op_inspct occupation_other_service
## 1                  -0.00315603               0.44050381
## 2                   0.43182742               0.34256639
## 3                   0.11423801               0.12978797
## 4                  -0.06407017               0.04475994
## 5                  -0.25046782              -0.27480477
## 6                  -0.24208035              -0.31404983
## 7                   0.14547525              -0.17765077
##   occupation_priv_house_serv occupation_prof_specialty
## 1                 0.14388358                -0.3050936
## 2                 0.51575325                -0.3634910
## 3                -0.05860598                -0.3379195
## 4                 0.01020580                 0.2688844
## 5                -0.05970940                 0.8713049
## 6                -0.06976060                 0.6237046
## 7                -0.06935049                -0.3194768
##   occupation_protective_serv occupation_sales occupation_tech_support
## 1               -0.094005054       0.11537995              0.02404528
## 2               -0.115905631      -0.18284663             -0.14122811
## 3                0.011326791      -0.04405052             -0.04753537
## 4               -0.114918301      -0.08414215              0.02153444
## 5                0.008527286      -0.05791534              0.11636294
## 6                0.151639688       0.05817950             -0.01555116
## 7                0.008029442      -0.02720652             -0.01938833
##   occupation_transport_moving relationship_husband relationship_not_in_family
## 1                  -0.1880240          -0.83837728                  0.1928860
## 2                   0.0103104          -0.03527593                 -0.1116144
## 3                   0.1335390          -0.83813779                  0.4381345
## 4                  -0.1835986          -0.83837728                 -0.5908446
## 5                  -0.1970361          -0.83837728                  1.1334730
## 6                  -0.1984660           1.17342976                 -0.5838262
## 7                   0.3035973           1.18008735                 -0.5872346
##   relationship_other_relative relationship_own_child relationship_unmarried
## 1                  0.13211372              0.3813776             0.70586148
## 2                  0.66040658             -0.1577830             0.08717944
## 3                  0.19060589              0.7179856            -0.06282825
## 4                 -0.17534868             -0.4143332            -0.34411129
## 5                 -0.09912792             -0.1801502             0.14025457
## 6                 -0.15728061             -0.4097803            -0.33840271
## 7                 -0.15831058             -0.4111043            -0.34211299
##   relationship_wife race_amer_indian_eskimo race_asian_pac_islander  race_black
## 1       -0.22017979             0.038200500            -0.015903516  0.30508023
## 2       -0.08154854            -0.001439862             0.005838621 -0.14905090
## 3       -0.22017979             0.033123502            -0.011536019  0.08913338
## 4        4.54164250             0.021510381             0.049592212  0.01261872
## 5       -0.22017979            -0.033012942             0.032393818 -0.11091717
## 6       -0.22017979            -0.070059167             0.092876433 -0.22210030
## 7       -0.22017979            -0.000463200            -0.060403887 -0.10663288
##     race_other  race_white sex_female   sex_male native_country_cambodia
## 1 -0.006081141 -0.25770598  1.4292453 -1.4292453            -0.019457541
## 2  0.796014593 -0.07931044 -0.1734024  0.1734024             0.032503641
## 3 -0.001610612 -0.07819326 -0.6890225  0.6890225             0.020284844
## 4 -0.022118326 -0.03496430  1.4402511 -1.4402511            -0.023984566
## 5 -0.039584123  0.09684642  0.4520014 -0.4520014            -0.002347356
## 6 -0.058760033  0.17631898 -0.6934933  0.6934933            -0.023984566
## 7 -0.037796644  0.12840536 -0.6936183  0.6936183             0.016321270
##   native_country_canada native_country_china native_country_columbia
## 1          -0.014875386         -0.030487492             0.018596382
## 2          -0.048847383          0.044877567             0.036948750
## 3          -0.010957480         -0.021709301             0.012808626
## 4           0.053921774          0.037971227            -0.008189861
## 5           0.023517538          0.005357299            -0.026365701
## 6           0.015568837          0.073083461            -0.021978353
## 7          -0.004450494         -0.018382367            -0.001329888
##   native_country_cuba native_country_dominican_republic native_country_ecuador
## 1        0.0038040273                       -0.02759825            0.011399735
## 2        0.1082241867                        1.12437562            0.078982348
## 3       -0.0260046335                       -0.04636310           -0.004071481
## 4       -0.0002097586                       -0.01470085           -0.015008333
## 5       -0.0032278401                       -0.03515212           -0.030850423
## 6       -0.0110637415                       -0.04003559           -0.011854755
## 7        0.0105692540                       -0.04446457            0.009046319
##   native_country_el_salvador native_country_england native_country_france
## 1                -0.05329368           -0.004763749          -0.008987397
## 2                 1.54862041           -0.024933558          -0.028225686
## 3                -0.05710656           -0.007635263          -0.019864368
## 4                -0.04852851            0.034414226          -0.010913105
## 5                -0.05103193            0.026254207           0.051464866
## 6                -0.04167813            0.037204333           0.034050951
## 7                -0.05556349           -0.029076433          -0.018882823
##   native_country_germany native_country_greece native_country_guatemala
## 1             0.01110644          -0.016442371              -0.04115906
## 2            -0.06546779          -0.012355577               1.24617814
## 3            -0.02386707          -0.007847144              -0.04364986
## 4             0.01692380          -0.003251724              -0.04364986
## 5             0.01939979          -0.011914392              -0.03571324
## 6             0.01985320           0.020452950              -0.04364986
## 7            -0.00753085           0.015121219              -0.04364986
##   native_country_haiti native_country_holand_netherlands
## 1          0.010953292                        0.01837455
## 2          0.117022052                       -0.00470246
## 3          0.018305298                       -0.00470246
## 4         -0.001561846                       -0.00470246
## 5         -0.034661529                       -0.00470246
## 6         -0.031591004                       -0.00470246
## 7         -0.000835547                       -0.00470246
##   native_country_honduras native_country_hong native_country_hungary
## 1              0.01656535        -0.007440721           -0.009073947
## 2              0.11164742         0.029544091           -0.019954600
## 3              0.01401980        -0.010670507           -0.019954600
## 4              0.00332456         0.073253908            0.004524212
## 5             -0.02050163        -0.010990113            0.049385104
## 6             -0.01335935         0.028066102           -0.012616689
## 7             -0.02050163        -0.014297638            0.006465746
##   native_country_india native_country_iran native_country_ireland
## 1          -0.03804216        -0.022868719           -0.001292082
## 2          -0.04521229        -0.035211408           -0.028225686
## 3          -0.01360642        -0.008389600            0.017761559
## 4          -0.03137242         0.006440647           -0.028225686
## 5           0.02490100         0.018865211            0.002424527
## 6           0.13317745         0.060513534           -0.012656526
## 7          -0.04013280        -0.017728643            0.002917191
##   native_country_italy native_country_jamaica native_country_japan
## 1         -0.021663616            0.068318450          0.007013230
## 2          0.183540289           -0.019373586         -0.029129701
## 3         -0.024484599           -0.005730369         -0.009820242
## 4          0.004898403           -0.017050416          0.021697307
## 5         -0.024992362           -0.033271648         -0.017099234
## 6          0.002780470           -0.029356111          0.061276815
## 7          0.022110041           -0.010928156         -0.026569537
##   native_country_laos native_country_mexico native_country_nicaragua
## 1        -0.006443355            -0.1342064              0.020725246
## 2         0.135572848             4.0485100              0.112948566
## 3        -0.005135570            -0.1427395              0.003613831
## 4         0.023773309            -0.1322683              0.012388835
## 5        -0.021554146            -0.1316165             -0.021977588
## 6        -0.014760336            -0.1280912             -0.023606491
## 7         0.006984036            -0.1427395             -0.011017259
##   native_country_outlying_us.guam_usvi_etc. native_country_peru
## 1                             -0.0023769043        0.0200664672
## 2                             -0.0220616160       -0.0100870832
## 3                              0.0153680010        0.0058362525
## 4                              0.0000812817        0.0148987369
## 5                              0.0249805567       -0.0205935736
## 6                             -0.0220616160       -0.0176335526
## 7                             -0.0061288432       -0.0009168276
##   native_country_philippines native_country_poland native_country_portugal
## 1              -0.0050469470          -0.014129410             -0.02532116
## 2               0.0580106465          -0.026347966              0.14592275
## 3               0.0043745421           0.010621771              0.01074652
## 4               0.0630537192           0.003830261              0.01573178
## 5              -0.0004305018           0.002616419             -0.03237977
## 6               0.0153036563          -0.025051940             -0.03309650
## 7              -0.0270068665           0.019957165              0.02703965
##   native_country_puerto_rico native_country_scotland native_country_south
## 1                0.021567819           -0.0003894171          0.005560725
## 2                0.133956324            0.0111666352         -0.047311479
## 3                0.025030492           -0.0042106123         -0.007347582
## 4                0.047773229            0.0254118463          0.035436034
## 5               -0.048404666            0.0036341176         -0.003362592
## 6               -0.048182940           -0.0001499383          0.020901928
## 7               -0.008569669           -0.0043243968         -0.010098719
##   native_country_taiwan native_country_thailand native_country_trinadad.tobago
## 1           -0.01932740             0.004674978                    0.021285690
## 2           -0.03489522             0.001412851                    0.004259537
## 3           -0.02474613            -0.006700918                   -0.019065743
## 4            0.02114283             0.013244033                    0.037123648
## 5            0.02959117             0.001986205                   -0.016772163
## 6            0.08269283             0.003577598                   -0.011772464
## 7           -0.02985499            -0.004513865                    0.005328769
##   native_country_united_states native_country_vietnam native_country_yugoslavia
## 1                   0.09238820           0.0002202758             -0.0033054533
## 2                  -2.82319400           0.0520271920              0.0074709787
## 3                   0.11344850           0.0259885147             -0.0016392412
## 4                   0.01729990          -0.0314725956             -0.0009012734
## 5                   0.10719426          -0.0226840523             -0.0225576941
## 6                   0.04038956          -0.0326213854             -0.0030821307
## 7                   0.12516120           0.0104740572              0.0163991348
## 
## Clustering vector:
##     [1] 3 7 6 7 3 6 1 7 7 6 1 7 6 3 4 1 6 1 5 6 7 3 3 7 5 6 1 5 7 1 6 2 3 3 6 6
##    [37] 7 7 3 4 2 7 1 5 3 3 1 3 2 1 7 6 6 7 5 3 5 1 1 6 3 3 7 6 7 2 1 2 7 7 7 1
##    [73] 7 5 3 7 1 1 7 3 5 3 4 5 5 3 5 7 7 1 1 3 1 1 1 7 3 3 1 1 7 7 7 3 7 1 1 5
##   [109] 5 1 3 1 1 1 4 3 7 6 7 1 6 7 5 7 7 4 7 6 1 7 6 5 1 1 7 6 3 3 4 7 3 6 1 3
##   [145] 5 1 5 7 7 7 3 6 7 6 7 3 5 7 5 5 7 5 7 7 7 7 7 5 6 5 1 3 3 1 6 5 1 1 1 3
##   [181] 4 1 7 6 6 5 5 6 6 7 7 4 7 3 1 5 6 1 7 3 2 3 5 6 1 3 7 7 7 6 7 3 6 5 7 7
##   [217] 1 7 1 1 7 1 7 1 7 1 7 1 7 7 3 3 6 3 3 5 1 3 5 4 5 5 1 5 7 7 4 7 7 4 5 1
##   [253] 3 3 6 3 7 7 1 1 6 1 3 7 7 3 7 7 7 1 7 3 2 3 5 7 7 3 1 1 3 1 3 6 7 6 3 7
##   [289] 5 4 3 1 6 7 3 6 7 2 3 6 5 3 7 3 7 1 6 1 2 1 7 5 7 5 2 6 7 5 1 7 1 3 3 1
##   [325] 4 7 6 5 6 5 1 7 3 3 5 7 6 7 7 4 1 7 2 7 6 3 7 4 1 3 7 5 4 1 7 7 1 1 4 7
##   [361] 5 3 5 1 3 6 6 6 5 1 1 7 3 1 3 1 4 1 4 3 2 7 7 3 6 5 1 3 5 1 3 1 1 1 7 3
##   [397] 4 1 6 6 7 6 7 6 1 7 1 6 7 5 3 3 7 7 6 3 5 3 3 6 1 7 4 7 6 7 7 3 6 7 7 3
##   [433] 3 5 3 5 2 3 4 1 4 3 3 5 1 3 3 3 5 7 3 3 7 7 7 7 3 3 2 5 7 2 7 1 7 1 6 1
##   [469] 7 3 1 3 1 3 1 6 2 5 7 6 3 6 1 6 7 5 6 5 5 1 7 7 4 3 7 7 3 7 6 5 1 6 6 6
##   [505] 7 7 7 3 3 6 3 7 6 6 6 6 1 1 1 6 3 3 7 5 6 1 6 5 7 1 6 4 7 7 6 7 7 4 5 1
##   [541] 3 3 7 6 1 3 2 7 1 1 6 1 1 6 6 3 4 3 5 6 1 1 7 3 5 7 6 3 7 2 3 7 2 6 7 1
##   [577] 3 3 7 6 6 7 7 3 1 5 1 3 6 2 5 2 4 6 3 1 1 1 7 1 4 7 6 1 6 3 3 4 7 3 1 7
##   [613] 1 3 6 1 1 1 6 1 1 3 2 1 6 5 3 7 7 7 3 6 1 7 7 2 6 7 1 1 3 6 6 3 6 5 1 1
##   [649] 4 3 6 6 7 5 7 3 7 3 7 6 6 5 6 5 7 1 5 6 1 5 7 7 6 3 3 7 6 7 3 1 4 7 7 7
##   [685] 5 1 7 5 4 7 4 6 3 1 5 7 5 5 7 5 5 4 5 3 1 1 1 6 1 1 3 1 7 6 6 3 5 2 1 7
##   [721] 7 7 6 7 7 5 3 1 1 3 7 7 6 5 7 1 6 3 5 7 7 7 5 7 6 1 7 5 3 3 7 7 6 1 2 5
##   [757] 5 1 3 5 7 1 1 1 7 6 4 3 7 5 7 3 7 7 7 7 7 3 3 1 1 6 6 6 3 5 6 3 7 3 6 7
##   [793] 5 6 7 1 7 1 7 5 5 6 7 6 3 4 3 7 3 7 5 3 6 6 5 6 1 7 6 7 7 5 6 2 5 7 1 7
##   [829] 3 5 7 3 6 7 7 1 3 3 6 6 7 7 7 3 1 7 6 3 7 7 3 6 6 6 7 3 7 3 7 7 1 6 7 7
##   [865] 6 1 6 1 3 7 7 1 6 3 6 7 3 3 5 3 1 4 3 7 1 7 7 4 7 2 2 3 6 3 1 7 4 1 3 6
##   [901] 7 7 7 5 5 7 3 6 6 5 7 6 3 7 5 1 3 4 6 6 6 1 1 1 3 6 5 4 3 7 7 5 3 3 6 3
##   [937] 2 6 6 7 7 4 1 7 5 3 6 1 4 5 1 7 7 7 1 3 7 1 5 6 5 1 1 6 7 5 5 4 7 6 3 7
##   [973] 6 3 6 3 2 5 2 1 3 1 7 1 6 6 2 3 2 1 6 6 1 7 6 1 3 3 7 4 3 1 6 7 1 6 6 7
##  [1009] 3 7 2 3 7 6 5 3 1 6 7 2 1 7 1 3 5 7 6 7 6 7 1 7 3 5 7 7 6 6 7 7 7 3 1 5
##  [1045] 6 7 2 1 3 7 5 3 1 6 7 5 3 1 1 3 7 1 1 7 7 4 6 5 6 6 3 5 7 3 1 1 5 7 6 3
##  [1081] 5 7 1 1 1 1 3 5 5 5 4 5 1 2 7 7 3 6 1 3 3 5 3 7 5 5 1 1 6 3 7 7 5 1 3 3
##  [1117] 6 5 3 6 5 7 7 7 1 3 7 6 3 1 3 6 6 7 7 1 7 3 6 3 2 5 7 7 6 5 1 1 3 6 1 5
##  [1153] 3 6 4 1 7 4 3 5 7 6 7 5 7 1 3 4 1 7 3 7 3 1 6 3 3 7 7 5 2 5 7 2 1 1 7 1
##  [1189] 7 6 7 1 7 5 4 1 6 7 1 1 3 5 1 1 5 3 7 1 1 5 7 3 7 5 5 3 5 3 6 7 7 1 6 1
##  [1225] 5 7 3 6 7 6 7 3 7 5 6 3 7 4 6 7 5 5 6 7 5 5 3 3 7 7 3 6 2 3 7 5 4 6 7 6
##  [1261] 3 3 1 7 7 7 3 7 1 4 6 6 6 6 7 3 3 7 1 7 5 7 6 2 3 2 5 1 1 5 1 7 5 7 6 7
##  [1297] 3 2 6 5 4 3 4 7 6 7 1 1 6 3 6 5 1 3 5 4 5 6 6 5 5 3 5 1 3 1 4 6 3 7 5 5
##  [1333] 7 1 7 5 3 6 5 3 7 1 5 1 5 7 7 6 7 1 1 1 6 7 7 7 5 7 3 6 3 1 7 1 6 6 6 6
##  [1369] 1 3 7 5 6 6 1 2 7 3 1 7 3 1 6 6 2 5 1 1 5 3 7 6 6 7 7 1 7 7 7 5 7 6 7 6
##  [1405] 1 7 7 7 1 2 6 1 1 2 3 6 2 1 4 7 1 6 1 5 1 5 3 1 5 3 1 1 1 1 6 1 3 1 7 6
##  [1441] 6 6 7 5 1 7 1 6 7 5 3 3 3 5 5 1 3 1 7 2 7 7 5 1 7 1 2 1 5 5 5 1 6 3 6 4
##  [1477] 7 3 1 5 6 3 7 1 1 3 5 5 3 7 7 3 5 3 1 3 6 7 6 7 2 7 7 6 1 6 7 1 7 1 5 3
##  [1513] 3 1 7 3 1 3 1 3 1 7 6 7 3 1 7 7 7 7 2 1 1 7 1 7 1 6 5 2 3 1 6 3 7 3 7 6
##  [1549] 3 7 7 7 3 4 3 1 5 1 1 6 1 3 7 1 1 7 4 1 7 6 6 2 5 5 6 6 3 6 7 5 5 5 6 7
##  [1585] 1 6 3 1 7 6 7 2 3 7 2 6 7 6 7 3 5 5 7 4 7 1 1 7 7 3 3 5 7 6 5 7 3 3 7 1
##  [1621] 3 7 3 5 6 6 4 6 3 7 5 6 3 4 1 6 7 1 4 1 1 3 3 1 7 7 5 7 5 4 3 3 1 3 7 7
##  [1657] 4 1 1 7 1 5 1 4 3 5 6 6 3 3 5 5 4 1 1 1 5 7 2 1 6 1 7 7 7 4 1 1 5 6 3 4
##  [1693] 3 3 1 6 5 6 7 6 3 5 1 5 5 3 5 5 2 1 3 3 2 7 5 5 5 6 1 1 1 1 1 6 5 3 3 3
##  [1729] 1 3 7 7 3 6 3 1 7 1 7 6 1 4 2 1 6 3 2 3 1 5 3 3 6 1 3 7 1 7 6 1 7 3 1 4
##  [1765] 6 1 4 3 7 6 3 1 6 7 1 7 3 7 7 4 4 3 5 1 5 7 1 6 7 1 7 6 1 1 1 7 7 2 7 5
##  [1801] 7 5 1 1 7 5 7 3 3 1 1 4 3 1 6 6 6 6 3 5 7 1 3 6 6 4 5 7 6 3 6 3 3 7 5 2
##  [1837] 3 5 6 7 5 6 3 2 1 1 1 1 7 6 1 6 6 2 1 3 1 3 7 6 5 5 3 1 7 6 7 7 1 1 7 3
##  [1873] 4 4 5 3 1 6 7 2 3 3 4 5 5 6 6 3 5 3 5 1 3 7 7 1 6 1 5 3 1 3 4 5 1 3 1 1
##  [1909] 1 1 6 5 2 7 1 7 6 1 5 3 4 6 1 4 5 3 7 6 7 1 1 3 1 2 3 4 7 6 3 7 3 1 7 1
##  [1945] 7 3 3 1 5 6 3 1 1 1 1 6 1 6 3 1 1 1 6 6 1 7 6 6 3 7 1 2 7 7 7 7 1 6 1 1
##  [1981] 1 7 1 6 7 1 6 1 7 1 5 7 6 4 3 5 7 5 6 6 6 5 7 6 1 3 3 1 3 3 3 7 7 3 6 7
##  [2017] 7 7 1 5 6 3 5 5 3 7 6 1 6 5 3 2 5 2 1 1 7 1 7 3 5 1 3 7 1 7 6 5 7 5 6 6
##  [2053] 6 6 1 7 3 2 1 3 7 6 1 3 3 3 5 6 6 3 3 4 6 6 5 6 3 7 1 7 1 7 3 7 1 5 5 6
##  [2089] 1 3 3 3 7 6 7 3 6 5 7 5 7 6 3 1 6 7 7 1 1 5 6 7 1 1 3 5 6 1 6 7 1 1 6 7
##  [2125] 6 1 7 6 6 6 7 7 3 7 6 3 1 4 1 6 6 1 1 6 3 5 7 1 7 1 7 6 7 1 3 6 3 7 7 3
##  [2161] 3 5 6 1 6 1 6 7 1 5 3 6 5 7 3 7 1 6 1 6 3 3 5 1 1 7 1 7 2 5 7 7 5 1 5 5
##  [2197] 7 7 1 1 3 3 1 5 5 3 6 3 3 7 6 3 7 5 6 4 7 1 2 7 2 7 3 7 7 1 7 3 6 7 1 3
##  [2233] 6 1 1 5 1 5 5 6 6 7 1 5 6 5 3 1 4 1 6 3 1 6 6 1 6 5 1 3 6 3 7 7 7 1 1 7
##  [2269] 6 5 1 1 7 3 6 1 1 1 7 2 5 7 3 6 7 4 7 3 6 7 5 7 5 6 3 3 7 7 3 3 5 5 3 6
##  [2305] 1 1 6 7 5 5 5 1 3 3 5 5 5 6 2 7 4 1 7 5 7 1 6 1 6 1 3 6 6 1 3 3 6 7 1 3
##  [2341] 7 1 3 1 7 7 3 6 5 6 1 5 7 1 4 7 5 3 3 3 7 5 5 1 6 3 6 7 3 3 3 3 6 6 3 6
##  [2377] 4 7 1 3 7 6 1 7 7 7 1 1 1 1 7 6 4 7 7 5 7 7 5 7 1 5 7 1 6 7 1 3 1 1 1 3
##  [2413] 6 7 3 7 5 5 4 1 1 3 6 7 3 4 7 7 3 4 7 3 3 5 7 7 5 7 7 7 3 5 7 5 6 6 7 1
##  [2449] 3 5 3 7 7 6 7 6 2 4 7 6 6 7 3 6 1 5 7 7 1 7 4 7 7 3 3 3 5 1 5 3 6 7 1 1
##  [2485] 6 5 4 7 5 7 7 4 3 7 7 1 6 2 1 7 1 5 7 3 7 6 7 3 6 7 1 6 1 1 1 5 6 5 2 6
##  [2521] 1 1 3 6 3 7 5 1 5 5 3 4 1 1 6 1 7 7 2 1 1 3 1 1 7 1 3 3 5 2 1 3 6 5 4 3
##  [2557] 7 3 1 3 6 1 5 7 6 5 6 5 1 2 3 3 3 7 5 4 5 7 7 7 7 3 1 6 7 1 5 1 7 6 1 1
##  [2593] 7 1 1 7 7 5 6 7 3 3 7 1 3 7 7 3 6 5 3 5 3 7 1 1 3 5 7 4 7 7 7 2 3 1 7 7
##  [2629] 7 5 6 3 2 7 3 3 1 7 5 7 7 7 5 3 3 1 3 1 5 7 5 7 5 3 4 7 3 7 1 6 7 1 7 2
##  [2665] 3 1 3 7 6 1 4 3 7 1 1 7 1 7 3 5 6 7 5 4 5 2 1 7 5 7 5 3 5 6 7 5 3 1 6 5
##  [2701] 3 3 5 1 1 6 4 1 7 7 1 7 5 7 3 3 5 3 5 5 6 6 5 7 1 7 5 6 1 6 7 1 3 3 1 5
##  [2737] 1 5 7 7 7 7 1 6 2 2 6 3 2 7 7 1 5 2 5 3 2 2 4 7 1 6 5 4 7 7 7 3 3 3 5 7
##  [2773] 3 3 6 1 3 1 1 7 7 3 3 1 1 7 7 1 4 7 3 3 6 1 4 5 1 6 5 7 7 3 7 7 3 3 3 2
##  [2809] 5 6 1 1 1 1 6 1 6 6 3 3 4 7 4 3 6 6 5 3 3 6 7 5 7 1 1 1 1 3 5 1 1 1 7 7
##  [2845] 6 2 1 4 5 7 3 7 1 7 3 3 1 2 7 7 1 6 1 6 7 7 2 7 7 3 3 7 6 6 5 4 1 7 6 6
##  [2881] 2 7 3 1 1 1 7 7 1 1 1 7 4 7 1 6 3 7 5 1 5 1 7 7 2 1 2 6 7 1 3 7 3 1 6 3
##  [2917] 1 1 5 6 3 5 7 7 3 3 3 7 7 7 4 1 6 7 2 5 7 4 1 5 3 3 5 1 7 1 7 3 5 5 6 1
##  [2953] 3 5 3 1 7 3 1 5 3 5 5 7 3 3 1 3 1 3 6 3 7 4 1 3 6 3 7 6 6 5 7 7 1 3 3 2
##  [2989] 7 7 4 5 5 6 3 7 3 6 7 3 1 1 3 7 6 2 3 3 7 5 7 5 5 7 6 3 3 5 5 6 7 5 1 4
##  [3025] 3 3 7 3 5 3 3 1 2 6 7 7 1 7 1 4 6 1 5 5 7 1 4 5 7 3 1 7 7 7 6 3 7 3 4 7
##  [3061] 5 5 1 3 5 1 6 5 1 6 7 7 7 3 7 6 5 7 5 7 1 5 7 3 1 3 7 7 7 1 5 6 1 7 7 2
##  [3097] 7 6 7 1 5 3 1 3 1 5 6 3 3 3 6 7 5 6 3 3 5 7 3 3 5 3 1 6 6 6 3 7 4 1 7 1
##  [3133] 1 3 1 7 6 7 7 5 7 7 1 7 3 1 1 3 6 1 1 5 7 1 2 1 5 3 3 3 5 2 3 1 3 7 7 3
##  [3169] 6 1 3 6 7 7 1 3 5 7 6 3 7 3 6 5 5 6 7 5 1 6 3 1 7 6 1 5 1 3 5 5 6 3 6 7
##  [3205] 1 1 5 7 7 5 6 7 7 1 7 7 7 3 4 3 1 1 3 5 1 7 3 5 5 3 6 7 7 7 6 2 7 3 3 1
##  [3241] 7 7 4 6 3 7 7 6 7 3 1 1 7 3 7 6 6 1 6 5 7 1 1 1 5 7 3 2 7 7 6 4 5 7 1 7
##  [3277] 5 3 1 3 1 6 7 5 3 4 3 1 7 3 6 7 7 1 1 7 3 7 6 7 5 7 1 1 2 6 7 1 5 3 6 1
##  [3313] 7 3 7 7 1 7 7 3 1 7 7 1 1 6 3 7 3 7 2 3 7 5 7 7 1 6 3 1 6 7 7 4 3 7 4 2
##  [3349] 4 1 7 6 1 1 7 3 7 5 7 3 7 3 1 1 7 4 1 5 1 1 3 6 1 3 7 5 6 4 3 5 1 7 3 6
##  [3385] 1 5 3 5 1 7 6 5 3 7 7 7 3 4 1 1 1 3 1 1 3 1 3 1 2 3 1 6 5 1 7 3 6 6 7 3
##  [3421] 1 1 6 4 7 1 1 1 1 1 3 1 3 6 1 3 5 5 3 3 7 5 7 7 3 7 7 6 5 3 2 1 2 5 7 6
##  [3457] 7 1 7 4 5 6 3 6 7 1 1 5 7 3 1 3 1 6 1 5 5 3 1 6 5 5 6 6 7 7 5 5 5 6 6 3
##  [3493] 5 3 3 7 1 4 7 1 1 5 6 6 5 1 5 7 1 3 1 1 7 3 7 3 7 2 7 7 1 7 1 1 3 6 3 7
##  [3529] 5 6 3 7 6 3 5 3 7 6 1 5 7 1 3 1 1 6 1 3 6 1 7 7 1 5 1 6 3 1 7 3 7 3 3 7
##  [3565] 3 1 1 7 1 6 2 1 6 1 7 3 7 1 6 6 7 1 1 1 5 4 1 1 6 7 7 6 3 3 4 6 3 3 1 7
##  [3601] 1 1 6 5 7 1 3 3 3 7 5 7 6 1 1 3 7 7 1 5 3 6 6 2 7 1 3 1 3 1 3 1 5 1 1 5
##  [3637] 6 6 7 7 6 3 7 3 3 7 4 7 7 6 3 7 3 6 3 5 7 7 5 5 5 1 7 3 3 4 7 1 7 3 2 3
##  [3673] 1 7 5 6 6 7 7 6 5 7 3 3 6 2 7 6 6 5 7 5 7 7 5 5 6 1 6 5 7 1 7 1 4 5 5 6
##  [3709] 6 7 3 3 6 1 3 6 1 1 7 7 3 5 7 6 5 7 7 5 4 7 7 3 1 3 6 6 7 7 2 1 3 7 7 1
##  [3745] 5 7 6 1 7 7 7 1 7 4 3 3 7 1 7 2 7 1 3 5 7 7 3 6 6 7 6 3 7 7 6 1 5 3 1 1
##  [3781] 7 7 5 2 3 3 6 5 1 7 6 6 3 7 7 3 3 4 1 6 5 1 1 7 3 6 1 1 1 1 3 4 3 1 5 2
##  [3817] 3 3 7 7 7 7 1 6 3 1 5 6 1 6 3 7 1 7 3 2 5 4 1 1 3 7 1 7 7 3 3 6 7 1 5 7
##  [3853] 5 5 3 6 6 6 1 6 5 5 6 7 3 3 7 1 7 6 5 1 5 3 3 3 3 1 3 7 4 3 7 1 3 1 6 5
##  [3889] 1 1 3 1 7 2 5 5 6 1 1 6 1 7 6 3 6 6 5 5 3 1 7 3 7 1 1 1 5 7 5 3 6 6 1 3
##  [3925] 5 7 7 7 1 3 1 1 1 1 4 5 4 6 7 3 7 3 7 6 1 7 3 4 2 7 2 4 7 1 7 5 6 1 7 3
##  [3961] 7 7 6 7 6 7 1 6 5 6 3 7 1 7 7 1 3 1 5 7 1 6 5 1 1 5 6 1 7 7 5 3 3 6 6 7
##  [3997] 4 3 7 1 6 7 3 7 3 3 1 1 4 4 1 3 3 5 1 5 7 3 6 3 6 7 1 1 7 7 5 3 2 7 7 1
##  [4033] 3 1 5 4 7 6 1 3 1 3 3 1 1 1 3 7 6 1 1 3 3 6 1 6 6 2 6 1 3 4 7 1 4 1 7 1
##  [4069] 4 5 1 1 7 5 3 3 1 3 5 5 7 5 4 5 2 6 4 3 5 5 3 4 5 7 3 7 6 6 7 4 3 2 7 7
##  [4105] 3 6 1 3 5 3 3 1 6 7 5 6 1 1 1 2 5 1 6 6 3 5 5 2 7 7 7 3 6 1 3 4 7 2 6 6
##  [4141] 5 3 3 7 3 6 1 1 1 1 6 3 6 1 6 3 3 5 1 4 3 3 4 7 7 3 7 5 7 6 1 7 1 3 5 6
##  [4177] 3 7 2 1 1 3 3 6 3 7 1 6 4 5 7 7 1 7 5 5 1 7 7 5 5 7 2 1 5 3 3 7 7 7 5 6
##  [4213] 7 1 3 7 7 3 5 5 5 5 1 1 7 1 6 6 7 1 1 1 6 3 1 5 1 7 1 5 7 5 5 6 1 5 1 1
##  [4249] 1 3 1 6 3 1 6 1 7 7 7 5 1 1 1 2 7 2 6 4 7 7 1 3 3 3 1 6 7 6 5 5 1 3 2 1
##  [4285] 7 7 3 6 3 7 2 6 5 7 7 5 1 3 6 1 1 1 3 1 3 6 2 5 5 2 1 3 6 1 6 5 3 1 7 1
##  [4321] 3 3 7 6 7 4 3 6 3 3 3 7 6 1 1 3 7 1 5 4 1 7 5 7 7 7 5 5 1 4 5 3 3 6 3 2
##  [4357] 1 3 7 3 6 1 7 7 5 6 5 6 3 5 7 3 1 5 3 6 7 3 2 6 3 4 1 1 3 6 5 5 5 5 3 2
##  [4393] 2 4 1 1 1 1 3 7 5 4 3 1 3 3 1 5 7 5 3 5 5 3 6 6 2 7 7 7 5 6 6 7 6 5 7 4
##  [4429] 5 7 6 1 1 1 1 3 5 5 4 3 1 7 6 7 1 3 7 1 2 7 4 6 5 3 4 1 5 7 3 1 1 7 1 3
##  [4465] 4 2 7 1 7 7 1 2 1 5 5 7 7 5 5 3 6 4 6 5 4 6 6 6 4 5 6 7 2 5 1 1 7 1 6 7
##  [4501] 1 7 5 3 7 1 7 1 3 7 7 6 6 7 5 3 5 3 1 7 7 6 7 4 1 1 5 7 5 2 1 5 3 7 1 6
##  [4537] 3 1 5 1 7 1 4 3 4 6 6 7 3 7 1 6 6 1 1 2 7 7 5 7 7 7 1 4 6 5 7 7 3 5 7 4
##  [4573] 7 7 3 3 7 1 1 7 7 1 7 7 3 7 3 1 7 3 3 7 3 4 3 1 3 1 7 6 6 1 1 3 7 5 3 6
##  [4609] 7 1 3 3 6 5 1 6 6 1 4 4 1 3 3 6 5 6 7 3 3 6 7 3 7 3 3 5 5 7 1 6 5 7 7 1
##  [4645] 5 6 3 7 3 7 5 3 3 7 5 7 6 7 3 3 1 1 3 3 1 4 1 6 6 1 7 7 5 6 1 5 1 7 3 1
##  [4681] 7 7 6 7 2 5 7 3 7 2 7 7 5 6 7 1 3 1 7 6 6 3 3 6 5 7 5 7 3 7 3 3 1 1 1 1
##  [4717] 3 7 1 7 3 7 6 7 5 3 4 1 2 1 1 6 6 7 5 6 6 6 1 4 6 3 1 7 7 6 7 6 6 6 7 7
##  [4753] 3 7 7 5 5 3 1 7 3 1 7 5 7 6 7 1 5 1 2 5 7 3 6 6 2 5 1 3 1 7 7 7 7 1 7 6
##  [4789] 7 3 5 3 1 3 1 1 6 5 7 3 1 5 6 3 6 1 7 1 6 1 6 7 4 3 6 7 7 5 7 1 6 5 6 6
##  [4825] 6 5 7 3 5 5 7 7 7 6 2 6 7 3 6 3 7 5 6 6 1 6 5 7 1 5 7 3 6 4 7 1 5 1 4 6
##  [4861] 6 7 6 1 5 5 3 3 5 1 6 1 3 6 4 4 5 2 7 7 1 7 5 1 1 1 7 4 6 1 7 7 5 1 1 1
##  [4897] 3 3 1 3 6 5 1 1 6 3 7 5 6 5 1 7 7 3 5 6 1 1 6 3 1 6 3 1 7 1 3 1 5 3 1 3
##  [4933] 1 5 1 6 2 1 7 1 3 2 1 1 2 5 1 7 1 6 3 1 7 7 3 3 6 5 1 7 2 3 7 7 3 4 7 3
##  [4969] 7 1 3 5 5 3 3 1 7 4 6 3 1 5 5 1 5 7 7 6 7 4 1 6 1 3 7 1 7 3 7 1 1 1 6 1
##  [5005] 5 6 6 6 3 7 7 3 7 6 7 4 1 6 6 7 1 3 5 7 2 5 1 7 7 7 7 6 3 3 1 7 7 3 6 5
##  [5041] 5 3 7 3 3 5 7 3 1 6 7 6 7 4 7 6 3 4 5 1 2 3 1 6 5 2 7 3 3 3 6 6 7 6 7 7
##  [5077] 5 7 3 7 3 3 6 1 7 1 6 1 3 7 7 3 3 1 1 5 6 5 5 7 7 1 3 3 7 3 6 4 3 1 6 7
##  [5113] 7 7 3 4 7 1 5 5 3 4 1 7 1 1 7 1 7 1 3 7 7 5 7 1 3 5 1 5 7 3 1 7 5 1 5 3
##  [5149] 1 1 3 7 5 1 6 1 6 7 3 7 7 7 5 4 7 1 7 6 3 1 7 5 6 1 6 3 7 5 4 1 6 3 3 3
##  [5185] 7 6 5 7 7 7 7 1 3 5 7 5 7 1 2 2 3 1 5 6 7 3 1 1 1 1 7 7 1 1 7 7 1 4 7 1
##  [5221] 1 3 4 3 5 6 6 1 7 7 2 6 3 5 1 1 6 1 3 1 7 3 4 3 3 1 1 1 1 7 1 6 7 5 1 1
##  [5257] 4 7 5 6 7 4 6 3 6 1 1 1 1 5 3 5 7 7 6 7 6 1 3 6 5 1 3 5 6 1 6 7 4 2 6 7
##  [5293] 4 1 1 6 3 5 7 6 3 6 3 7 7 1 7 1 7 1 5 3 7 5 1 1 7 6 7 7 3 1 3 6 1 5 7 3
##  [5329] 5 3 2 5 7 7 2 5 5 2 7 4 1 6 6 3 4 2 2 6 1 6 7 7 7 4 7 1 5 1 3 1 3 6 3 6
##  [5365] 5 6 7 7 4 1 5 3 1 5 5 5 1 2 6 7 4 3 1 7 1 6 2 5 1 4 3 3 1 7 5 7 7 1 7 5
##  [5401] 7 6 1 7 7 3 1 6 2 7 7 1 6 7 1 5 4 3 3 1 7 6 7 3 1 1 5 5 4 5 1 6 7 5 6 1
##  [5437] 7 5 5 5 3 3 4 5 5 6 4 5 7 6 1 4 3 7 1 2 1 1 7 5 7 5 1 7 2 6 3 1 3 1 7 5
##  [5473] 7 1 6 6 5 5 5 6 3 7 7 3 6 5 5 3 3 5 7 6 3 3 1 7 6 2 7 6 7 3 1 3 3 1 6 3
##  [5509] 5 7 6 3 5 7 1 6 3 7 3 7 3 3 3 7 5 3 3 3 7 1 1 3 7 5 7 3 1 1 7 3 7 5 3 6
##  [5545] 3 3 5 6 7 7 1 7 1 7 5 1 1 1 5 3 5 3 4 4 1 3 7 1 7 3 7 6 1 1 3 5 3 3 3 4
##  [5581] 6 1 7 5 5 1 2 1 5 5 6 5 6 1 1 5 3 5 7 3 4 7 7 1 3 7 6 1 7 4 7 3 7 3 1 3
##  [5617] 5 1 6 7 7 3 7 7 5 6 7 7 3 1 6 3 7 6 3 1 5 5 1 1 6 5 6 7 7 5 1 3 5 6 4 1
##  [5653] 7 5 7 6 1 7 6 4 1 1 4 7 5 6 5 3 1 6 7 3 7 3 6 7 1 3 1 7 6 1 3 1 5 1 7 7
##  [5689] 7 6 5 6 7 5 1 3 5 5 4 7 1 3 6 7 1 3 6 5 6 7 3 1 1 6 3 3 7 5 3 3 5 6 4 7
##  [5725] 1 1 7 7 1 6 7 3 5 1 1 3 5 7 7 4 2 1 7 3 3 3 1 7 6 4 7 5 3 3 7 2 1 6 7 1
##  [5761] 3 1 1 5 7 7 5 1 7 1 5 3 1 3 3 1 7 5 3 2 1 1 7 1 7 7 4 2 3 7 7 1 7 6 3 7
##  [5797] 5 1 7 5 3 6 2 7 5 6 7 7 1 6 7 5 5 7 3 6 7 1 7 7 3 1 3 7 3 6 5 1 7 1 4 6
##  [5833] 3 1 6 6 3 6 7 6 6 6 3 7 5 1 5 6 7 6 5 7 1 6 6 6 3 5 3 5 7 7 7 3 3 7 7 3
##  [5869] 7 5 7 3 7 3 3 1 3 7 3 7 6 2 7 7 1 7 5 7 7 5 7 7 7 1 3 1 7 5 7 1 7 3 6 7
##  [5905] 6 1 3 6 2 3 7 3 5 5 7 6 2 3 7 3 3 4 6 1 7 3 5 1 6 4 1 1 4 3 6 1 5 3 4 7
##  [5941] 7 7 7 7 1 1 7 3 1 6 3 1 1 7 3 3 1 5 5 1 6 7 1 5 3 4 7 5 7 6 6 6 5 7 5 1
##  [5977] 1 6 3 1 6 7 7 1 6 4 7 6 6 1 3 1 3 1 6 1 1 6 1 3 1 7 1 6 1 7 1 4 7 6 2 4
##  [6013] 1 7 7 6 7 7 5 3 3 3 6 1 7 1 5 7 6 3 4 1 2 6 1 3 5 3 6 5 5 7 7 3 6 5 1 3
##  [6049] 7 3 7 3 7 3 3 4 7 6 7 2 1 1 7 7 5 7 5 1 3 3 7 5 2 7 1 5 3 6 7 6 3 3 4 6
##  [6085] 4 6 7 7 1 7 3 7 3 7 3 1 7 7 6 5 1 5 1 5 3 1 3 7 6 7 3 7 3 1 3 7 7 5 2 6
##  [6121] 4 1 1 5 6 5 7 3 6 2 3 6 5 7 2 5 5 3 7 6 1 5 3 6 5 7 5 1 2 3 7 7 3 3 5 7
##  [6157] 3 1 7 3 6 2 7 5 6 3 7 1 5 7 7 2 5 7 7 7 3 2 1 7 6 7 7 5 7 1 7 3 5 6 1 7
##  [6193] 7 1 6 3 3 3 3 2 6 6 1 5 7 1 1 7 1 6 5 5 7 5 7 6 5 5 3 3 5 1 7 7 5 3 7 3
##  [6229] 3 6 1 5 3 7 1 7 7 1 5 3 1 1 1 5 6 3 7 5 2 2 1 3 6 1 5 3 5 3 1 5 7 7 6 3
##  [6265] 7 7 4 1 4 7 1 6 6 5 1 1 7 5 7 6 6 3 1 1 3 7 1 3 6 2 7 5 5 6 5 4 1 3 1 3
##  [6301] 7 5 1 3 7 2 1 3 3 1 1 7 1 4 7 6 5 3 7 3 3 1 3 3 1 5 1 6 3 5 4 6 3 3 1 4
##  [6337] 5 1 6 5 6 7 1 1 7 3 3 5 1 6 3 3 1 1 1 7 1 1 1 5 6 1 5 1 5 7 1 5 7 3 7 7
##  [6373] 3 7 6 7 3 7 7 3 6 7 1 7 7 7 5 7 7 3 1 3 3 3 3 7 7 3 4 5 3 3 7 5 3 6 1 7
##  [6409] 7 6 6 3 3 3 7 1 1 7 3 3 5 7 5 6 7 1 3 7 6 7 7 3 7 6 3 6 3 3 5 2 7 3 5 6
##  [6445] 7 7 3 7 1 6 5 4 5 4 6 1 7 7 5 1 7 1 1 7 7 6 5 5 5 1 5 6 3 1 5 3 6 7 5 3
##  [6481] 3 3 3 7 5 3 3 3 3 5 1 3 5 5 3 6 5 7 1 1 7 7 1 7 5 6 1 3 1 6 1 1 6 7 2 1
##  [6517] 1 1 1 2 1 7 7 5 1 6 5 7 7 5 5 1 5 7 7 4 6 1 5 1 3 7 1 2 1 3 3 7 2 7 6 1
##  [6553] 4 7 1 3 3 3 6 7 7 1 1 3 1 7 3 3 3 5 3 1 5 7 1 6 1 7 6 6 3 7 5 1 1 6 3 5
##  [6589] 7 1 5 3 6 7 7 3 6 3 1 1 1 6 1 3 4 4 6 7 1 5 7 5 1 3 3 1 7 5 5 5 6 5 1 1
##  [6625] 5 1 6 3 3 7 5 7 5 3 7 1 3 1 3 3 3 5 1 7 1 3 7 3 3 4 5 3 1 3 3 1 3 1 3 3
##  [6661] 3 6 1 5 1 7 7 7 1 3 3 2 5 7 1 3 2 6 3 6 6 5 7 2 7 7 7 6 1 3 3 5 4 1 3 7
##  [6697] 1 7 7 5 7 1 7 1 2 1 3 7 5 1 7 3 3 7 7 5 3 3 7 1 7 3 1 4 7 3 7 1 6 4 7 1
##  [6733] 3 3 6 1 3 7 3 3 7 7 1 3 6 2 7 7 7 7 4 6 6 3 2 7 7 1 3 7 7 7 5 7 3 5 7 7
##  [6769] 3 6 6 7 3 5 1 2 1 5 3 6 2 1 6 1 7 7 7 3 7 4 3 7 1 7 6 5 5 3 7 1 3 7 6 7
##  [6805] 3 7 6 7 7 3 6 6 7 5 3 6 3 1 1 4 1 1 1 6 7 3 7 6 6 7 7 1 6 3 3 3 7 7 1 3
##  [6841] 7 7 3 1 1 6 3 5 1 6 2 7 3 1 1 6 3 3 7 5 5 7 5 1 6 7 7 3 6 6 7 6 6 1 6 1
##  [6877] 3 5 3 1 7 2 2 3 3 1 7 1 7 7 5 5 3 3 7 6 6 7 3 7 6 5 1 3 7 3 4 7 6 7 7 7
##  [6913] 5 7 1 7 5 6 3 1 4 5 7 3 2 7 7 1 4 5 5 3 5 3 7 5 1 7 7 1 7 1 7 5 1 7 6 6
##  [6949] 6 4 7 5 7 3 7 3 6 5 7 1 7 6 4 7 1 5 6 6 7 3 7 7 1 1 3 5 5 1 7 3 4 3 1 4
##  [6985] 5 6 6 6 1 3 1 1 3 2 1 6 1 3 6 7 7 5 3 3 5 7 7 1 5 4 6 7 7 7 7 1 3 7 1 5
##  [7021] 7 1 6 6 1 7 3 1 7 3 1 6 5 6 7 4 6 5 3 6 5 1 1 6 7 4 1 1 1 3 7 7 1 7 3 2
##  [7057] 3 5 5 7 6 6 6 1 7 3 3 3 4 7 1 6 3 5 6 7 7 3 6 6 2 6 1 7 3 3 5 1 3 1 3 3
##  [7093] 7 7 1 7 1 1 3 5 2 1 7 7 6 6 3 3 3 7 1 5 7 5 7 1 3 1 1 3 3 4 3 3 3 5 6 2
##  [7129] 7 3 5 1 2 6 7 7 5 3 3 7 3 7 4 6 7 7 6 7 4 6 7 7 1 1 2 1 7 3 1 7 1 3 2 3
##  [7165] 4 7 4 7 7 5 3 5 6 1 5 7 7 7 5 1 6 7 7 5 5 3 2 3 1 2 7 3 3 3 1 5 3 5 5 3
##  [7201] 1 1 7 1 6 5 7 1 4 7 1 1 2 2 7 7 6 6 6 1 7 6 3 4 7 1 3 1 3 4 3 7 7 4 1 5
##  [7237] 7 5 1 7 1 3 7 7 2 5 7 7 5 3 5 1 5 3 1 7 7 1 7 3 1 4 5 6 4 3 6 1 7 3 7 7
##  [7273] 1 5 7 7 3 7 5 3 1 1 7 6 1 3 3 7 3 6 7 1 1 3 3 2 7 3 6 6 3 1 7 4 3 7 1 6
##  [7309] 6 1 3 6 6 5 6 7 7 7 6 7 4 3 7 7 1 7 1 3 1 4 4 7 1 7 6 1 7 3 1 3 3 3 3 7
##  [7345] 3 7 1 7 7 7 7 1 7 7 1 7 6 7 3 7 4 3 7 6 5 2 2 3 5 5 7 4 5 7 5 6 5 3 7 5
##  [7381] 1 7 2 6 4 3 7 5 1 3 6 7 3 1 1 7 1 7 3 1 7 6 3 1 1 6 1 1 1 2 1 7 5 5 7 3
##  [7417] 5 6 5 4 6 1 1 1 4 5 6 3 4 3 5 7 5 2 6 2 1 7 7 3 3 4 6 6 6 7 5 5 2 6 5 1
##  [7453] 7 5 7 6 7 6 7 6 6 2 6 3 7 6 5 1 4 5 3 5 1 5 1 1 1 7 6 3 6 1 3 4 3 7 5 7
##  [7489] 1 3 2 2 6 3 1 4 7 3 1 3 1 1 1 3 4 5 7 3 3 3 1 1 1 4 3 6 1 1 6 5 7 3 6 1
##  [7525] 7 3 7 4 4 6 7 5 7 7 3 5 3 1 3 1 7 4 7 3 3 2 3 7 1 6 6 7 3 7 7 7 6 1 4 1
##  [7561] 6 3 5 3 5 6 7 3 5 6 7 5 3 1 7 7 7 6 1 1 1 6 3 5 1 5 6 6 5 7 1 5 4 6 3 1
##  [7597] 7 7 7 6 7 3 7 5 5 1 1 7 5 6 1 6 6 3 7 3 3 1 3 6 4 7 7 3 6 7 6 6 7 1 5 7
##  [7633] 3 2 1 6 7 6 6 7 1 3 7 5 1 1 6 4 1 3 3 2 1 4 7 7 5 7 7 7 7 7 1 5 7 5 6 4
##  [7669] 7 1 1 7 2 7 7 3 7 1 6 3 7 5 2 5 2 3 7 3 6 1 5 7 3 7 6 1 6 1 6 5 6 5 1 3
##  [7705] 7 7 1 7 7 7 7 3 5 7 3 7 1 6 5 3 3 6 6 1 7 1 5 3 7 7 7 4 6 7 2 7 7 2 2 7
##  [7741] 5 1 3 5 1 3 1 1 5 7 1 5 1 5 1 7 4 5 7 6 7 6 1 2 1 6 3 1 7 6 6 6 6 6 7 1
##  [7777] 7 7 1 3 5 7 7 1 7 4 3 5 5 6 6 7 3 6 7 6 6 3 7 6 5 6 5 7 5 7 1 3 6 6 5 7
##  [7813] 7 1 5 1 5 7 3 7 1 5 1 7 7 1 7 7 1 1 2 1 1 5 5 3 1 3 3 6 4 3 3 7 1 1 2 7
##  [7849] 6 4 5 3 5 3 1 1 3 7 5 6 1 7 7 7 6 7 1 6 7 3 6 3 6 6 6 6 6 3 6 4 6 1 3 6
##  [7885] 5 6 6 4 5 1 1 5 5 1 3 1 3 7 6 3 3 7 5 1 1 1 3 5 1 7 7 3 3 3 7 1 7 1 7 7
##  [7921] 7 5 7 1 6 7 5 1 3 3 3 6 6 6 3 7 3 3 6 1 7 3 3 6 7 1 1 7 5 5 4 1 1 4 5 6
##  [7957] 5 3 7 5 4 6 5 5 3 2 7 1 6 5 3 4 7 4 6 7 1 7 3 1 7 7 3 2 3 6 6 6 1 5 1 7
##  [7993] 1 2 6 6 3 3 7 5 3 6 7 7 5 6 6 1 5 3 2 5 1 1 6 1 7 6 6 4 5 1 3 5 7 6 6 1
##  [8029] 7 7 6 3 5 1 4 7 5 1 7 3 7 4 3 7 3 1 1 5 3 5 7 6 7 3 3 4 6 7 1 7 6 7 7 6
##  [8065] 7 3 3 3 7 1 1 1 3 5 7 1 7 6 5 7 3 6 4 6 1 6 5 1 1 6 3 1 7 7 7 3 3 4 1 6
##  [8101] 7 6 4 5 1 1 3 7 7 5 3 3 1 7 3 6 6 1 1 7 7 6 5 7 3 7 6 3 3 5 1 6 7 7 3 3
##  [8137] 4 6 6 6 5 1 3 1 1 1 3 6 1 4 7 6 7 6 2 1 7 3 3 1 6 1 1 4 7 5 3 4 3 3 5 1
##  [8173] 1 7 7 7 7 5 7 4 6 7 6 3 3 1 6 6 7 5 6 7 6 1 7 3 7 5 7 6 2 7 3 1 5 7 5 1
##  [8209] 7 3 1 5 7 5 7 5 3 5 1 5 3 7 5 1 5 6 7 1 6 7 5 7 3 3 1 7 6 1 3 1 5 6 7 6
##  [8245] 2 6 5 1 1 7 7 7 6 7 1 5 2 1 7 5 7 3 6 7 7 4 4 7 5 4 6 7 1 7 7 6 5 3 5 5
##  [8281] 2 7 7 6 7 7 1 4 4 7 7 3 4 3 7 1 3 3 1 3 6 5 5 6 3 7 1 5 6 7 2 3 2 5 7 1
##  [8317] 5 5 5 5 3 7 1 6 6 5 1 3 6 1 1 7 7 5 7 3 1 7 3 1 7 1 6 3 6 7 3 3 1 7 6 4
##  [8353] 3 7 4 7 5 7 6 7 3 4 3 4 3 3 5 1 1 3 3 3 6 5 7 7 5 5 5 1 1 1 1 3 3 7 6 5
##  [8389] 5 1 7 3 6 1 3 7 7 1 3 1 7 5 3 7 7 3 3 7 6 1 5 6 7 7 5 1 1 1 2 5 5 6 2 7
##  [8425] 1 6 5 7 1 3 7 7 5 6 3 1 1 2 6 3 7 7 7 7 7 3 3 3 6 1 3 5 1 1 1 3 2 7 7 7
##  [8461] 1 3 7 6 1 3 5 7 7 3 1 2 3 1 1 6 3 4 6 6 3 7 3 7 5 3 3 1 6 5 7 6 6 4 1 6
##  [8497] 7 1 4 7 6 1 5 3 6 7 7 5 1 6 5 6 3 6 7 6 7 7 7 1 4 7 6 1 1 1 1 1 7 1 3 5
##  [8533] 3 1 7 7 7 5 3 7 3 7 5 3 6 3 3 6 6 3 6 5 7 3 3 5 6 6 7 6 6 3 1 3 5 7 5 1
##  [8569] 3 6 5 7 5 1 7 1 6 5 1 1 1 2 7 3 5 3 7 3 7 3 1 1 4 6 6 7 5 1 5 7 3 3 7 1
##  [8605] 1 1 5 6 3 1 1 6 6 6 3 7 5 1 5 3 7 1 3 7 6 1 6 6 1 7 1 1 7 1 7 7 6 5 4 5
##  [8641] 7 6 3 6 7 2 1 1 6 7 3 1 7 2 7 1 1 4 3 1 7 7 1 7 5 1 4 1 6 6 5 3 1 7 7 3
##  [8677] 1 7 7 6 7 1 7 3 5 7 7 6 5 7 7 3 7 1 1 6 1 3 5 6 7 1 7 1 3 2 5 5 5 3 1 6
##  [8713] 3 1 7 1 6 3 5 2 6 7 6 3 7 7 6 3 5 6 7 1 7 3 6 1 4 1 6 3 7 7 5 6 2 3 7 7
##  [8749] 7 6 1 2 5 4 5 1 7 1 1 1 1 6 6 7 3 5 5 7 3 7 3 1 3 5 3 6 3 3 1 4 6 1 1 7
##  [8785] 5 6 1 2 7 3 7 2 5 7 4 6 3 7 6 1 3 1 1 3 1 3 6 1 3 3 3 5 5 6 2 6 3 7 1 7
##  [8821] 5 5 1 3 5 5 1 7 1 3 7 7 4 5 6 6 7 6 1 4 3 7 3 7 1 6 6 1 1 3 3 3 6 7 1 6
##  [8857] 4 1 3 7 3 3 7 1 5 1 6 6 7 3 5 5 1 3 1 7 7 3 5 6 4 4 6 6 2 5 3 4 7 5 3 3
##  [8893] 2 6 7 6 2 1 3 5 6 1 1 5 3 5 3 1 7 7 6 5 7 1 7 3 2 6 7 6 6 3 1 3 6 6 1 1
##  [8929] 5 4 7 1 7 4 7 1 3 3 6 3 1 7 5 7 1 7 7 5 3 7 5 7 3 1 6 1 4 6 1 3 6 3 3 7
##  [8965] 7 3 1 6 6 7 7 1 1 1 7 7 3 1 3 6 6 7 2 7 5 1 1 1 4 7 3 4 1 7 7 2 2 1 1 5
##  [9001] 4 7 1 5 5 1 3 7 5 7 7 7 1 7 5 3 5 7 6 7 6 3 3 1 1 7 6 5 6 3 6 2 7 6 7 6
##  [9037] 7 7 7 7 7 3 4 4 5 3 1 7 1 1 3 6 7 5 1 1 6 1 3 6 7 4 7 1 6 1 5 7 7 3 3 5
##  [9073] 1 2 1 7 7 3 7 7 7 7 2 5 6 5 4 3 3 7 1 6 5 7 7 5 7 5 1 1 7 5 5 3 1 7 7 1
##  [9109] 7 5 6 7 7 6 6 3 7 1 4 5 5 3 4 1 7 4 3 7 3 7 7 6 7 6 6 3 7 6 3 7 4 2 7 6
##  [9145] 6 6 7 3 4 3 3 7 1 7 4 6 6 7 6 5 6 1 7 1 6 4 6 7 3 7 5 5 7 3 3 1 7 3 7 7
##  [9181] 1 4 3 3 6 1 3 6 6 7 5 5 2 1 3 7 1 5 7 1 1 6 6 6 3 7 1 7 7 6 7 1 7 5 1 7
##  [9217] 3 3 1 6 7 1 5 6 3 3 3 7 2 3 2 6 5 1 3 7 5 5 7 1 7 1 7 7 3 3 2 7 6 5 6 1
##  [9253] 1 7 5 6 6 1 7 7 3 7 5 3 5 3 6 7 7 7 3 3 7 2 1 7 3 1 6 5 1 1 4 7 1 6 4 1
##  [9289] 7 1 6 1 3 6 1 7 7 7 1 3 6 5 5 3 6 3 3 7 5 4 5 1 7 6 7 1 7 7 1 3 6 1 3 1
##  [9325] 1 7 6 5 7 3 6 7 7 6 3 5 1 7 7 6 1 5 6 3 3 7 3 3 4 6 3 7 7 7 6 4 6 7 3 6
##  [9361] 1 7 1 6 7 4 5 1 6 5 7 5 7 2 3 1 1 7 6 6 6 3 1 1 2 3 2 1 3 5 2 4 3 7 1 7
##  [9397] 7 1 6 6 1 3 1 6 1 5 5 7 1 6 1 3 1 7 1 4 6 2 3 7 3 7 3 5 3 7 7 6 3 7 1 3
##  [9433] 6 2 5 1 3 7 1 3 2 3 5 3 2 7 3 7 1 7 7 5 7 6 7 3 7 5 7 5 6 6 3 1 1 7 3 1
##  [9469] 1 7 1 7 1 3 4 7 4 3 7 5 5 5 3 6 6 1 3 3 6 7 1 1 1 7 7 1 7 5 4 7 7 1 1 6
##  [9505] 3 7 3 5 7 7 3 7 1 4 2 5 7 1 3 3 2 3 7 2 3 5 1 5 5 6 1 1 7 3 5 4 6 2 6 2
##  [9541] 3 3 7 1 3 6 3 7 7 7 3 1 1 4 6 1 3 3 7 1 7 6 3 7 1 2 3 3 3 7 3 3 6 7 7 5
##  [9577] 6 1 7 7 5 5 7 7 4 5 5 7 7 5 7 3 1 1 4 5 6 5 3 7 3 6 1 6 1 3 3 7 6 3 7 7
##  [9613] 7 3 7 1 1 5 7 6 1 7 6 1 1 5 1 7 1 5 3 7 3 3 1 7 6 5 1 3 7 1 1 7 3 7 3 5
##  [9649] 5 3 7 5 2 7 6 3 6 7 2 1 1 1 7 7 7 7 5 7 3 5 3 7 7 7 3 7 7 7 7 5 1 7 3 7
##  [9685] 5 5 3 6 1 6 6 3 7 1 4 5 1 7 4 7 7 6 3 1 7 7 5 1 7 1 6 3 1 4 6 3 6 7 5 2
##  [9721] 6 4 1 7 6 7 7 5 3 5 7 3 7 5 3 7 6 3 4 6 4 5 3 2 5 3 5 1 5 6 2 3 1 5 6 7
##  [9757] 1 3 7 3 7 5 1 6 3 6 1 7 6 7 6 1 1 3 5 7 5 7 4 6 5 1 1 3 5 7 4 6 7 6 6 1
##  [9793] 6 5 4 7 1 2 6 7 7 5 7 1 5 1 1 5 3 3 1 6 1 6 4 1 3 7 5 2 6 6 1 6 3 6 7 1
##  [9829] 1 5 6 1 3 3 1 5 6 5 2 3 7 7 1 1 1 1 7 3 5 1 4 7 3 3 6 3 1 4 3 3 7 5 6 2
##  [9865] 6 7 6 7 6 7 3 1 1 7 1 7 7 7 7 1 3 7 7 7 2 3 3 7 7 7 1 4 5 1 7 6 7 7 1 3
##  [9901] 3 4 6 7 3 7 4 6 2 7 7 1 1 6 1 1 7 6 4 1 1 3 7 4 1 6 2 4 1 1 5 7 7 1 5 3
##  [9937] 7 3 3 5 5 4 3 1 5 3 1 5 3 3 4 2 3 6 7 7 7 1 7 6 2 7 7 1 4 7 1 6 1 1 1 1
##  [9973] 1 7 1 6 1 7 6 5 7 6 1 6 3 6 5 7 6 6 1 5 1 3 6 6 1 5 7 1 3 3 1 4 5 7 6 5
## [10009] 5 3 3 1 5 6 7 1 7 1 5 5 7 4 7 3 6 6 7 2 3 7 5 1 3 3 3 3 6 7 7 7 7 1 2 4
## [10045] 3 7 3 3 3 7 7 2 7 5 3 6 7 6 3 2 3 7 1 1 1 5 1 4 1 2 7 3 6 3 7 3 3 6 7 7
## [10081] 6 6 6 7 1 1 5 1 2 7 6 7 7 6 3 4 3 3 5 1 3 6 3 7 3 5 5 7 6 6 7 5 5 3 7 4
## [10117] 4 3 7 6 7 7 3 6 7 6 2 3 4 5 5 3 3 7 3 6 3 7 3 6 6 4 6 4 4 3 6 3 3 5 4 1
## [10153] 6 6 5 7 7 7 6 1 1 2 1 1 3 4 6 7 4 3 6 5 3 3 7 1 6 6 6 7 6 7 2 3 1 6 1 5
## [10189] 1 1 7 1 7 3 1 1 3 3 4 7 3 1 5 1 6 4 7 3 7 5 3 1 5 5 7 4 3 7 7 6 6 4 1 1
## [10225] 5 7 7 3 3 7 3 3 7 5 5 7 6 3 3 3 5 5 3 7 3 7 3 6 4 7 6 2 1 3 3 7 7 4 7 1
## [10261] 1 1 7 3 3 6 4 3 2 5 7 3 5 1 6 6 1 7 7 7 7 1 3 4 3 3 1 6 6 5 5 7 7 5 1 7
## [10297] 6 2 6 6 1 3 1 1 7 1 1 5 5 6 3 2 6 4 2 5 3 7 6 5 3 6 1 1 1 1 1 6 3 6 7 6
## [10333] 6 5 7 2 7 1 3 7 7 3 7 7 4 4 7 3 6 7 1 6 7 3 7 6 1 7 6 6 7 6 5 7 7 7 6 3
## [10369] 3 3 7 3 1 5 5 5 3 5 1 7 2 6 6 7 1 3 3 7 7 7 5 5 7 3 2 4 1 1 6 6 6 1 3 1
## [10405] 3 6 7 2 1 7 1 5 7 6 7 1 6 7 3 3 7 3 1 1 5 5 1 4 1 7 7 5 6 5 5 1 3 6 6 3
## [10441] 7 3 3 7 2 3 3 6 7 4 5 6 6 3 3 1 7 1 6 5 1 6 4 3 5 7 5 7 3 7 7 3 6 1 7 6
## [10477] 1 5 2 1 1 7 6 1 3 7 3 3 7 5 3 1 1 3 6 6 6 1 7 6 5 2 3 1 1 3 1 1 5 1 6 5
## [10513] 1 5 2 7 3 5 7 5 7 7 7 4 7 7 5 6 3 3 7 3 5 1 3 7 7 6 1 7 6 1 3 3 5 3 3 7
## [10549] 3 6 6 3 5 5 7 3 7 3 4 3 1 1 7 3 5 6 1 3 7 3 5 3 1 7 6 6 1 1 1 3 4 6 7 3
## [10585] 1 4 2 4 3 1 1 3 4 3 5 6 3 3 6 2 3 7 1 2 3 1 5 2 7 7 1 7 3 5 5 3 7 4 1 7
## [10621] 4 1 7 3 5 7 6 1 3 7 2 7 3 1 7 3 1 7 1 6 3 7 2 5 7 7 3 7 7 7 3 4 7 7 5 5
## [10657] 7 3 1 6 7 7 7 7 1 5 7 5 1 3 4 3 7 1 3 1 7 7 1 5 3 7 1 6 1 3 1 6 6 1 5 5
## [10693] 4 1 3 7 7 7 7 6 5 7 5 3 1 4 1 1 1 3 3 5 4 6 5 5 7 7 6 6 3 7 4 3 1 5 3 6
## [10729] 6 7 7 7 3 6 4 6 3 7 6 3 5 3 7 1 3 6 7 2 1 1 1 5 1 5 7 7 2 3 2 1 6 5 7 7
## [10765] 3 5 1 6 1 1 6 1 3 2 7 5 2 3 3 1 1 5 3 5 3 7 3 6 1 5 7 3 3 6 3 5 6 3 6 7
## [10801] 4 3 6 3 6 6 7 6 1 3 1 4 1 3 6 5 2 1 3 6 7 3 4 7 3 5 7 7 7 7 7 5 2 4 1 1
## [10837] 3 1 7 3 7 1 1 2 5 3 7 5 7 7 7 6 7 1 7 7 1 3 5 3 1 7 1 6 7 1 3 6 3 5 1 7
## [10873] 3 3 7 3 7 2 6 3 7 7 3 5 7 5 7 5 7 7 3 1 3 7 7 7 7 6 1 3 6 7 7 7 3 7 6 5
## [10909] 6 3 3 6 3 4 4 3 7 1 6 5 6 7 6 1 3 7 7 3 5 6 3 1 6 7 7 5 3 3 3 5 6 3 5 5
## [10945] 6 7 6 5 7 3 7 7 5 4 4 6 7 3 5 7 6 1 3 7 3 6 1 6 7 1 1 7 7 4 2 7 7 7 5 7
## [10981] 7 7 6 3 5 3 3 3 5 5 5 4 4 3 7 6 3 7 7 7 3 7 7 6 6 7 6 5 7 7 1 3 1 1 3 6
## [11017] 7 1 5 3 7 1 5 7 3 4 3 1 7 5 6 5 1 7 1 1 6 6 6 7 7 3 1 1 4 7 1 1 6 3 5 5
## [11053] 7 6 5 6 3 7 1 1 4 7 1 7 4 1 7 3 5 1 7 5 7 7 6 7 7 3 6 1 7 7 7 7 3 6 2 3
## [11089] 1 6 7 1 5 3 7 7 4 1 3 4 5 3 6 6 7 1 5 3 5 2 1 5 1 3 7 6 6 3 1 5 6 1 3 3
## [11125] 3 7 1 6 1 1 3 1 1 1 2 7 7 4 1 7 5 3 3 6 2 6 3 5 7 5 6 1 1 3 3 7 7 2 6 4
## [11161] 7 3 5 1 3 1 3 7 7 1 3 6 3 5 1 7 5 1 7 1 1 1 6 7 7 5 5 5 6 7 3 1 7 1 7 7
## [11197] 5 4 1 3 1 7 5 5 3 7 7 5 1 3 1 3 6 1 6 7 3 7 7 7 7 3 5 1 7 4 6 4 5 6 7 1
## [11233] 1 3 5 6 7 1 6 1 5 5 7 7 3 4 7 3 6 3 7 6 3 6 4 1 4 3 3 1 7 6 7 7 1 1 3 7
## [11269] 3 3 3 1 1 7 1 7 1 7 7 5 2 6 7 3 3 3 7 3 3 6 5 6 7 7 1 7 7 7 3 1 7 3 1 7
## [11305] 7 3 5 7 6 3 6 7 1 3 5 7 7 3 3 7 6 1 6 5 7 7 3 7 3 7 7 7 7 7 4 5 7 5 1 1
## [11341] 7 5 1 6 3 1 6 3 1 3 6 3 2 7 3 6 7 7 3 7 7 3 6 6 7 6 4 7 5 2 3 7 6 3 6 7
## [11377] 3 7 3 6 2 7 7 1 3 6 6 1 4 3 1 1 1 7 1 1 7 2 6 1 1 3 7 5 5 3 7 5 1 6 1 3
## [11413] 1 7 2 5 7 5 3 1 3 7 4 3 6 7 4 5 1 6 5 5 5 1 6 3 1 1 7 7 1 7 4 6 3 7 3 4
## [11449] 7 3 1 5 5 1 3 5 7 3 6 7 3 1 5 1 1 3 7 6 7 3 7 2 1 1 1 6 7 4 7 7 1 7 6 7
## [11485] 3 4 1 1 5 1 2 5 3 7 1 3 7 6 3 4 3 6 3 3 6 3 3 1 7 5 1 7 6 4 1 7 6 1 1 5
## [11521] 7 1 4 7 3 7 1 3 6 5 7 6 6 2 6 7 4 3 6 7 2 3 6 7 2 5 7 7 7 2 2 3 1 2 3 5
## [11557] 3 7 7 6 5 7 3 6 7 5 3 6 6 7 1 6 3 3 2 7 1 7 3 2 7 3 3 2 5 5 3 3 5 6 7 4
## [11593] 3 7 3 3 3 1 5 6 1 7 5 4 7 7 6 3 5 7 7 6 7 1 3 3 5 1 6 3 1 7 3 6 3 5 7 3
## [11629] 5 1 5 3 7 3 7 3 1 5 7 5 3 3 3 6 7 1 7 3 2 7 7 3 1 3 6 7 7 7 1 3 5 1 5 5
## [11665] 1 3 5 6 1 1 5 7 7 7 6 3 7 5 5 3 6 7 3 3 6 6 6 3 5 3 7 6 6 7 6 7 1 1 4 6
## [11701] 1 3 7 3 7 1 5 7 1 3 7 3 1 6 3 3 7 1 1 1 1 3 3 3 5 1 1 6 7 1 4 3 3 5 7 7
## [11737] 3 5 1 7 4 3 2 6 6 5 1 6 7 7 1 7 5 1 6 7 7 1 4 3 5 1 7 1 1 7 2 7 6 5 7 6
## [11773] 4 6 7 5 5 6 7 3 6 5 1 2 1 7 6 6 3 4 5 1 4 7 1 7 7 1 5 2 3 7 7 5 5 3 4 1
## [11809] 3 4 6 1 3 7 5 4 6 4 7 1 6 3 6 4 1 1 1 6 1 1 6 6 3 3 3 1 3 7 7 1 3 7 3 5
## [11845] 3 1 7 7 1 5 1 1 5 7 6 1 7 7 7 7 6 5 1 1 1 7 2 5 4 6 6 3 7 1 5 5 3 1 1 7
## [11881] 1 5 6 6 1 1 1 5 1 3 7 6 1 6 5 6 3 1 3 7 1 5 7 6 4 1 1 1 1 3 7 3 6 5 5 1
## [11917] 1 1 7 6 1 7 5 5 5 6 3 7 5 2 7 7 1 1 1 7 7 3 7 7 6 5 6 1 6 1 7 1 1 1 1 7
## [11953] 3 7 3 7 1 1 1 7 5 6 7 5 5 6 6 7 3 3 5 3 7 1 3 5 1 1 7 6 3 5 6 7 3 3 6 5
## [11989] 1 7 7 1 7 3 3 1 1 3 6 3 1 7 5 3 7 3 3 7 5 1 7 1 6 4 1 1 1 1 1 4 1 3 6 6
## [12025] 6 3 6 7 1 7 4 4 1 3 6 5 7 1 7 6 3 3 1 3 7 1 6 2 2 3 7 6 6 1 3 3 7 3 5 1
## [12061] 1 1 7 1 7 5 7 7 7 1 2 3 5 6 1 7 6 7 5 7 3 7 6 7 1 7 5 1 3 5 5 3 6 4 3 1
## [12097] 5 1 6 5 6 5 5 5 7 6 1 7 6 7 7 6 6 7 6 1 6 7 1 1 1 7 5 5 1 6 1 1 7 1 3 1
## [12133] 6 1 7 7 6 7 1 6 7 7 6 7 1 7 7 4 5 5 6 4 6 7 3 3 5 5 4 7 1 5 3 3 1 2 7 7
## [12169] 1 6 5 3 3 7 3 5 5 3 7 6 6 6 7 7 5 1 1 5 7 7 3 6 6 5 3 6 7 7 3 1 7 6 5 4
## [12205] 6 7 3 6 7 3 4 3 7 6 4 5 7 5 7 6 7 5 7 3 1 1 6 2 1 1 3 7 3 5 3 7 5 6 6 7
## [12241] 3 1 7 7 3 3 3 1 4 3 7 7 1 6 1 6 7 6 7 7 3 3 5 7 7 7 1 7 5 3 1 2 7 7 6 4
## [12277] 6 3 6 6 1 7 3 3 5 7 7 1 1 7 6 6 6 6 2 6 7 7 6 4 6 3 1 7 7 7 5 7 7 1 3 5
## [12313] 7 1 7 6 5 3 1 7 1 5 7 6 5 6 6 6 7 5 3 1 5 1 7 1 3 7 6 1 3 7 7 7 3 5 6 1
## [12349] 2 5 7 2 3 1 5 7 5 2 1 3 1 3 7 5 2 3 7 6 6 7 4 1 5 1 4 1 6 3 2 7 7 7 5 6
## [12385] 7 1 4 3 1 5 6 4 4 3 7 4 3 4 6 7 6 3 5 7 3 1 4 1 7 1 3 3 3 3 3 7 6 1 4 7
## [12421] 6 6 7 6 5 7 6 1 7 6 6 1 5 1 6 6 3 7 1 5 1 3 7 3 7 1 2 6 6 7 1 6 6 1 1 1
## [12457] 1 1 3 1 3 6 6 7 7 1 3 7 5 6 3 6 3 5 1 1 5 1 2 5 4 1 5 6 7 4 7 7 2 5 3 7
## [12493] 1 1 3 3 4 6 1 3 2 1 6 1 1 3 6 5 4 7 1 1 1 7 1 3 3 1 5 6 2 3 7 3 4 5 7 1
## [12529] 7 7 3 5 5 6 3 3 3 1 5 1 6 6 1 6 4 5 1 7 7 3 1 7 7 6 7 1 7 6 7 7 7 3 1 3
## [12565] 7 1 2 6 3 7 7 7 1 7 1 6 5 5 2 7 5 5 3 1 1 6 7 7 3 1 7 7 1 7 3 3 3 7 7 3
## [12601] 7 5 3 5 4 5 4 5 6 7 7 6 5 6 7 3 7 3 6 7 7 3 1 3 7 6 1 3 4 7 3 3 7 1 3 1
## [12637] 3 5 6 3 7 1 4 7 3 3 1 7 1 3 5 1 7 2 5 7 6 3 4 3 7 7 3 7 7 3 7 3 2 3 6 1
## [12673] 1 3 7 7 6 7 1 7 3 4 3 3 3 3 7 7 7 4 6 1 7 2 6 7 1 7 3 3 1 7 5 6 7 1 6 7
## [12709] 7 7 6 1 1 1 3 5 6 5 6 7 3 1 6 7 6 1 5 7 6 1 4 3 3 1 5 6 3 5 3 5 6 1 3 3
## [12745] 6 1 5 1 3 5 5 1 5 7 3 6 7 3 7 1 1 1 5 7 1 7 7 1 1 7 5 7 3 3 7 5 6 4 6 3
## [12781] 6 1 1 1 5 7 1 7 1 7 4 4 1 3 3 7 7 6 5 3 5 1 7 1 5 7 6 1 7 7 7 3 1 3 7 6
## [12817] 6 1 7 7 3 7 7 7 3 1 5 7 6 6 5 1 5 1 6 5 3 7 1 5 3 7 3 7 3 7 2 7 2 1 6 3
## [12853] 5 7 4 7 7 5 3 1 7 6 1 7 7 1 4 5 3 4 5 5 1 7 5 7 3 6 7 7 1 3 6 6 3 3 7 1
## [12889] 5 6 5 5 1 6 3 6 7 7 6 7 1 1 6 1 5 5 1 7 1 3 1 4 3 7 3 1 1 3 1 1 4 3 4 1
## [12925] 1 1 6 5 7 1 3 7 5 7 7 7 7 7 6 6 7 6 1 4 1 7 3 7 3 6 6 5 3 5 6 1 1 7 7 3
## [12961] 3 7 1 7 3 3 1 4 7 4 7 3 5 7 6 7 7 3 7 2 1 5 7 7 3 5 3 3 7 5 1 7 7 4 5 7
## [12997] 5 7 3 1 6 3 6 1 7 7 6 6 6 6 7 3 7 2 1 4 6 7 1 7 4 5 1 7 3 6 4 3 3 3 3 6
## [13033] 3 7 1 6 7 7 7 5 7 1 6 5 7 1 7 5 6 3 6 3 5 6 3 7 1 6 3 1 7 3 6 2 7 5 6 3
## [13069] 6 6 3 1 1 1 3 4 3 7 7 1 1 4 7 5 7 7 5 3 6 7 7 6 7 6 2 5 7 3 5 7 2 1 3 5
## [13105] 6 1 6 1 1 4 1 1 2 1 1 3 3 1 1 3 3 6 5 1 3 6 3 6 3 3 6 7 6 3 1 7 7 6 6 1
## [13141] 5 5 3 5 3 1 6 1 3 5 2 3 6 6 7 7 1 5 2 3 3 3 3 1 6 3 7 6 7 1 5 6 7 5 1 5
## [13177] 7 4 6 1 3 3 7 5 7 3 7 1 3 3 7 4 4 4 6 1 6 2 3 6 6 7 2 1 7 5 2 6 5 6 5 5
## [13213] 1 1 6 7 1 1 7 3 7 1 7 7 5 3 7 3 7 6 6 3 7 5 3 3 2 1 7 6 7 3 4 7 6 6 7 2
## [13249] 6 1 1 1 6 3 5 7 4 7 6 6 1 4 6 1 5 1 1 3 3 5 1 7 1 6 6 7 1 5 7 5 1 7 7 7
## [13285] 3 6 5 7 3 1 3 5 1 7 5 1 1 7 7 6 5 5 1 5 7 1 7 7 1 7 6 6 7 3 1 7 6 7 7 1
## [13321] 7 7 7 1 4 4 3 1 7 5 6 1 1 1 1 1 3 7 6 5 1 3 5 6 7 6 6 5 7 7 1 1 7 3 5 3
## [13357] 3 7 6 1 1 5 7 7 5 3 4 3 5 7 3 6 3 7 6 6 7 3 5 7 5 6 7 7 7 5 5 3 7 3 1 1
## [13393] 5 3 3 6 5 7 1 3 3 1 7 5 6 7 7 6 3 6 7 4 2 7 5 5 1 7 1 1 1 3 7 1 1 3 5 5
## [13429] 1 5 1 7 5 4 1 6 6 1 6 1 7 6 2 6 6 4 7 1 3 7 3 1 3 7 3 1 6 7 6 3 3 7 6 5
## [13465] 6 7 4 7 7 2 3 3 7 1 3 6 3 5 3 4 4 1 3 7 6 6 7 7 1 5 3 7 1 3 1 3 7 6 3 7
## [13501] 4 5 6 7 6 6 6 6 1 1 5 7 7 7 1 1 5 1 1 6 6 3 7 3 1 7 7 6 1 1 7 1 1 2 5 1
## [13537] 6 7 4 3 3 4 3 7 1 1 1 7 3 3 1 6 1 5 6 7 7 7 6 5 2 5 5 6 2 5 2 1 6 1 6 1
## [13573] 7 1 1 5 6 5 7 7 2 3 6 3 3 3 7 1 4 3 7 5 1 6 6 4 4 3 7 1 3 3 7 7 5 3 7 7
## [13609] 1 1 6 3 1 4 7 5 7 7 7 6 7 7 7 5 7 7 7 1 1 3 7 3 4 6 6 7 6 7 7 7 3 6 1 3
## [13645] 6 7 4 5 3 6 5 6 7 7 7 7 7 7 1 5 1 7 3 5 6 7 3 7 5 5 7 4 1 1 1 6 1 7 3 1
## [13681] 1 5 4 4 1 1 2 1 5 5 1 4 6 4 5 1 7 1 3 3 5 1 7 1 2 7 3 6 6 7 7 3 4 7 1 5
## [13717] 6 1 4 3 6 1 6 1 1 6 2 1 7 3 4 6 7 3 1 3 1 3 3 1 7 7 4 1 7 7 6 3 6 7 3 5
## [13753] 1 1 5 3 3 3 6 5 3 3 7 4 1 6 3 7 3 3 3 1 7 7 7 7 7 7 6 6 3 3 5 7 7 5 7 6
## [13789] 7 7 4 7 1 5 3 6 2 3 1 3 5 7 5 3 1 7 7 1 7 7 1 5 7 5 1 7 5 7 6 5 1 3 5 3
## [13825] 3 7 6 7 1 7 7 3 5 7 7 7 7 3 7 7 2 5 1 6 7 1 5 7 3 1 3 1 1 6 6 7 1 7 3 1
## [13861] 5 5 7 6 7 3 3 1 3 1 1 6 7 7 7 4 1 1 5 1 1 1 5 6 4 6 3 5 7 6 6 2 4 7 6 6
## [13897] 7 7 6 7 1 6 6 3 5 5 1 1 1 7 3 7 7 7 5 3 6 7 3 4 7 5 4 7 6 3 6 1 7 1 7 3
## [13933] 4 7 7 1 1 7 1 5 7 3 3 5 6 5 5 7 3 6 7 5 6 7 4 5 2 4 5 3 7 7 6 4 7 1 6 3
## [13969] 3 2 1 2 1 6 6 1 6 3 7 2 6 1 1 6 7 3 3 7 1 3 1 1 7 1 7 4 7 3 7 5 5 6 7 3
## [14005] 7 2 1 3 7 3 6 5 7 7 1 1 6 7 5 6 3 1 6 4 5 7 3 3 6 5 5 6 5 5 6 1 6 2 7 7
## [14041] 3 1 1 3 5 5 6 1 3 6 5 6 7 7 1 6 7 4 1 1 6 7 1 3 1 1 7 7 7 3 3 1 1 1 6 6
## [14077] 7 6 7 6 7 3 7 1 7 3 6 3 7 1 7 6 3 6 7 7 1 3 1 1 1 6 4 1 7 7 1 5 1 6 7 3
## [14113] 1 6 1 3 7 2 7 1 3 1 7 6 6 5 1 5 6 5 3 1 1 7 5 5 3 3 1 7 3 1 3 7 7 3 1 7
## [14149] 7 4 6 3 1 7 7 3 6 7 1 5 1 6 7 1 7 3 6 7 5 5 7 5 1 4 2 3 1 7 2 3 1 7 7 5
## [14185] 1 3 2 7 7 1 3 7 4 6 6 7 6 7 1 7 7 6 7 1 3 5 6 3 3 3 3 1 1 3 6 3 5 3 7 5
## [14221] 1 4 7 7 1 1 3 1 4 7 6 7 5 7 5 6 2 7 2 7 7 3 6 7 7 7 5 7 6 5 7 1 6 7 7 6
## [14257] 1 1 4 7 3 7 3 7 5 6 5 1 3 6 7 3 6 5 3 7 3 7 1 1 3 7 7 7 6 1 6 7 3 7 5 1
## [14293] 5 7 6 3 5 7 4 6 7 1 6 3 6 3 3 3 5 6 4 7 1 1 3 7 5 1 1 6 6 3 1 7 4 1 1 1
## [14329] 1 1 5 7 3 3 7 7 1 6 5 1 1 6 3 3 6 5 7 1 3 1 7 6 5 5 2 5 5 5 7 3 3 7 6 2
## [14365] 3 1 6 6 1 3 6 7 7 7 1 1 5 4 2 7 1 5 7 3 6 1 4 1 5 7 3 7 7 1 6 7 4 4 1 1
## [14401] 7 1 4 3 3 6 1 7 7 1 1 1 5 1 6 7 7 7 1 7 6 1 6 6 1 1 3 6 5 1 7 5 5 7 7 3
## [14437] 1 1 6 5 3 3 6 6 6 3 3 3 1 7 4 1 3 1 7 3 1 7 3 3 3 7 3 3 3 6 1 3 7 3 4 7
## [14473] 1 5 3 4 3 6 6 7 5 6 1 3 1 4 5 3 6 1 6 5 3 2 7 7 5 3 1 2 1 3 3 6 4 5 1 5
## [14509] 4 1 1 3 6 3 4 6 1 7 1 6 1 7 3 3 3 4 7 7 5 5 6 1 5 7 7 7 1 1 1 1 3 6 2 7
## [14545] 3 3 3 6 3 1 6 7 7 3 2 5 7 6 4 1 5 7 7 6 1 3 1 3 6 1 3 5 5 3 5 7 7 7 1 5
## [14581] 1 1 7 7 3 7 5 7 6 7 1 3 7 7 7 5 1 7 3 2 7 7 7 2 2 4 3 6 4 2 7 6 7 3 4 1
## [14617] 3 7 5 1 1 7 6 6 2 5 1 7 5 5 1 5 7 5 1 5 7 7 3 5 1 3 2 1 5 7 1 7 1 6 7 1
## [14653] 1 2 3 7 2 3 3 7 1 7 7 1 5 3 5 1 1 5 1 6 1 1 5 6 1 3 6 1 5 3 3 1 7 3 2 3
## [14689] 5 5 3 7 1 7 1 3 5 3 6 1 3 7 7 5 3 3 3 7 7 1 3 6 1 3 7 7 6 7 7 3 3 7 1 6
## [14725] 3 7 7 4 6 1 1 1 2 1 7 1 1 1 1 5 7 1 5 7 1 7 7 1 6 5 1 6 6 3 1 1 3 1 3 3
## [14761] 2 1 3 3 7 4 7 2 3 7 3 5 1 7 7 7 7 3 5 5 7 7 1 6 3 1 1 1 5 7 7 3 6 7 3 7
## [14797] 1 1 3 7 6 3 1 7 7 3 5 7 3 3 5 6 1 5 1 1 3 7 6 7 5 1 3 7 7 6 1 3 6 7 3 7
## [14833] 1 1 1 5 7 7 1 6 1 1 6 7 1 7 1 6 6 5 3 7 7 6 5 6 6 3 7 3 6 7 5 6 2 7 7 3
## [14869] 5 6 5 2 6 1 7 7 5 1 5 1 5 1 5 7 5 7 6 6 5 6 3 1 1 5 5 3 7 7 5 5 5 7 1 7
## [14905] 5 6 1 1 5 3 1 7 7 5 6 3 3 5 6 3 1 7 7 7 7 1 6 1 7 4 5 7 7 7 4 3 7 6 6 5
## [14941] 4 7 7 6 1 7 6 6 7 6 1 3 7 5 2 5 4 5 6 6 1 3 7 5 4 6 7 1 6 6 3 1 5 3 6 7
## [14977] 5 1 7 7 7 3 7 1 7 6 5 5 1 7 7 1 4 1 5 1 3 1 7 1 7 3 3 7 7 1 1 5 4 6 3 7
## [15013] 7 7 4 7 7 1 5 7 6 1 6 5 5 7 7 6 3 2 3 3 6 6 5 6 6 3 5 7 1 1 6 7 3 3 1 1
## [15049] 5 7 7 7 7 1 5 5 5 6 5 6 5 6 3 7 4 4 1 7 5 6 7 6 1 3 2 3 3 7 5 6 1 7 7 1
## [15085] 6 3 3 7 5 3 5 3 7 3 3 4 6 7 6 6 1 3 6 7 5 7 5 4 4 5 5 7 2 7 7 7 6 7 6 3
## [15121] 7 1 4 6 3 1 6 3 7 2 7 1 7 3 7 4 7 1 1 7 6 3 5 6 1 1 6 3 6 7 5 3 6 6 5 1
## [15157] 3 7 3 1 7 3 6 7 4 1 7 6 7 7 3 1 6 3 6 3 4 1 7 3 5 1 7 6 1 6 7 4 3 7 7 1
## [15193] 2 5 3 1 7 1 7 1 1 1 3 7 3 1 3 3 1 5 1 6 2 5 5 3 5 3 7 7 3 6 1 3 3 3 6 6
## [15229] 1 3 2 7 7 5 4 6 1 7 6 7 6 2 3 5 6 3 5 6 5 1 1 6 3 4 1 7 7 1 7 7 5 5 6 6
## [15265] 3 7 3 7 2 1 7 1 1 3 1 3 1 5 7 1 6 6 3 6 4 6 3 7 1 6 4 4 1 3 3 7 1 1 5 3
## [15301] 5 7 3 7 7 6 7 5 4 7 3 6 5 1 7 7 1 1 4 5 7 1 5 3 6 6 3 5 7 6 5 5 3 1 7 5
## [15337] 3 3 6 1 7 7 4 1 3 5 7 7 5 6 5 3 3 7 2 1 1 7 7 3 1 6 7 4 7 3 3 5 3 7 7 2
## [15373] 3 5 3 7 3 7 7 3 1 5 3 5 6 7 6 7 7 1 7 4 7 4 6 6 5 3 7 7 1 5 1 1 3 7 7 3
## [15409] 1 4 3 5 7 3 2 7 1 4 1 3 4 1 1 4 3 5 1 7 1 6 6 3 1 6 5 2 6 7 7 7 1 1 1 6
## [15445] 7 3 2 1 3 1 7 3 4 3 1 7 5 2 6 6 5 4 3 6 3 5 7 4 5 1 3 7 2 3 1 7 7 1 7 7
## [15481] 4 7 4 7 7 3 7 6 2 5 4 3 7 6 4 5 3 3 1 5 3 3 3 1 7 7 5 1 1 7 5 6 1 5 5 1
## [15517] 3 1 3 2 1 3 7 7 1 5 5 3 7 1 1 3 3 7 3 1 6 6 7 3 7 3 4 6 1 7 6 1 3 7 4 6
## [15553] 7 2 3 5 7 5 1 3 7 1 4 6 3 3 5 1 1 4 1 1 7 4 2 5 6 7 1 6 3 6 2 3 5 3 7 3
## [15589] 7 5 4 5 5 7 7 7 7 5 1 3 3 7 5 3 6 1 3 6 3 5 5 3 1 7 3 1 6 3 3 1 5 3 7 5
## [15625] 1 3 7 7 6 6 1 1 1 7 2 3 7 7 7 6 1 1 7 4 7 1 3 6 2 6 3 7 3 7 7 5 1 7 6 3
## [15661] 3 6 5 1 1 7 7 7 7 5 3 5 1 5 7 7 3 5 3 6 7 1 3 2 3 5 3 7 7 1 1 1 4 5 3 7
## [15697] 1 7 3 5 5 6 5 1 5 1 3 7 5 5 7 3 7 3 6 1 7 1 1 7 1 1 6 3 7 5 7 6 4 1 2 1
## [15733] 1 7 1 7 1 6 1 6 1 7 5 3 3 4 7 1 3 6 6 5 7 3 3 3 7 5 4 3 1 4 3 6 5 1 3 4
## [15769] 5 3 1 2 3 4 3 5 1 6 3 1 7 6 5 1 7 3 7 6 1 7 3 7 3 5 6 3 3 3 1 1 7 6 6 3
## [15805] 1 5 3 3 4 5 7 7 7 3 5 3 1 7 3 1 1 3 5 4 3 7 7 3 5 5 3 3 7 7 5 7 5 1 6 7
## [15841] 3 5 1 7 5 5 3 1 7 5 5 1 2 7 6 7 1 3 3 7 5 6 3 6 6 2 6 1 1 7 1 1 3 7 6 4
## [15877] 3 7 5 5 4 6 6 6 3 5 6 7 7 7 1 3 1 3 3 3 7 3 3 7 3 3 6 4 6 7 3 3 3 2 4 7
## [15913] 7 6 1 2 3 2 2 7 7 5 6 7 5 1 7 6 1 7 1 1 4 3 3 4 6 1 1 7 6 3 6 6 7 1 2 1
## [15949] 7 1 6 7 6 7 5 5 7 3 1 1 6 1 3 1 1 3 5 1 1 1 3 5 5 7 7 7 3 7 5 5 7 6 3 6
## [15985] 4 5 3 6 3 6 7 7 1 3 7 7 6 7 4 1 3 3 6 1 7 1 7 7 4 5 1 3 3 1 3 1 1 1 1 6
## [16021] 1 5 7 1 6 7 6 6 7 3 6 7 1 6 7 7 7 2 1 7 3 6 7 6 5 5 7 7 4 3 3 5 3 7 4 5
## [16057] 5 7 6 7 7 7 5 6 3 6 5 5 3 3 5 7 4 1 6 2 6 4 1 5 3 6 7 6 4 5 4 1 7 7 4 6
## [16093] 7 5 6 6 1 1 7 3 3 6 1 2 1 7 6 7 7 2 1 3 1 5 7 6 5 7 6 6 3 1 7 7 2 7 4 3
## [16129] 7 3 6 7 4 1 6 6 3 1 1 6 3 7 1 6 1 3 5 6 7 7 1 7 5 5 3 7 7 6 1 5 6 6 2 7
## [16165] 6 5 5 7 6 7 6 7 6 3 1 6 3 7 5 6 7 7 7 1 1 6 7 1 6 6 1 5 7 1 1 1 1 1 1 5
## [16201] 1 5 7 3 1 6 3 4 1 6 6 1 3 7 5 7 6 5 7 7 1 3 1 6 7 7 5 5 7 1 1 1 6 6 6 7
## [16237] 7 3 5 3 4 7 6 7 5 7 2 7 6 7 2 3 7 3 7 3 1 4 6 7 6 3 2 7 4 6 5 1 7 1 6 6
## [16273] 6 1 3 3 7 7 1 1 1 3 1 3 6 6 5 5 7 5 6 5 5 3 3 3 1 6 3 6 1 7 2 7 3 5 3 3
## [16309] 3 7 1 1 5 1 4 1 7 3 3 5 6 5 1 7 7 6 5 3 5 5 3 7 3 3 6 3 5 1 1 3 3 7 6 7
## [16345] 7 1 7 1 7 7 3 4 3 7 1 7 6 7 7 7 3 6 4 1 7 1 3 7 3 6 4 3 7 4 1 3 3 4 2 4
## [16381] 5 7 7 7 3 7 7 7 7 7 6 3 3 6 7 1 3 3 6 6 3 3 7 3 7 7 5 3 6 6 5 5 6 1 7 1
## [16417] 1 1 3 3 7 6 3 6 2 3 1 1 5 7 1 7 7 3 7 3 5 6 3 6 3 3 6 7 6 7 1 7 3 6 6 6
## [16453] 6 5 7 4 5 3 6 1 1 1 5 3 3 7 6 1 7 7 5 7 1 5 7 7 4 3 1 6 3 7 7 3 6 7 1 1
## [16489] 3 1 1 3 5 3 1 3 7 7 1 1 7 3 6 7 3 3 7 3 5 5 7 6 3 7 7 3 3 1 5 7 6 6 3 4
## [16525] 1 3 5 7 5 1 7 7 7 3 7 3 5 4 6 7 3 7 6 4 3 7 7 7 1 7 1 6 7 4 4 2 1 6 2 2
## [16561] 7 1 1 6 7 1 6 6 6 4 4 7 7 6 1 3 7 3 7 7 6 7 3 7 7 6 5 7 7 6 3 7 6 6 3 7
## [16597] 3 4 5 3 7 7 1 7 6 4 3 7 1 7 1 6 1 1 3 4 7 7 4 7 3 6 1 1 7 1 3 7 3 6 1 7
## [16633] 6 7 1 5 6 6 7 1 7 5 6 1 3 7 3 4 7 5 3 3 5 3 6 3 1 7 6 4 1 1 7 1 5 1 1 1
## [16669] 1 3 1 1 7 5 5 3 1 4 1 3 5 4 3 7 7 7 3 6 7 4 7 7 3 7 6 7 3 6 5 5 4 6 1 2
## [16705] 7 5 1 5 7 7 5 7 7 1 6 1 1 6 3 5 7 7 7 5 7 6 6 1 7 3 7 1 6 2 3 3 7 5 1 1
## [16741] 1 1 3 1 6 5 3 1 6 7 1 6 3 7 4 7 3 3 1 5 7 7 3 5 3 5 5 1 3 4 3 7 6 3 7 3
## [16777] 1 3 6 7 3 7 5 3 7 3 6 1 2 6 4 5 5 1 1 7 3 4 7 1 3 6 3 5 6 3 7 5 1 3 1 7
## [16813] 7 5 5 7 7 7 3 6 2 3 6 6 6 5 5 1 6 7 1 5 5 7 3 5 3 2 1 7 6 5 5 6 1 7 7 1
## [16849] 4 1 6 5 1 6 6 6 7 5 7 7 3 7 1 5 7 3 6 6 6 3 1 3 1 7 7 3 5 7 7 5 5 1 7 3
## [16885] 5 7 5 7 6 3 6 7 1 3 3 3 5 3 7 5 6 3 3 1 7 4 5 3 1 7 3 1 5 1 1 5 6 5 3 6
## [16921] 3 4 5 3 1 6 7 3 7 6 4 4 7 7 3 1 7 6 7 5 1 7 6 5 3 3 7 5 1 6 3 2 1 7 5 7
## [16957] 3 2 1 5 6 1 2 7 1 4 3 5 7 6 6 3 1 3 3 7 1 6 1 3 6 6 3 4 7 7 3 6 7 5 5 7
## [16993] 5 7 1 6 7 2 7 7 7 1 4 1 5 1 3 5 3 4 1 3 3 2 3 3 4 6 1 5 1 5 7 1 1 1 1 6
## [17029] 5 3 1 5 7 7 1 7 5 7 3 3 6 1 7 6 6 2 7 1 3 1 7 6 5 1 7 1 7 7 7 4 7 1 7 6
## [17065] 4 5 7 6 3 5 3 3 1 7 1 1 2 6 7 7 1 4 7 7 6 1 5 1 4 7 1 6 3 1 7 3 7 1 6 1
## [17101] 2 3 1 3 3 5 1 5 4 7 6 5 3 7 7 5 4 6 1 7 6 7 7 7 5 7 5 5 3 6 5 1 6 5 6 3
## [17137] 6 1 6 5 3 7 1 3 3 7 2 1 7 6 3 3 1 7 7 7 1 7 1 5 5 2 5 5 5 6 6 1 7 1 3 7
## [17173] 1 3 3 1 7 1 5 1 3 3 6 4 7 3 6 1 3 5 4 1 4 3 6 3 6 6 3 6 3 6 6 3 7 3 4 5
## [17209] 7 3 6 1 2 3 1 6 7 2 1 6 6 6 3 7 3 5 5 6 6 7 7 6 6 7 3 3 1 3 5 3 2 7 7 5
## [17245] 1 1 7 1 5 3 1 1 6 6 6 7 6 6 5 7 3 1 3 5 1 3 1 3 7 6 7 7 7 4 3 3 2 1 3 3
## [17281] 5 6 7 1 3 7 1 7 5 7 7 6 1 7 7 7 6 6 5 1 5 3 1 7 7 7 1 3 3 7 2 1 1 1 5 1
## [17317] 3 4 1 1 7 7 1 3 7 3 6 3 7 1 1 5 4 6 5 1 6 7 1 3 6 3 7 6 3 6 6 7 1 7 1 3
## [17353] 1 3 3 6 7 6 3 1 5 2 1 7 7 6 3 3 3 1 7 3 4 6 7 7 7 1 7 3 5 5 6 5 1 1 3 3
## [17389] 7 1 3 3 7 1 1 7 3 3 1 7 1 5 1 7 7 1 7 3 6 5 6 4 4 1 3 1 3 7 5 3 6 1 6 1
## [17425] 7 1 7 7 2 7 6 2 1 7 6 1 3 5 1 1 5 7 7 5 7 5 1 3 7 6 1 6 1 7 7 3 6 1 2 1
## [17461] 7 7 7 5 7 5 7 7 6 3 3 7 3 6 6 6 1 4 7 5 1 7 1 7 1 2 1 4 1 5 6 3 7 1 1 1
## [17497] 7 6 7 7 1 5 5 6 3 2 1 1 7 2 5 2 7 3 1 1 6 7 5 7 6 1 5 6 6 7 6 7 5 7 7 3
## [17533] 7 3 5 3 1 6 3 1 1 7 6 1 1 7 3 3 5 3 1 4 5 7 1 7 2 1 5 5 5 1 1 3 1 6 3 5
## [17569] 7 7 1 4 1 6 7 1 7 7 7 1 7 7 1 5 7 6 7 2 6 3 3 7 7 1 1 1 3 7 1 3 1 5 3 3
## [17605] 6 3 3 1 3 7 7 1 5 2 1 7 1 5 5 1 1 3 1 1 6 5 3 6 6 1 7 5 4 3 5 1 1 5 7 1
## [17641] 4 3 3 2 7 2 5 1 6 3 3 3 6 4 7 3 6 6 6 7 7 6 1 1 3 4 1 7 5 5 6 7 6 7 6 7
## [17677] 1 7 1 4 1 3 1 5 6 2 3 6 4 3 7 1 5 3 7 7 6 5 4 3 2 7 7 3 3 1 6 5 2 7 4 5
## [17713] 7 1 1 6 1 6 1 7 1 5 1 7 6 7 7 7 1 1 1 1 3 1 1 5 1 4 1 7 6 7 7 3 3 6 3 4
## [17749] 1 1 7 3 5 3 6 3 3 4 7 1 7 7 5 1 3 2 6 3 6 1 6 1 7 6 5 1 7 5 6 3 1 7 3 1
## [17785] 6 3 2 6 3 7 7 1 3 7 3 1 5 3 6 7 1 1 7 3 3 6 3 5 1 4 6 7 5 1 2 7 7 1 1 1
## [17821] 1 3 3 7 4 5 6 5 7 3 6 6 3 1 6 6 6 1 7 7 6 3 6 1 1 7 7 6 5 1 7 7 5 5 2 3
## [17857] 2 3 5 7 6 6 5 7 7 7 7 7 7 1 7 3 5 7 3 3 3 5 5 1 1 6 3 3 1 6 6 3 6 6 1 6
## [17893] 3 3 3 1 1 6 1 6 7 6 4 6 5 5 1 7 7 1 1 7 6 6 7 1 5 6 3 6 3 7 6 3 2 1 3 4
## [17929] 1 1 6 7 5 7 5 1 7 3 6 7 3 7 1 3 7 7 7 6 6 7 5 7 6 7 5 6 6 7 7 5 7 3 7 5
## [17965] 3 3 4 2 6 6 7 1 6 5 4 6 5 4 3 1 1 7 3 3 1 5 6 6 1 7 7 1 1 1 3 3 2 7 4 7
## [18001] 2 3 4 5 3 6 3 1 7 6 3 3 7 6 6 6 1 5 7 3 5 4 6 7 6 3 4 1 1 7 3 2 7 1 3 3
## [18037] 2 5 7 3 6 6 7 1 5 3 7 3 3 5 6 3 7 1 5 6 6 7 5 1 6 3 7 6 1 5 7 7 5 3 5 3
## [18073] 1 6 3 2 6 6 7 1 6 7 1 1 7 1 1 1 1 7 2 1 5 3 1 7 7 1 6 7 5 3 1 3 2 7 3 1
## [18109] 7 7 7 5 1 1 7 6 5 3 1 7 3 1 4 6 1 3 1 1 2 3 1 1 2 7 4 2 4 7 3 5 1 1 7 5
## [18145] 4 2 1 7 1 6 7 6 6 7 6 1 1 7 7 7 6 7 1 2 6 7 7 4 7 7 6 6 5 1 6 7 1 6 5 3
## [18181] 6 7 7 7 3 2 6 7 7 7 1 6 1 7 6 7 7 3 1 6 3 3 1 1 5 2 3 5 6 6 1 4 1 7 7 1
## [18217] 7 7 7 7 5 3 7 2 5 6 2 7 7 5 3 4 1 5 3 1 6 7 3 3 6 5 6 7 4 7 7 7 5 3 5 7
## [18253] 3 7 1 5 7 3 1 6 6 1 5 4 7 1 6 4 5 3 7 7 6 6 5 6 1 5 6 3 5 7 1 1 1 1 3 1
## [18289] 5 7 6 1 7 7 7 6 3 7 3 7 3 1 7 7 3 3 6 1 6 7 6 7 5 4 5 1 1 7 1 1 6 3 6 1
## [18325] 1 5 5 5 5 1 7 3 3 6 1 5 7 7 1 2 7 6 7 1 6 6 7 3 7 6 5 3 1 1 1 3 5 4 4 1
## [18361] 1 7 1 5 6 7 7 1 7 3 1 1 7 4 6 1 7 1 5 3 3 7 1 5 1 2 1 6 4 6 1 7 5 1 1 3
## [18397] 7 1 3 6 5 1 7 7 7 1 4 4 5 3 3 6 6 3 7 6 2 6 1 7 7 1 3 7 6 5 6 5 2 7 7 6
## [18433] 7 6 2 7 5 6 1 6 3 7 1 7 7 1 2 3 7 7 7 7 4 7 1 2 7 6 3 7 7 3 5 7 3 7 7 4
## [18469] 3 7 1 3 5 3 6 5 1 2 7 6 3 7 6 4 4 7 1 1 7 7 4 1 7 3 7 7 7 7 3 1 7 1 7 6
## [18505] 1 7 7 1 6 3 1 4 7 6 5 1 3 3 1 7 1 6 1 5 1 7 6 5 5 7 3 1 1 3 7 7 3 6 7 7
## [18541] 6 5 3 6 3 3 7 3 6 2 7 7 3 3 3 3 6 5 6 7 5 1 7 5 5 1 6 6 7 1 5 2 3 3 3 7
## [18577] 7 3 6 7 6 7 7 1 6 3 6 3 7 1 1 5 6 1 4 3 1 7 1 3 7 1 1 1 6 3 7 7 4 7 7 3
## [18613] 5 7 7 7 1 3 3 7 3 6 2 6 1 7 7 6 1 7 3 7 3 3 7 5 7 5 3 3 6 2 7 7 6 3 7 6
## [18649] 1 7 6 7 7 7 3 7 3 7 3 1 7 7 6 5 6 7 7 1 2 7 7 5 1 1 5 3 7 5 2 1 2 6 3 7
## [18685] 5 7 7 7 1 5 5 7 7 5 7 7 6 4 4 7 7 5 3 3 1 1 5 7 3 6 5 3 5 7 3 3 1 6 7 3
## [18721] 3 3 1 1 1 1 7 7 7 6 3 1 5 7 1 7 5 1 1 2 1 3 7 3 5 1 1 1 7 7 3 7 1 6 3 7
## [18757] 7 3 3 5 1 1 3 3 5 1 4 1 1 7 3 1 7 3 6 5 3 7 6 6 7 1 7 1 6 3 1 1 5 7 4 1
## [18793] 3 1 3 1 5 1 6 1 7 3 7 1 7 1 1 1 6 6 3 3 5 6 7 7 7 6 3 7 3 7 7 3 6 3 5 2
## [18829] 5 1 3 1 1 5 6 7 3 5 7 1 7 7 1 5 7 7 6 5 1 2 7 7 7 1 1 6 7 1 3 7 3 1 7 1
## [18865] 4 7 7 3 5 5 5 6 3 1 7 7 7 7 3 4 4 1 6 1 7 1 1 3 7 6 7 5 3 1 7 3 5 7 7 1
## [18901] 7 7 3 1 7 3 3 3 7 4 1 7 1 5 3 1 1 5 5 1 6 7 3 3 3 2 5 1 1 3 3 1 3 1 3 1
## [18937] 4 7 5 7 5 1 5 6 3 7 1 5 3 3 3 4 3 1 6 3 1 3 1 3 7 1 7 6 3 3 3 1 4 6 7 6
## [18973] 6 3 3 1 7 1 5 7 5 3 5 1 2 1 4 7 1 7 1 7 3 7 2 1 5 5 7 3 6 1 1 7 2 7 3 7
## [19009] 7 7 1 6 6 3 1 1 1 1 7 3 7 5 3 1 2 7 3 5 7 7 6 5 7 7 1 6 6 1 7 1 6 7 7 1
## [19045] 1 1 6 3 7 3 4 6 7 5 3 5 5 3 7 1 7 1 6 6 7 4 7 7 1 3 6 3 7 7 4 3 6 5 1 1
## [19081] 7 7 3 1 7 7 4 2 7 3 3 5 3 1 1 4 1 7 7 1 6 7 7 6 1 1 3 1 7 1 3 3 7 3 1 7
## [19117] 7 1 2 7 4 1 5 6 3 7 6 3 6 6 5 7 3 6 1 1 5 3 3 1 5 4 3 7 6 3 3 5 3 1 6 4
## [19153] 7 1 3 7 7 4 7 6 6 3 7 5 5 6 5 1 5 1 1 7 3 5 3 5 7 4 1 7 6 7 7 1 3 6 5 5
## [19189] 3 3 7 3 1 5 3 3 5 3 1 7 7 7 7 1 6 2 1 4 3 1 7 5 1 3 1 7 5 6 1 6 4 1 7 7
## [19225] 3 4 6 7 6 7 5 7 3 7 1 5 7 7 3 7 2 3 1 6 7 6 3 1 1 6 3 1 3 4 4 6 1 3 2 1
## [19261] 1 7 3 1 1 4 1 6 3 6 3 7 3 6 5 7 1 1 7 1 1 1 4 7 7 6 7 3 5 5 6 3 5 6 1 1
## [19297] 6 3 3 4 7 3 7 1 7 5 7 7 1 3 6 2 1 7 7 7 3 1 1 1 7 1 7 7 6 7 3 6 6 4 3 1
## [19333] 7 3 7 6 7 5 7 7 7 3 7 5 1 6 6 6 3 1 5 1 7 3 6 5 3 7 7 7 2 2 7 2 3 1 3 4
## [19369] 2 7 7 3 6 3 6 1 3 1 3 1 7 2 5 1 2 7 6 3 2 6 5 1 3 2 2 2 3 7 3 3 5 5 5 6
## [19405] 6 3 5 6 5 5 6 6 7 5 6 7 3 1 5 6 1 5 5 7 1 6 5 1 7 3 5 3 7 3 3 6 3 3 6 3
## [19441] 7 6 7 6 1 7 7 7 6 1 6 3 5 2 7 1 7 5 3 3 6 3 5 5 7 1 4 6 5 1 7 5 5 7 1 7
## [19477] 1 1 1 2 1 7 7 1 5 1 1 3 1 1 7 3 7 7 7 5 6 7 6 6 3 5 1 1 6 7 3 5 2 7 6 1
## [19513] 6 2 7 3 1 6 1 7 6 4 6 5 1 4 5 3 2 7 3 6 1 1 6 7 7 1 1 1 6 3 3 6 6 5 7 5
## [19549] 7 7 3 4 5 1 7 5 7 1 1 1 7 3 7 1 7 1 4 7 5 7 1 1 1 5 3 3 1 3 1 7 7 1 3 4
## [19585] 1 7 7 7 7 6 5 7 5 6 6 7 6 7 1 7 5 1 5 1 4 3 5 7 5 3 4 3 3 7 6 2 6 7 6 7
## [19621] 5 2 5 6 3 3 1 6 6 1 5 7 7 3 6 2 7 7 3 5 6 5 4 1 7 7 3 6 7 7 5 2 5 6 3 7
## [19657] 5 1 5 2 7 7 1 7 7 6 4 2 1 3 6 3 6 7 4 4 6 7 7 5 7 1 5 6 6 7 3 2 6 7 7 1
## [19693] 6 3 3 7 7 7 1 7 3 7 7 2 7 3 3 5 3 7 7 6 7 4 1 5 7 7 1 5 1 1 7 7 3 7 7 2
## [19729] 1 3 7 1 4 1 7 6 6 7 6 7 7 3 3 7 3 6 5 3 3 7 1 7 3 7 5 7 1 6 7 3 4 1 3 1
## [19765] 5 1 6 3 4 5 1 7 3 3 4 3 7 6 3 1 1 7 1 3 7 7 7 1 1 1 7 1 4 6 7 4 4 7 3 7
## [19801] 5 7 7 7 7 7 3 6 3 6 3 1 1 4 3 2 5 4 6 5 3 4 7 1 6 7 1 6 6 1 5 6 3 3 5 3
## [19837] 1 1 7 3 1 6 5 1 5 4 6 3 6 1 6 7 7 4 7 7 5 3 6 1 7 1 6 5 1 1 6 1 7 5 1 3
## [19873] 7 7 7 4 1 5 2 1 2 3 3 1 3 1 1 7 5 3 7 5 7 3 3 1 7 7 6 6 3 2 5 6 3 7 5 3
## [19909] 4 2 4 3 7 7 5 1 7 7 7 4 7 3 7 1 5 5 7 3 1 5 7 5 7 3 3 2 7 6 1 7 1 2 7 6
## [19945] 3 6 6 3 3 3 7 5 3 5 1 1 3 7 1 7 3 4 3 5 3 7 5 7 1 7 7 1 3 7 3 7 2 5 3 6
## [19981] 7 6 3 7 7 5 7 5 7 7 4 5 7 3 7 4 5 7 1 4 5 5 6 1 3 5 3 1 6 5 6 7 7 5 5 7
## [20017] 1 1 5 3 1 7 1 7 7 7 7 7 7 5 1 3 6 3 6 7 5 7 4 5 1 1 1 5 6 7 3 2 4 7 6 3
## [20053] 1 3 1 1 1 1 4 7 7 7 6 5 1 5 6 1 1 5 3 3 5 3 3 3 6 4 7 1 3 7 6 7 1 3 1 7
## [20089] 3 7 7 7 5 6 3 3 6 1 3 6 5 3 6 5 1 2 1 7 1 7 1 6 2 1 1 1 5 1 7 7 6 1 1 7
## [20125] 3 4 3 5 2 5 4 7 5 1 1 3 7 6 6 5 3 4 6 5 3 5 7 6 7 3 7 3 7 6 1 1 7 1 7 6
## [20161] 3 6 7 3 7 5 7 1 3 7 5 7 5 7 1 1 6 7 7 3 6 1 6 7 6 6 5 3 6 1 7 6 3 3 5 7
## [20197] 6 6 3 3 5 6 3 3 1 6 1 6 3 5 1 1 5 3 7 7 3 1 4 6 1 1 7 7 1 7 3 6 5 2 1 3
## [20233] 6 7 7 7 7 1 1 5 5 6 3 1 7 5 3 1 7 4 5 7 3 4 3 2 7 5 5 7 5 7 3 6 1 5 1 3
## [20269] 5 6 7 6 3 6 5 4 1 7 5 1 1 7 1 6 5 7 3 7 7 7 6 1 6 3 6 6 7 7 7 5 7 1 2 6
## [20305] 7 1 3 1 1 3 4 3 5 6 1 3 6 1 7 2 3 7 7 7 2 2 2 1 7 5 7 1 6 7 7 1 7 7 6 7
## [20341] 7 6 1 1 5 7 7 1 6 4 7 1 7 1 6 1 7 5 1 7 7 1 3 1 1 1 1 4 1 7 1 1 7 7 6 7
## [20377] 7 7 6 3 6 3 1 3 5 3 1 7 3 1 2 4 3 7 3 6 7 6 3 1 6 7 4 6 3 3 7 1 3 1 6 1
## [20413] 2 5 6 5 1 6 1 2 3 3 7 1 3 6 3 3 3 3 7 7 7 3 1 2 7 6 5 3 5 7 6 1 7 2 6 1
## [20449] 7 3 7 5 2 3 3 7 7 6 3 3 7 7 3 3 4 1 3 1 1 6 1 1 3 6 2 7 4 7 4 7 7 7 5 4
## [20485] 7 1 3 3 1 4 5 7 6 1 1 7 7 5 7 5 3 6 7 4 3 7 1 1 1 3 3 7 3 4 3 6 5 1 7 6
## [20521] 4 1 1 5 5 1 1 4 7 7 2 4 1 4 3 3 6 3 3 6 3 5 2 7 1 7 2 6 3 3 6 3 3 5 7 5
## [20557] 1 3 7 1 1 3 1 7 1 3 2 3 3 7 1 4 7 6 2 5 7 3 4 7 5 5 3 7 7 3 6 3 1 7 7 7
## [20593] 7 7 7 1 5 7 5 5 6 3 5 7 7 7 2 1 7 3 1 7 4 5 1 7 7 5 1 1 5 1 2 3 1 6 6 5
## [20629] 6 7 6 2 3 3 7 7 1 7 1 7 5 5 3 1 6 3 4 1 7 7 7 3 1 7 1 7 4 3 1 3 3 7 1 7
## [20665] 7 6 3 7 1 7 1 1 1 7 3 6 7 5 7 6 7 7 3 7 5 6 1 1 7 5 3 1 3 5 7 5 6 6 7 7
## [20701] 1 7 1 7 7 4 1 7 5 6 1 6 4 7 1 5 1 3 3 3 5 1 5 5 1 3 7 7 3 1 3 1 7 7 1 6
## [20737] 1 3 6 7 6 6 5 1 7 3 3 4 7 1 4 4 1 1 7 7 4 1 5 6 5 7 1 7 6 7 7 5 3 3 5 7
## [20773] 7 6 3 6 6 3 6 7 3 5 3 4 4 3 6 1 1 7 6 6 7 1 6 7 1 1 7 5 5 1 7 2 1 7 3 7
## [20809] 5 3 3 1 7 7 3 5 5 1 1 3 6 7 7 7 1 3 5 7 1 1 1 2 7 1 5 7 6 3 6 7 1 1 1 3
## [20845] 7 1 7 3 3 1 4 1 1 1 6 3 7 7 7 6 3 7 7 3 1 4 7 3 5 1 3 1 6 7 3 7 3 6 6 1
## [20881] 5 3 1 7 4 6 1 5 4 5 7 3 4 1 5 7 7 3 3 5 3 6 1 6 7 4 7 5 3 1 6 5 6 7 7 3
## [20917] 1 3 7 1 7 3 7 5 7 7 6 5 3 7 6 6 7 5 1 6 3 3 7 4 5 2 1 3 6 1 3 5 5 3 5 3
## [20953] 1 7 1 3 3 7 3 7 6 6 1 3 7 4 5 6 1 4 4 7 7 3 3 6 5 3 2 1 1 1 3 7 1 3 5 4
## [20989] 3 1 1 1 7 1 1 7 3 5 7 6 3 7 1 3 1 1 1 7 5 6 7 7 6 1 5 3 7 6 1 3 5 7 6 5
## [21025] 3 5 6 7 6 2 6 6 6 3 7 7 6 1 1 6 1 7 3 7 6 3 3 1 3 1 7 6 7 7 1 5 6 6 6 1
## [21061] 1 7 5 7 3 1 6 3 7 3 6 1 7 1 7 5 3 7 3 3 3 7 5 1 1 6 3 6 7 1 7 5 7 7 6 5
## [21097] 7 5 6 7 7 1 7 1 7 7 7 3 1 6 7 3 6 7 1 1 6 3 7 2 5 7 6 3 1 1 3 1 3 1 5 3
## [21133] 3 7 6 6 1 1 7 3 3 7 6 6 6 7 1 1 2 6 5 3 1 7 1 2 6 7 1 7 6 1 7 7 1 1 6 5
## [21169] 6 3 7 7 5 7 6 3 3 5 3 7 3 5 7 1 3 7 7 1 7 1 3 7 7 6 7 1 4 7 7 5 4 4 3 5
## [21205] 1 1 7 7 4 3 7 7 3 7 3 3 4 5 1 7 7 3 1 6 1 4 1 7 6 7 6 7 7 6 3 3 1 1 6 1
## [21241] 5 3 7 5 6 7 4 2 3 7 6 7 7 7 6 3 5 5 7 3 3 6 1 6 3 7 5 7 3 1 7 7 3 5 3 7
## [21277] 3 6 6 7 7 3 4 5 6 7 3 7 4 6 7 7 1 3 6 1 3 5 1 3 7 3 1 1 1 1 3 5 3 3 7 3
## [21313] 6 1 1 5 1 6 1 4 1 7 4 5 5 1 1 7 7 7 1 4 6 1 1 5 5 3 4 1 5 7 7 5 3 5 5 6
## [21349] 7 7 3 1 1 3 7 5 1 6 5 3 3 1 4 3 7 7 4 5 4 4 7 6 7 3 2 3 1 1 3 5 7 7 1 1
## [21385] 2 1 3 3 1 6 5 5 7 7 3 5 6 1 6 6 5 1 7 1 5 3 3 3 1 6 1 5 3 2 1 6 7 3 6 6
## [21421] 1 6 7 7 7 6 1 5 6 7 7 6 6 5 1 1 5 1 1 3 4 6 5 5 1 7 5 1 7 1 7 6 5 7 1 3
## [21457] 3 6 6 5 4 2 7 3 7 6 1 5 1 6 1 7 6 3 3 7 7 7 4 6 6 3 1 7 7 1 7 7 6 1 5 5
## [21493] 7 3 7 6 7 5 3 1 6 4 3 4 7 1 4 6 6 7 1 3 3 6 6 1 3 1 5 7 1 7 4 3 6 7 5 7
## [21529] 3 5 7 6 7 6 5 6 3 3 1 1 7 5 6 3 7 6 5 1 3 1 3 1 7 1 5 7 7 1 7 1 6 5 7 3
## [21565] 1 5 1 7 1 6 1 5 1 6 3 6 7 7 3 2 6 7 7 5 3 5 7 1 5 4 6 6 3 5 7 2 6 1 1 4
## [21601] 1 7 7 1 6 1 7 6 5 5 1 7 5 3 4 3 7 1 3 7 3 5 6 5 2 7 2 1 3 3 3 5 7 4 1 3
## [21637] 6 3 1 7 7 7 1 7 6 1 3 3 6 5 3 1 3 3 5 3 3 1 7 5 2 3 4 1 1 6 3 5 1 5 7 3
## [21673] 1 7 6 1 1 1 6 5 1 7 1 7 1 1 5 6 7 4 1 7 1 1 5 6 6 3 7 2 6 7 1 7 6 3 7 5
## [21709] 7 3 6 7 6 1 1 4 1 3 3 3 1 3 1 4 3 1 1 1 5 3 1 5 4 7 1 3 5 3 3 6 3 7 7 1
## [21745] 3 5 4 3 1 7 6 7 1 7 1 6 3 7 6 1 3 5 1 7 6 1 6 5 3 7 4 1 7 1 3 6 6 6 7 7
## [21781] 3 4 6 1 7 3 6 7 3 7 1 3 5 4 4 6 3 2 7 4 1 7 5 3 2 3 6 1 2 6 3 5 7 3 5 1
## [21817] 1 6 3 7 1 7 1 4 6 7 7 6 7 7 7 7 5 4 5 5 3 6 7 7 5 7 1 6 3 4 4 1 3 3 2 7
## [21853] 4 7 5 6 7 7 7 3 7 1 1 7 6 1 3 7 3 3 1 4 1 6 7 7 5 6 7 3 3 5 5 1 4 6 7 3
## [21889] 1 1 7 1 6 3 3 3 6 1 3 7 1 6 1 7 1 3 6 7 1 1 7 7 5 3 1 7 2 4 3 1 2 5 7 7
## [21925] 3 1 1 7 1 7 2 1 4 1 6 1 7 2 7 1 1 6 6 4 6 3 1 6 4 3 5 1 4 1 7 1 1 7 7 3
## [21961] 1 3 7 4 5 7 5 6 7 2 3 6 7 5 3 6 7 7 3 6 1 6 4 1 7 7 3 3 1 3 6 3 2 5 5 5
## [21997] 1 3 7 7 7 1 2 7 7 1 7 4 6 6 3 6 1 7 1 7 3 6 7 3 5 3 7 1 1 3 3 4 5 5 7 6
## [22033] 5 7 6 6 1 1 7 3 7 3 5 1 3 5 7 7 1 6 7 1 3 1 3 2 1 3 3 5 5 4 7 7 5 7 1 3
## [22069] 5 1 6 3 5 5 5 5 7 4 7 1 3 7 7 7 2 7 1 1 3 3 6 1 7 6 1 7 1 4 6 3 1 1 7 3
## [22105] 1 5 7 1 7 5 1 6 7 7 7 1 7 7 7 7 1 1 6 4 1 6 1 6 7 1 5 3 1 5 2 3 7 1 5 7
## [22141] 5 7 7 7 1 6 7 1 6 7 7 3 3 5 3 6 7 5 3 6 5 3 7 6 6 2 6 7 1 2 2 7 7 5 5 6
## [22177] 5 7 1 6 4 7 1 7 1 5 6 3 3 3 7 2 6 1 2 7 5 4 3 7 3 1 3 2 3 7 3 1 7 3 1 5
## [22213] 7 5 1 2 3 3 7 1 1 1 3 3 2 5 1 7 2 3 6 7 7 1 7 1 6 6 1 5 7 5 7 7 6 7 5 3
## [22249] 3 6 1 3 5 7 5 7 3 6 6 3 7 1 6 7 6 7 7 5 6 1 7 5 3 5 6 3 1 1 7 7 6 1 3 5
## [22285] 1 7 7 7 3 3 4 1 7 7 6 1 6 7 6 1 7 1 6 1 6 1 1 1 7 5 5 7 5 6 3 7 7 7 7 7
## [22321] 3 6 2 1 7 7 3 4 6 7 1 3 7 7 3 7 5 6 5 4 4 5 7 2 1 6 7 7 7 3 1 7 6 3 1 3
## [22357] 3 7 1 1 6 2 3 1 7 7 7 7 1 1 5 3 1 5 1 7 7 6 1 4 7 1 6 1 3 7 1 3 3 7 1 3
## [22393] 3 1 5 7 4 5 2 1 7 3 3 5 7 3 5 3 7 7 3 6 1 1 5 4 7 6 6 7 6 5 3 1 7 6 3 7
## [22429] 3 7 6 5 7 7 7 5 7 5 4 6 1 1 7 7 1 3 6 7 1 1 7 7 7 1 1 1 3 1 7 7 3 7 6 5
## [22465] 1 4 5 5 7 1 3 1 6 1 6 6 5 1 3 1 7 5 6 7 1 7 6 7 5 4 7 1 3 7 3 3 3 6 7 7
## [22501] 5 6 3 3 4 7 7 5 7 7 1 7 2 5 3 7 6 3 5 5 1 6 1 3 3 1 4 3 1 6 1 4 6 1 5 3
## [22537] 1 7 1 7 7 3 3 5 6 5 2 7 6 3 7 5 5 5 5 1 1 1 1 7 1 3 3 3 3 6 1 1 4 3 4 1
## [22573] 5 3 6 7 6 6 7 1 4 7 3 5 1 3 3 3 1 7 5 3 7 5 3 5 6 7 7 7 3 3 4 1 7 7 7 5
## [22609] 3 5 7 1 5 1 3 6 3 4 7 3 3 3 6 1 3 6 5 6 6 1 2 1 6 7 1 7 3 1 4 4 1 6 6 6
## [22645] 7 7 3 7 7 5 1 6 1 7 6 3 3 5 1 7 2 7 1 5 6 6 5 5 3 3 1 6 7 1 6 3 3 1 6 7
## [22681] 7 1 6 6 6 4 6 1 7 2 1 1 3 1 7 7 5 5 7 3 7 5 2 3 7 7 3 1 1 5 3 7 3 3 1 6
## [22717] 4 2 3 1 1 4 7 5 2 1 1 3 1 3 7 1 7 3 4 7 7 3 6 1 6 5 1 1 3 3 6 4 5 1 7 3
## [22753] 4 6 1 7 1 1 3 3 5 7 1 2 7 1 5 3 7 1 1 6 1 5 7 4 6 6 6 7 7 1 3 7 3 7 2 6
## [22789] 3 3 1 1 1 5 1 1 5 5 3 5 3 4 6 7 1 7 6 3 3 5 6 5 1 5 2 5 5 5 6 1 3 7 7 3
## [22825] 1 5 1 5 7 3 5 6 4 5 7 7 3 1 5 7 3 3 7 3 3 6 1 5 3 3 5 7 5 1 6 3 1 5 1 3
## [22861] 4 3 1 5 6 6 5 5 5 7 1 1 2 6 4 3 5 6 7 7 1 6 6 6 5 1 3 3 5 3 3 1 7 7 6 7
## [22897] 3 1 7 6 3 5 2 6 1 3 6 5 6 7 1 5 3 6 5 1 3 1 1 1 3 3 1 3 1 3 3 6 6 7 1 1
## [22933] 5 5 7 5 3 3 6 1 4 1 7 6 3 7 1 1 3 7 5 6 3 7 1 6 7 3 7 7 5 3 5 7 2 7 7 4
## [22969] 7 3 7 4 7 6 5 7 5 7 3 3 5 3 3 1 6 1 3 2 5 5 1 3 4 3 6 1 5 5 7 6 3 7 3 1
## [23005] 7 3 5 3 5 7 7 3 7 6 1 3 5 6 6 6 7 1 5 5 7 5 1 7 5 3 3 7 3 7 7 3 7 1 3 6
## [23041] 7 1 7 7 1 1 1 5 7 1 7 3 7 5 3 3 3 7 1 3 1 5 7 7 6 7 7 4 5 1 7 3 5 7 1 5
## [23077] 3 7 4 1 7 1 7 5 7 7 3 7 3 1 6 3 6 5 7 1 5 5 3 5 1 5 5 3 6 7 7 4 1 7 1 7
## [23113] 5 7 3 6 7 3 7 4 7 1 7 7 5 1 3 5 7 7 7 5 4 3 6 6 6 6 3 7 4 7 7 1 7 1 2 3
## [23149] 5 5 7 3 5 6 1 3 3 5 7 6 5 1 1 6 7 2 6 7 6 7 5 6 7 3 7 1 3 5 4 7 7 7 7 6
## [23185] 3 3 1 5 1 3 5 3 6 5 6 5 1 4 1 2 7 3 7 3 7 4 5 7 7 1 7 6 6 3 7 6 5 5 6 5
## [23221] 1 6 5 3 1 7 6 4 1 3 1 1 7 6 6 7 7 7 1 7 5 6 7 3 1 6 3 6 4 3 3 3 7 3 4 1
## [23257] 3 1 3 1 7 6 6 3 6 6 2 6 2 2 7 3 3 1 1 4 5 6 7 1 6 1 7 1 7 1 1 7 1 5 6 3
## [23293] 6 3 7 1 7 6 6 5 5 3 7 7 7 7 4 6 3 1 3 7 3 7 7 7 3 6 1 3 1 7 7 7 2 1 5 1
## [23329] 7 7 4 7 6 7 7 1 6 4 5 1 6 6 3 3 3 7 1 6 1 7 3 6 2 5 7 6 7 2 1 7 7 6 5 7
## [23365] 3 3 7 2 1 7 7 2 3 3 5 7 6 2 7 6 5 1 2 1 5 7 6 1 2 7 3 6 7 7 7 7 7 7 7 7
## [23401] 6 7 1 7 7 3 7 1 6 1 1 3 5 2 1 3 1 7 5 1 1 3 1 3 6 5 6 7 1 6 6 5 7 7 2 3
## [23437] 1 6 7 6 1 7 7 1 1 3 6 3 3 1 7 5 7 3 7 3 7 1 6 3 6 3 6 7 5 5 7 3 4 1 1 5
## [23473] 6 7 6 5 5 3 3 7 7 5 3 1 3 5 3 7 1 6 7 3 6 3 1 7 6 5 3 1 7 2 7 7 1 7 7 6
## [23509] 5 6 1 7 1 7 1 3 4 1 7 3 7 4 5 5 6 4 6 3 1 7 1 3 7 1 1 1 7 6 7 5 7 3 6 3
## [23545] 7 7 7 5 7 7 7 3 6 5 3 6 6 7 4 1 5 6 7 2 1 3 1 4 5 7 6 2 6 6 1 1 3 1 3 7
## [23581] 6 1 5 6 7 1 7 6 7 5 7 3 1 1 1 7 6 1 1 7 7 1 4 3 5 2 1 7 5 7 3 1 7 7 1 1
## [23617] 5 3 7 7 3 6 7 7 3 1 6 6 3 6 5 5 4 2 1 7 3 7 2 1 5 7 5 4 1 7 1 5 7 1 5 6
## [23653] 1 3 6 6 3 3 6 3 5 7 6 7 3 3 1 4 3 3 5 7 7 6 2 6 5 3 3 1 5 1 6 3 1 2 3 7
## [23689] 3 6 1 3 3 6 6 7 4 6 1 5 6 5 3 1 7 7 1 7 3 7 7 3 1 5 3 3 6 6 4 7 7 1 7 7
## [23725] 1 3 7 5 5 3 7 7 2 3 2 7 6 7 1 1 7 7 3 6 7 5 2 3 7 3 3 3 7 3 3 1 5 7 5 6
## [23761] 7 5 3 1 4 3 1 6 3 7 3 6 7 3 7 5 1 7 3 7 5 7 6 1 6 7 7 1 2 4 1 7 3 7 6 6
## [23797] 3 3 1 3 3 1 3 3 7 4 7 7 3 4 4 3 5 3 5 3 1 7 3 3 6 7 7 1 7 6 6 7 3 6 1 7
## [23833] 7 7 1 1 1 1 7 6 2 5 7 3 7 4 1 3 1 3 5 5 7 5 5 3 5 4 1 6 7 1 7 3 3 6 1 4
## [23869] 6 7 1 7 5 3 5 1 3 3 1 7 7 1 7 1 5 7 1 3 5 4 5 5 5 6 7 5 3 7 1 7 1 1 1 7
## [23905] 3 4 1 3 5 1 3 1 1 7 1 5 6 1 1 1 1 7 2 5 1 3 5 5 7 7 3 3 5 3 1 4 5 6 1 3
## [23941] 6 5 2 5 1 7 5 1 5 1 5 2 1 6 3 7 6 5 1 1 7 3 7 6 6 3 7 7 1 2 1 6 7 7 4 6
## [23977] 5 5 3 5 3 2 1 7 7 3 6 3 1 2 5 7 7 1 3 5 6 4 5 6 3 7 7 5 3 3 6 4 3 7 7 3
## [24013] 7 4 1 4 1 3 7 1 3 1 5 7 7 1 1 6 5 3 3 3 1 6 1 4 6 3 6 7 5 5 3 7 3 3 3 3
## [24049] 3 1 6 4 6 1 5 5 7 5 1 3 7 7 3 2 1 7 1 3 5 5 6 5 5 2 7 1 2 1 7 7 7 5 1 6
## [24085] 3 6 3 1 6 2 7 1 3 3 1 1 7 1 7 7 6 3 1 6 7 3 4 7 5 6 6 7 7 7 7 3 7 1 1 1
## [24121] 4 1 5 7 7 1 6 4 5 6 3 5 6 7 5 6 3 4 5 5 1 6 4 6 5 3 5 7 6 1 1 6 2 1 2 1
## [24157] 2 6 2 3 1 3 7 1 3 1 7 2 3 4 1 6 3 6 3 5 7 3 7 7 6 3 1 5 6 1 5 3 5 6 1 7
## [24193] 1 1 3 5 7 3 1 7 7 7 1 7 5 7 7 7 3 1 7 4 5 6 7 7 6 6 7 1 3 1 7 7 3 7 5 1
## [24229] 3 5 3 3 7 7 7 3 1 5 1 7 1 3 3 7 6 6 5 4 7 3 5 6 5 3 7 3 1 1 6 1 7 3 1 5
## [24265] 6 7 2 1 6 1 3 4 6 1 2 7 5 3 5 7 1 3 3 7 3 5 5 1 6 3 2 6 6 7 1 5 1 1 7 7
## [24301] 1 3 2 1 1 5 7 6 4 7 3 4 1 6 7 1 1 6 1 7 3 1 1 5 1 6 3 7 6 3 7 3 1 3 1 6
## [24337] 1 7 3 3 3 6 7 2 3 6 7 1 3 7 5 1 7 1 6 7 5 6 7 7 1 6 1 7 5 7 4 7 1 3 1 7
## [24373] 3 3 3 6 6 7 4 7 1 1 7 5 1 5 5 6 3 7 1 6 3 7 3 3 3 7 7 3 6 4 6 7 1 7 5 7
## [24409] 4 7 6 1 4 4 5 7 4 7 3 7 1 3 3 7 1 5 6 7 3 3 3 3 6 6 7 7 3 4 4 4 1 7 1 7
## [24445] 3 3 3 6 3 7 7 1 6 7 2 5 1 6 6 7 3 3 5 1 6 7 4 1 1 1 7 5 1 6 7 7 5 7 7 3
## [24481] 1 5 6 7 7 7 3 7 6 5 7 1 5 6 5 7 6 7 1 3 5 1 7 6 3 5 7 3 7 1 6 4 1 7 7 3
## [24517] 1 3 7 7 3 5 1 6 7 7 1 3 5 7 6 3 7 1 1 3 7 1 1 5 3 3 5 1 3 2 5 7 7 6 6 3
## [24553] 1 1 3 7 1 3 3 6 1 6 3 7 7 7 4 6 7 1 6 7 1 3 7 1 7 1 7 1 3 7 3 1 5 7 3 2
## [24589] 3 7 2 1 1 7 6 5 5 5 7 4 3 1 3 3 1 6 5 6 1 1 6 2 5 3 7 3 7 1 6 7 3 7 2 3
## [24625] 7 3 5 6 5 5 5 6 7 4 1 7 5 7 1 1 6 6 7 1 7 7 7 3 3 1 7 7 7 5 6 3 7 6 3 5
## [24661] 7 1 7 7 6 7 7 7 5 5 5 5 7 3 1 1 1 5 2 5 6 1 6 2 1 6 7 4 5 7 3 1 7 7 6 6
## [24697] 3 7 1 7 6 1 6 3 1 5 1 5 6 1 3 2 1 6 6 6 5 1 3 1 3 1 5 5 6 3 7 3 6 6 1 1
## [24733] 1 7 5 3 6 3 7 1 3 7 7 7 3 7 6 7 1 6 7 1 7 3 6 7 3 5 6 7 7 7 3 7 7 5 3 5
## [24769] 3 5 1 7 7 7 3 4 7 7 3 7 7 1 2 3 4 1 7 5 7 5 1 5 5 6 6 6 1 1 6 7 6 1 3 1
## [24805] 6 3 1 7 5 7 1 5 2 6 3 6 4 7 3 1 7 3 2 7 3 7 3 7 7 7 5 5 6 1 3 7 5 6 1 6
## [24841] 7 5 4 6 7 1 1 1 3 7 5 7 1 1 7 3 5 5 1 1 6 7 6 3 7 7 7 2 7 6 7 7 5 7 1 7
## [24877] 5 7 6 6 7 7 1 1 7 6 7 7 7 5 1 3 5 7 4 5 6 1 7 7 3 1 1 7 1 5 7 3 7 3 6 7
## [24913] 5 1 7 6 7 6 7 6 3 6 2 7 5 6 6 3 6 3 7 7 7 1 7 3 5 5 3 7 5 7 5 6 4 5 3 5
## [24949] 3 3 3 4 5 5 7 1 3 6 5 1 1 3 3 2 7 3 7 1 5 5 3 1 6 6 6 5 6 5 6 7 7 7 1 6
## [24985] 7 7 3 6 7 7 3 7 1 7 6 7 1 6 2 1 1 3 6 4 6 7 5 1 1 4 7 7 7 6 7 6 4 1 5 1
## [25021] 7 3 3 1 3 1 3 7 1 1 3 4 1 4 7 4 1 3 7 6 6 5 7 7 3 1 7 5 6 2 1 5 3 3 6 6
## [25057] 4 7 7 3 1 5 1 7 1 3 7 7 1 6 3 3 5 4 3 2 1 1 7 7 6 5 1 7 7 6 1 3 1 5 1 6
## [25093] 2 4 5 7 1 7 3 1 3 7 3 6 1 7 7 3 1 1 5 6 3 7 5 3 7 1 1 1 1 4 2 3 1 4 1 5
## [25129] 1 5 6 3 1 3 6 7 6 1 7 2 6 7 1 7 4 7 7 5 3 7 1 6 1 6 6 7 7 3 1 3 5 7 3 7
## [25165] 7 5 7 7 7 6 5 5 1 2 7 5 3 7 1 6 3 3 1 4 6 5 1 3 6 6 7 1 1 7 6 5 6 3 3 7
## [25201] 1 2 3 1 3 3 7 7 4 6 7 4 3 7 1 3 7 1 3 6 3 5 1 3 7 6 2 7 6 2 3 5 3 5 1 7
## [25237] 1 3 6 6 5 7 5 7 3 7 7 3 5 6 1 7 3 6 6 6 7 3 2 2 5 2 7 1 3 5 6 7 7 1 6 7
## [25273] 1 3 7 7 7 1 5 3 3 7 3 5 3 1 3 7 7 6 1 1 6 4 7 5 5 7 7 1 6 6 7 6 7 6 6 2
## [25309] 5 5 6 5 6 6 6 5 3 5 3 7 7 7 7 6 5 3 7 6 3 3 3 6 3 1 7 1 6 1 2 5 1 7 7 5
## [25345] 6 1 3 5 6 7 7 1 3 6 2 5 4 1 6 7 3 1 3 1 6 1 7 3 7 1 7 7 6 1 7 5 7 7 1 1
## [25381] 3 3 5 3 7 5 7 7 1 7 3 1 7 6 1 3 1 7 4 7 4 6 4 1 7 1 6 7 1 7 7 7 5 7 6 3
## [25417] 4 6 1 5 7 7 7 5 3 3 1 1 1 6 7 6 7 7 7 3 5 5 5 5 7 3 7 6 1 1 3 6 3 7 3 2
## [25453] 3 1 6 7 7 6 7 4 7 3 5 7 7 3 5 4 1 6 5 1 7 7 7 1 1 7 5 3 7 3 3 7 3 1 3 1
## [25489] 5 1 7 6 2 1 2 6 3 1 7 1 7 7 2 3 6 7 7 3 3 3 7 7 5 7 1 1 5 1 6 7 3 1 3 6
## [25525] 7 5 5 6 7 3 6 7 4 5 3 1 6 5 1 7 3 1 1 3 1 6 3 3 3 5 7 5 3 5 1 1 1 6 2 7
## [25561] 7 7 5 1 1 1 1 3 1 5 7 6 1 7 7 7 3 1 1 6 7 3 5 3 3 6 3 2 1 7 1 7 7 5 3 7
## [25597] 7 3 6 1 1 6 3 2 3 6 6 6 1 1 3 1 3 3 5 6 1 4 7 3 6 1 6 7 4 3 3 7 7 5 1 1
## [25633] 2 1 5 5 3 2 7 3 5 1 6 3 7 7 6 1 7 5 5 7 2 1 3 3 7 4 7 7 7 6 1 6 3 6 6 7
## [25669] 7 1 1 7 7 5 7 5 5 3 1 7 7 7 5 1 3 3 6 1 6 7 7 7 6 6 1 7 1 5 7 1 6 6 5 5
## [25705] 6 7 3 6 3 1 5 5 1 1 3 6 1 7 1 3 7 4 6 7 1 6 5 7 6 3 1 4 3 3 7 4 6 5 1 1
## [25741] 1 1 1 5 7 3 5 6 7 2 7 7 1 3 4 3 1 4 5 1 1 7 1 5 5 4 7 1 7 3 3 6 1 6 4 7
## [25777] 3 6 2 3 3 7 5 6 3 1 1 7 5 7 1 6 7 6 1 7 6 1 1 6 7 3 4 6 3 3 1 1 1 7 3 5
## [25813] 7 7 7 6 2 3 3 1 3 5 2 5 3 1 5 3 4 3 7 7 6 5 5 1 7 5 1 3 7 3 6 1 3 3 6 6
## [25849] 1 6 7 5 6 7 4 7 1 7 3 6 7 3 3 7 6 1 7 1 1 1 5 5 3 7 1 1 7 7 3 3 4 5 7 1
## [25885] 3 7 6 6 4 7 5 4 6 5 7 6 3 1 1 5 1 3 5 7 1 7 1 6 3 7 6 5 5 6 3 3 7 1 7 6
## [25921] 6 3 7 1 6 3 6 6 1 1 6 1 7 1 1 1 3 4 7 5 6 3 7 6 6 6 1 6 4 2 3 7 6 7 1 3
## [25957] 5 3 4 7 6 4 6 1 7 7 5 3 3 4 4 7 3 1 5 7 6 3 1 1 5 4 7 7 5 1 6 3 5 7 7 6
## [25993] 5 1 1 5 6 3 6 1 1 7 4 6 6 3 3 7 7 5 6 5 6 4 7 6 3 7 7 3 5 7 5 3 1 7 5 3
## [26029] 7 1 7 7 1 6 2 7 7 7 7 7 5 7 1 3 3 1 7 1 3 5 1 1 3 1 3 7 6 7 1 6 2 7 1 3
## [26065] 6 2 5 3 1 4 7 5 7 7 7 6 4 1 7 6 6 4 3 1 3 1 1 4 6 6 7 7 1 6 7 5 3 2 5 3
## [26101] 6 7 6 7 1 4 1 1 4 3 3 4 1 3 6 7 4 1 3 6 5 6 3 6 1 2 1 1 7 7 7 4 5 5 4 6
## [26137] 3 5 7 1 6 2 6 4 7 1 3 7 5 3 6 1 5 5 5 1 6 7 1 3 7 6 7 4 3 1 4 7 5 4 7 7
## [26173] 6 1 6 6 4 1 1 7 6 1 7 6 7 1 3 7 4 5 1 7 7 1 1 3 6 3 7 4 2 6 5 3 5 3 5 5
## [26209] 1 3 5 3 7 7 6 2 6 7 7 3 3 7 7 1 7 6 7 7 1 3 3 1 7 7 5 1 1 4 3 1 7 1 7 1
## [26245] 1 4 3 7 7 7 1 5 1 1 5 6 6 6 6 3 3 7 1 7 5 2 7 7 4 1 3 1 7 3 5 7 3 1 1 7
## [26281] 7 1 3 1 1 6 7 6 7 7 1 7 7 3 4 1 1 3 6 1 1 3 4 7 6 1 1 6 7 5 3 1 1 5 1 1
## [26317] 5 4 1 5 3 7 5 7 7 5 5 5 7 1 7 6 4 7 3 6 7 3 3 3 5 4 3 6 1 7 7 2 6 7 7 7
## [26353] 3 5 7 6 1 1 5 1 7 1 6 1 7 1 3 3 7 7 6 1 1 2 1 7 3 7 3 7 5 1 1 5 7 7 6 5
## [26389] 7 6 6 2 6 7 7 7 7 7 7 7 1 3 4 7 5 7 2 3 4 1 3 3 1 3 7 4 1 3 3 7 1 6 3 6
## [26425] 7 1 1 3 6 5 5 3 1 7 7 6 7 5 7 7 1 1 1 1 3 7 1 5 4 7 6 1 6 7 1 5 6 7 7 7
## [26461] 1 7 3 3 1 1 5 4 5 3 7 2 1 1 3 1 1 7 6 4 1 1 3 6 4 5 7 1 5 1 3 6 7 7 1 2
## [26497] 3 5 5 3 7 7 1 6 3 5 1 6 1 6 5 6 5 2 1 1 3 5 3 6 6 5 3 7 5 7 1 3 1 1 3 7
## [26533] 7 1 1 1 7 3 1 3 3 3 5 3 3 5 1 1 2 7 1 5 6 5 7 7 6 3 7 3 3 6 6 5 7 7 3 6
## [26569] 6 3 6 7 7 6 7 5 4 3 3 3 3 7 5 6 7 3 3 1 7 6 3 7 3 7 1 7 2 7 7 7 1 3 1 3
## [26605] 7 3 7 7 7 1 3 6 7 1 1 6 4 1 7 1 5 7 7 4 4 3 6 7 5 2 7 6 1 1 7 1 6 3 7 7
## [26641] 6 7 7 7 6 1 1 5 1 5 7 5 5 3 3 7 5 7 7 5 7 1 7 6 6 7 3 1 1 7 6 6 7 7 7 1
## [26677] 1 3 6 7 5 7 7 6 3 1 1 7 4 4 6 7 5 7 3 6 3 5 3 6 1 1 5 3 4 7 3 7 1 5 7 6
## [26713] 3 6 5 6 6 1 6 6 6 1 1 5 1 7 3 1 1 2 6 1 2 6 7 4 1 5 6 1 1 5 7 7 3 5 7 5
## [26749] 7 5 1 5 7 3 4 5 3 7 6 3 7 7 1 3 5 1 7 1 6 1 1 7 1 3 5 6 6 5 7 3 1 5 5 1
## [26785] 3 6 3 2 7 2 1 5 3 6 7 1 7 6 1 5 6 6 7 1 3 4 3 3 3 7 6 3 3 3 1 6 1 7 6 7
## [26821] 6 5 1 7 6 4 7 3 6 7 7 5 1 3 5 6 3 6 1 1 5 5 7 1 7 1 7 3 1 5 7 7 1 3 5 6
## [26857] 7 1 3 3 6 3 4 5 1 2 6 3 5 7 3 1 7 4 6 3 1 1 5 1 5 3 3 7 7 7 6 2 3 1 1 5
## [26893] 1 6 1 7 6 3 1 6 5 1 6 5 1 7 7 7 5 5 1 1 7 1 1 1 6 3 7 6 6 5 4 7 3 5 5 1
## [26929] 1 6 3 1 5 3 1 1 3 1 6 3 7 3 6 3 4 1 3 2 2 1 7 3 4 6 6 5 7 7 7 1 6 1 1 4
## [26965] 7 6 3 3 2 1 7 1 6 6 6 1 7 5 3 3 6 1 7 7 1 7 7 7 3 7 3 5 1 6 3 1 2 7 3 5
## [27001] 6 6 3 6 1 1 3 3 6 1 7 3 1 4 7 3 3 1 5 3 1 7 3 5 7 7 7 7 3 1 6 1 4 1 1 3
## [27037] 7 3 6 1 3 6 7 3 3 7 5 3 7 1 1 1 5 6 4 3 6 1 1 3 1 5 6 1 1 7 7 1 7 6 6 7
## [27073] 6 3 1 4 7 3 3 3 7 1 1 7 1 3 6 6 6 3 5 1 7 6 5 1 1 7 4 3 7 5 1 6 5 1 3 5
## [27109] 1 3 2 7 4 7 3 3 1 5 1 6 1 7 3 7 7 7 7 3 1 1 7 3 5 3 3 3 5 5 3 1 5 1 7 2
## [27145] 7 2 3 7 4 7 7 7 6 4 3 5 1 7 7 7 7 3 7 3 5 2 7 7 3 2 1 1 6 6 1 6 3 7 6 7
## [27181] 1 3 7 7 7 1 5 3 6 5 6 5 6 1 6 1 1 7 6 6 2 6 3 7 4 1 6 1 4 5 4 1 5 1 1 6
## [27217] 7 3 5 7 2 3 7 3 6 7 6 1 7 1 1 7 1 3 1 1 3 5 6 6 7 7 6 3 3 7 5 1 5 1 7 5
## [27253] 7 6 5 7 1 1 7 4 7 3 7 7 5 6 6 7 4 5 5 7 6 6 6 3 4 6 6 6 6 1 7 5 6 5 5 1
## [27289] 7 1 7 1 6 2 5 7 1 1 6 1 1 5 7 6 1 7 2 4 3 3 6 1 7 3 6 1 1 2 7 1 7 6 2 1
## [27325] 1 1 7 1 3 7 3 7 7 3 7 2 7 2 6 6 5 6 6 7 5 1 7 4 1 1 6 7 5 3 2 6 2 6 6 5
## [27361] 4 5 2 1 7 7 7 7 7 7 6 5 1 7 1 6 7 7 7 1 2 5 4 3 2 1 3 3 1 7 4 1 5 7 2 7
## [27397] 1 5 1 7 7 1 7 5 6 1 6 6 1 4 7 6 7 1 7 5 7 1 1 1 4 1 7 5 4 1 3 3 7 5 5 3
## [27433] 3 1 3 7 3 5 5 5 5 7 5 1 6 6 7 7 6 7 6 7 7 5 7 5 7 5 7 1 3 7 5 3 3 1 6 7
## [27469] 5 3 4 5 7 6 7 7 7 1 7 6 1 1 6 5 1 7 4 6 1 1 3 7 7 3 6 1 1 3 3 5 1 3 3 6
## [27505] 7 4 5 7 7 3 6 1 5 5 6 2 4 2 3 6 1 7 6 3 3 6 1 3 7 7 1 1 7 1 1 5 1 4 5 7
## [27541] 3 1 6 4 7 7 5 1 1 1 3 5 1 6 5 5 1 6 6 3 5 5 3 5 7 7 7 1 3 6 7 7 3 3 3 5
## [27577] 1 4 1 5 7 6 7 3 7 1 4 7 3 7 1 6 3 3 2 7 7 1 1 6 7 6 1 6 3 7 6 4 6 5 5 6
## [27613] 3 1 3 7 7 1 7 5 7 4 2 7 3 3 6 1 3 7 1 7 5 1 5 7 1 3 5 5 3 6 4 3 1 6 7 6
## [27649] 2 2 2 7 3 1 3 7 7 7 1 5 5 1 6 3 3 3 3 7 6 7 5 6 1 5 4 1 6 7 7 7 5 7 6 3
## [27685] 7 5 7 3 3 6 4 7 1 3 6 6 1 7 6 6 1 3 3 1 6 5 1 1 2 4 3 5 1 7 7 1 1 3 7 6
## [27721] 3 6 5 7 6 7 2 7 7 1 7 7 7 1 5 6 3 1 6 7 3 7 3 5 1 3 7 7 5 3 7 7 7 7 1 4
## [27757] 4 1 5 3 3 1 7 1 6 7 5 1 1 7 1 5 7 7 4 7 1 7 7 3 5 1 3 1 1 7 3 3 6 1 6 2
## [27793] 7 1 5 1 3 3 3 2 1 1 6 7 1 7 7 7 6 5 3 6 1 3 7 1 6 5 6 5 5 6 1 6 7 6 6 1
## [27829] 6 1 3 1 7 6 7 7 3 1 1 6 1 7 5 5 7 1 1 7 4 7 3 4 4 5 1 7 3 3 3 7 7 1 3 3
## [27865] 7 7 1 2 7 6 1 1 7 7 5 5 2 5 5 7 2 2 7 3 3 7 7 3 7 6 3 3 7 6 6 6 1 7 7 7
## [27901] 7 7 7 1 4 5 1 7 7 1 7 7 7 1 5 7 7 7 1 7 7 7 6 1 1 7 7 1 4 1 6 7 1 6 7 1
## [27937] 1 7 3 7 3 7 7 3 7 3 1 1 6 7 3 6 3 1 6 5 7 7 5 3 7 7 3 1 3 7 5 6 7 7 6 5
## [27973] 4 6 1 5 3 4 1 4 7 2 7 1 1 6 7 1 6 1 6 4 7 3 3 1 5 5 6 6 7 7 6 3 3 3 5 6
## [28009] 1 4 3 1 3 3 3 5 7 1 3 5 7 5 6 7 6 6 1 6 4 1 3 6 3 5 1 7 1 3 6 6 6 1 7 3
## [28045] 1 6 5 1 3 3 7 5 3 7 3 1 1 7 7 4 5 3 3 1 6 6 6 7 1 1 7 1 5 7 1 4 3 1 4 5
## [28081] 3 1 6 1 6 7 1 1 4 5 1 7 7 3 7 3 7 7 6 1 4 1 7 5 2 3 3 2 1 7 3 3 3 3 3 6
## [28117] 2 1 3 3 5 3 6 7 3 6 3 7 3 3 1 7 4 1 6 3 5 1 5 3 1 7 3 6 7 5 7 3 3 7 3 7
## [28153] 1 4 7 3 7 6 6 6 6 7 6 6 7 7 7 3 7 7 3 2 3 6 1 1 6 1 1 7 1 4 6 5 1 3 6 6
## [28189] 3 7 7 3 5 5 5 4 3 7 3 2 7 7 1 7 7 6 1 3 3 6 7 1 3 3 5 7 7 5 6 5 5 6 1 3
## [28225] 7 5 5 2 1 6 4 2 1 5 7 5 1 7 6 1 3 7 7 6 6 7 6 7 7 3 3 3 7 3 5 4 3 6 2 1
## [28261] 7 3 1 1 6 1 1 5 7 2 7 6 7 1 5 3 3 6 4 1 6 7 6 1 7 2 6 7 3 6 1 7 7 3 5 1
## [28297] 1 5 6 7 7 6 3 7 6 1 5 4 1 3 4 1 7 7 3 3 7 3 6 2 1 1 5 3 6 1 3 3 3 6 6 2
## [28333] 5 5 1 7 3 1 1 7 7 3 3 1 6 5 6 5 5 1 7 5 5 7 1 7 7 5 7 7 4 7 3 1 6 6 3 6
## [28369] 3 3 3 3 7 1 1 5 5 7 3 5 6 7 5 4 1 6 6 7 3 2 5 3 6 7 5 4 5 7 3 3 3 6 3 3
## [28405] 5 3 7 7 3 6 1 5 7 6 7 3 3 7 7 7 5 5 3 7 3 7 7 6 3 7 3 7 3 4 6 3 6 7 6 1
## [28441] 1 1 3 6 3 7 1 3 3 5 1 1 2 2 6 4 3 7 5 5 7 7 3 5 4 1 6 7 6 3 4 7 1 5 1 2
## [28477] 4 7 1 3 1 7 1 1 7 5 3 3 7 3 1 2 5 1 1 7 3 7 3 1 7 7 4 3 2 7 7 3 5 2 5 3
## [28513] 6 1 3 7 7 1 6 1 7 7 6 6 7 6 1 7 3 1 2 6 1 7 6 5 5 1 5 7 3 3 5 6 7 3 7 5
## [28549] 7 1 1 5 3 6 3 6 3 5 6 1 7 6 3 6 4 6 6 1 4 5 7 3 2 6 1 7 4 5 5 1 7 7 1 3
## [28585] 7 5 7 4 3 1 5 1 6 1 4 1 7 7 5 2 6 7 7 7 5 1 1 4 2 5 3 5 7 5 5 3 7 1 4 4
## [28621] 1 7 1 6 1 4 1 3 4 6 1 6 3 3 6 7 3 1 6 1 5 6 1 3 7 5 6 1 7 7 1 1 7 7 7 5
## [28657] 7 5 7 6 1 1 2 7 1 7 7 3 5 7 5 7 7 1 4 1 3 6 1 7 1 5 5 5 6 3 7 5 1 2 3 3
## [28693] 7 5 1 6 1 3 1 7 7 7 5 5 7 5 4 1 7 3 5 7 3 7 5 4 3 1 1 1 1 1 6 3 1 6 6 3
## [28729] 7 5 7 5 1 5 3 5 3 7 6 7 7 7 3 5 7 4 1 5 5 3 2 4 5 1 3 7 1 6 5 7 6 7 3 7
## [28765] 7 3 7 5 7 1 3 3 5 1 5 7 7 1 7 6 5 1 6 3 7 5 6 1 1 3 7 6 7 1 4 6 7 3 7 6
## [28801] 7 1 7 6 3 3 6 1 4 1 6 5 7 1 3 1 1 3 4 6 6 1 6 2 7 6 3 6 7 1 3 7 3 7 4 7
## [28837] 7 2 4 7 1 5 6 5 7 6 3 3 7 1 1 5 2 5 2 3 7 7 7 7 7 5 6 5 1 6 5 1 2 7 1 2
## [28873] 5 7 6 6 3 6 7 7 7 1 1 7 1 6 6 7 7 5 6 5 7 2 3 4 6 7 7 7 7 7 1 1 6 4 7 3
## [28909] 3 5 3 1 7 3 6 3 6 6 1 4 5 5 3 3 7 7 1 7 2 7 1 3 7 7 1 4 6 3 5 5 7 1 5 5
## [28945] 6 6 6 5 5 1 7 6 7 6 7 6 7 7 5 5 6 5 2 5 1 3 3 1 6 1 7 6 5 2 5 1 3 7 3 7
## [28981] 1 3 5 1 6 7 5 1 4 3 5 3 7 1 1 3 1 1 5 4 7 3 7 5 1 7 1 7 2 1 4 3 7 1 1 1
## [29017] 4 6 3 6 3 6 6 1 6 5 3 4 1 6 5 5 6 3 6 1 6 6 3 3 5 7 7 3 5 6 7 5 6 1 7 7
## [29053] 3 7 5 6 7 7 7 3 1 7 7 1 5 6 6 7 7 6 3 3 7 3 6 2 3 5 5 7 1 7 7 7 3 7 5 7
## [29089] 4 1 7 4 1 3 5 7 6 3 1 1 1 1 1 3 6 3 3 7 7 7 1 5 3 3 2 4 7 5 5 7 3 6 3 1
## [29125] 3 3 3 1 5 7 6 3 7 5 4 3 1 3 3 4 1 7 7 3 5 3 3 3 3 5 3 3 2 4 1 5 3 3 7 4
## [29161] 7 1 3 6 5 5 4 7 7 5 7 5 1 4 3 1 7 7 3 4 3 7 3 4 7 6 1 6 2 5 6 3 3 5 7 5
## [29197] 2 5 6 7 5 1 3 4 1 4 7 3 7 5 6 3 1 7 6 7 3 3 6 5 3 1 1 4 6 7 2 7 3 6 3 7
## [29233] 7 1 3 3 1 1 1 5 3 3 7 3 7 1 6 1 1 6 3 5 3 6 5 3 7 6 5 3 1 7 5 3 1 6 6 1
## [29269] 3 1 5 5 6 2 6 1 6 1 6 3 6 3 5 4 1 3 7 3 1 7 3 7 5 2 7 4 7 1 5 6 7 7 6 1
## [29305] 3 7 5 7 1 3 7 7 6 3 7 7 1 6 5 7 7 1 5 3 6 7 3 7 3 3 3 3 1 3 3 7 3 5 6 6
## [29341] 2 6 1 3 6 3 1 6 1 6 7 3 3 6 3 3 4 1 7 7 5 1 6 6 7 1 5 1 5 3 7 3 5 7 6 1
## [29377] 4 1 1 4 1 7 2 1 3 3 6 5 7 1 5 6 5 1 7 4 1 3 3 6 4 1 3 4 3 1 6 1 6 7 6 3
## [29413] 1 7 7 6 6 1 6 1 3 1 1 4 5 7 1 7 5 7 3 1 3 7 6 6 1 6 7 3 1 6 3 1 5 7 3 7
## [29449] 5 3 3 1 7 2 5 4 1 3 5 6 3 1 6 2 7 6 6 4 6 3 7 6 4 6 7 7 6 5 1 1 7 6 1 7
## [29485] 3 3 6 1 7 2 7 6 4 7 4 1 1 1 4 1 3 5 6 4 7 2 6 5 1 5 6 5 5 6 3 7 1 5 5 3
## [29521] 7 3 5 1 6 6 7 7 7 1 1 7 5 6 2 6 6 7 7 6 7 1 7 7 5 3 7 6 7 6 3 1 3 7 5 5
## [29557] 6 7 1 6 7 6 1 7 5 5 5 1 1 6 1 6 1 6 6 7 7 1 1 3 4 6 3 7 3 1 3 7 3 5 7 3
## [29593] 6 7 3 3 3 6 3 7 7 1 3 5 3 5 7 6 7 3 3 5 5 2 7 1 1 7 7 3 4 7 3 1 3 6 6 3
## [29629] 4 5 6 1 5 3 6 7 6 6 1 6 3 6 6 6 3 7 6 7 3 7 7 7 7 3 5 5 7 6 7 4 2 3 7 7
## [29665] 6 5 5 1 3 3 7 6 5 7 5 6 3 5 1 6 7 7 7 2 5 7 3 7 7 1 2 3 1 1 7 5 1 3 1 6
## [29701] 3 3 7 7 3 4 6 3 7 7 7 3 3 1 7 1 3 5 7 1 3 2 4 7 5 6 1 2 1 5 2 1 7 7 1 1
## [29737] 7 5 1 6 1 1 3 3 7 3 3 5 6 7 7 1 1 3 7 1 1 6 3 7 7 5 7 3 7 5 6 6 7 6 1 1
## [29773] 3 2 4 3 5 1 6 7 7 4 7 7 7 3 3 1 3 5 1 5 1 7 7 7 5 1 6 7 3 1 5 4 1 7 7 1
## [29809] 6 7 7 7 1 7 3 1 5 5 1 1 1 3 1 3 7 7 5 6 3 7 6 7 1 7 5 7 5 4 1 6 7 7 1 3
## [29845] 5 6 2 7 5 5 1 7 7 3 7 6 1 7 3 3 7 1 3 7 1 7 1 4 7 7 1 1 3 2 7 3 7 7 1 7
## [29881] 1 6 6 5 5 1 1 1 5 5 7 4 1 5 1 7 3 3 6 7 1 1 7 3 1 6 7 1 1 5 3 1 7 3 4 1
## [29917] 7 1 7 3 1 5 5 1 5 1 3 7 1 6 5 7 6 3 4 1 3 7 1 5 3 7 5 6 1 3 2 3 7 3 7 1
## [29953] 5 2 5 6 3 4 6 3 1 4 3 3 1 1 1 4 4 6 3 1 1 3 7 5 3 3 7 5 7 7 6 3 5 4 6 7
## [29989] 7 7 1 1 5 3 7 7 3 7 7 7 1 1 3 1 5 1 7 1 7 2 5 3 6 5 1 1 3 5 5 1 5 7 1 7
## [30025] 1 6 7 3 6 7 7 7 5 2 5 3 1 6 5 6 6 1 7 7 7 7 5 3 1 6 1 5 1 5 1 5 3 1 7 3
## [30061] 1 7 3 7 6 7 7 7 5 7 7 5 3 5 3 2 4 3 3 6 3 3 3 7 3 7 7 5 1 3 3 7 3 3 7 7
## [30097] 7 3 5 1 6 7 7 6 3 7 3 3 6 4 3 7 1 2 1 3 6 6 3 7 6 5 5 6 6 1 3 7 7 7 1 7
## [30133] 3 5 3 3 7 7 4 6 7 7 7 6 3 3 7 1 7 3 7 1 2 7 5 5 7 7 1 4 7 3 7 6 5 1 5 1
## [30169] 3 5 3 3 3 7 1 1 1 7 7 6 7 3 6 7 3 4 5 6 6 4 3 5 4 1 4 5 3 1 6 1 1 6 1 6
## [30205] 3 2 5 1 5 7 7 1 5 1 6 2 4 1 2 3 3 6 7 7 5 4 7 6 5 1 5 1 3 6 7 1 1 7 6 3
## [30241] 5 5 5 1 3 1 2 5 1 3 6 7 7 6 3 6 7 7 7 7 5 7 6 7 1 5 6 1 3 1 7 3 6 3 7 1
## [30277] 1 7 7 3 3 1 5 7 3 3 5 1 1 6 5 5 7 1 2 7 4 1 6 1 4 6 7 6 3 1 7 5 5 5 1 7
## [30313] 5 3 1 6 3 7 1 7 1 3 5 6 7 6 6 6 7 7 3 6 3 2 3 6 2 1 7 1 6 5 5 2 1 7 4 1
## [30349] 7 7 7 3 1 3 3 7 5 6 6 1 1 6 5 6 1 1 2 7 1 3 3 3 1 1 6 3 7 6 6 1 1 3 1 3
## [30385] 1 1 1 1 7 2 3 7 4 7 7 1 5 2 3 3 3 7 3 7 1 7 1 5 2 1 7 7 5 1 7 3 3 1 6 3
## [30421] 5 6 5 5 7 3 7 7 7 6 3 3 3 6 1 7 7 3 6 6 7 3 7 5 5 6 7 7 7 1 5 5 5 5 4 1
## [30457] 3 7 6 3 6 5 6 3 7 7 1 6 5 3 4 3 7 1 5 3 3 6 5 7 1 5 3 6 7 6 5 5 1 7 6 3
## [30493] 7 2 6 7 7 6 7 7 7 3 2 3 3 3 3 7 6 7 6 7 3 3 7 6 7 5 3 7 7 1 6 5 5 6 6 7
## [30529] 6 7 1 5 6 6 6 3 3 1 1 1 1 3 6 1 3 6 7 7 1 1 3 1 2 7 6 7 5 3 7 1 1 6 1 1
## [30565] 6 4 5 5 3 1 5 1 3 6 3 5 2 6 7 6 7 7 1 6 1 1 3 3 3 3 1 3 1 3 1 1 6 5 3 7
## [30601] 6 5 7 6 3 3 6 6 6 3 1 7 1 7 6 1 6 7 6 1 7 7 3 5 7 4 4 2 7 1 5 4 7 1 1 1
## [30637] 7 1 1 4 3 6 7 1 6 7 5 7 5 3 1 5 7 6 5 7 1 3 5 6 7 3 1 5 1 3 3 3 1 1 3 7
## [30673] 6 5 7 3 7 6 7 6 3 1 5 7 1 3 5 7 1 7 3 1 5 3 1 7 6 5 1 3 3 7 5 6 3 7 3 1
## [30709] 7 7 3 6 1 7 7 6 6 6 3 3 7 6 6 1 3 6 4 6 7 6 7 6 7 1 1 1 7 7 6 2 7 3 3 6
## [30745] 3 6 3 1 5 7 3 6 4 6 7 5 3 1 7 1 6 7 3 1 2 3 7 6 6 6 6 4 7 3 7 5 6 6 1 7
## [30781] 7 1 4 6 7 1 7 3 3 3 5 1 6 3 4 7 1 3 7 3 3 5 3 6 7 6 4 7 3 6 1 5 3 3 1 1
## [30817] 6 6 5 6 6 1 3 6 5 7 3 3 5 4 1 7 6 7 3 1 7 3 1 7 3 6 5 1 7 5 7 4 7 7 6 5
## [30853] 6 3 7 4 1 5 7 7 5 5 7 1 3 7 4 7 5 5 7 1 5 3 1 7 6 5 7 1 3 1 1 7 7 1 3 6
## [30889] 1 7 2 7 7 3 4 1 3 3 5 6 1 1 3 1 1 1 6 1 5 1 1 7 6 7 3 1 7 7 4 1 6 5 6 3
## [30925] 7 7 6 1 1 5 4 7 7 2 2 1 1 6 6 7 1 1 4 1 1 5 7 3 6 6 7 7 4 1 1 7 1 3 7 3
## [30961] 6 3 7 3 5 1 6 6 5 3 4 3 5 6 3 6 3 5 3 7 5 1 3 5 1 3 3 3 1 6 7 7 5 6 1 1
## [30997] 3 3 4 7 7 6 1 7 5 7 1 6 7 3 3 3 5 7 3 6 7 4 7 5 3 7 7 7 2 1 1 7 7 7 5 6
## [31033] 7 1 3 5 7 3 7 5 2 3 1 3 5 2 1 3 3 6 5 5 7 7 7 7 5 7 7 7 2 6 7 1 1 7 6 3
## [31069] 1 7 1 6 1 3 6 7 7 1 3 7 3 7 7 1 1 5 1 5 3 7 3 7 5 5 7 5 1 2 3 3 6 6 5 1
## [31105] 6 5 1 7 6 3 6 6 3 7 6 6 7 7 2 7 7 6 7 3 7 1 2 1 2 4 6 1 3 1 6 1 7 1 3 3
## [31141] 7 6 5 6 5 7 7 6 4 7 6 6 4 5 7 3 6 7 7 3 4 7 1 3 3 3 2 1 1 5 5 3 2 1 6 1
## [31177] 3 7 7 7 3 7 4 5 1 7 1 7 1 5 4 3 7 3 4 1 7 6 5 5 6 6 3 7 1 4 3 1 6 7 7 7
## [31213] 3 7 3 7 3 6 3 1 3 5 1 4 2 6 3 3 1 3 7 7 4 7 7 1 7 5 3 7 7 6 4 4 3 1 1 1
## [31249] 4 3 2 1 7 1 1 1 6 6 7 6 3 7 7 6 2 1 7 6 4 1 7 7 7 1 6 6 5 1 3 1 1 6 3 7
## [31285] 1 5 7 5 3 7 6 7 3 5 7 1 1 5 5 7 5 5 5 1 7 7 3 7 1 5 5 6 7 5 3 7 1 7 7 6
## [31321] 1 6 6 4 3 5 7 1 6 7 1 1 2 5 5 1 1 7 6 4 7 5 7 1 6 5 3 6 7 4 7 7 5 3 1 7
## [31357] 1 5 1 3 7 7 5 2 1 7 6 1 5 1 7 5 7 7 3 3 4 7 6 3 2 6 5 7 3 7 1 1 1 7 3 6
## [31393] 5 7 6 5 2 5 7 7 1 7 1 2 1 6 1 7 5 3 3 4 1 6 7 6 6 6 1 7 3 1 7 7 7 6 5 6
## [31429] 6 1 3 7 3 7 4 6 3 3 6 1 7 5 1 3 3 7 1 5 6 1 1 2 7 5 2 6 1 7 3 3 1 1 4 7
## [31465] 7 6 5 5 4 7 1 6 3 7 1 6 7 1 1 3 5 7 1 1 2 1 3 4 7 3 4 6 4 1 6 7 1 3 6 6
## [31501] 1 7 6 6 3 6 1 2 3 2 6 6 6 7 5 6 6 1 7 3 3 1 5 6 7 7 7 1 1 3 3 7 3 5 5 3
## [31537] 2 2 1 7 6 1 6 1 6 7 7 2 7 7 3 6 3 7 3 1 6 5 5 5 1 5 2 7 4 1 7 1 1 1 5 3
## [31573] 6 6 6 7 7 1 5 6 5 3 6 1 7 3 1 5 3 3 7 6 6 6 1 6 6 1 1 3 1 7 2 1 6 5 2 1
## [31609] 3 3 5 3 7 3 2 7 1 6 7 2 5 6 3 1 3 1 2 3 4 3 1 1 6 4 1 3 1 1 7 1 7 7 7 5
## [31645] 7 4 5 3 6 1 3 3 1 2 2 3 3 7 6 6 1 5 2 5 5 7 6 3 1 6 7 3 7 4 3 6 3 1 2 6
## [31681] 5 6 2 4 3 7 1 1 1 5 7 3 1 3 3 6 1 7 7 5 6 1 6 1 1 1 1 7 3 1 7 6 1 4 6 4
## [31717] 3 3 7 6 2 5 1 3 5 1 7 2 3 4 6 7 7 5 5 1 6 1 3 7 1 3 7 3 6 7 5 3 5 7 4 6
## [31753] 7 6 1 6 6 6 6 7 3 5 5 7 1 6 7 3 2 5 6 5 7 1 7 1 7 3 3 1 7 6 7 7 6 6 4 3
## [31789] 6 3 7 4 2 7 6 6 3 1 3 1 6 3 6 3 4 7 5 6 1 1 3 5 5 4 3 6 3 2 3 6 3 5 5 7
## [31825] 6 3 6 4 3 3 7 1 5 1 1 7 7 7 7 7 5 7 2 5 6 7 6 7 1 7 6 5 7 5 7 3 6 7 3 6
## [31861] 7 6 2 7 5 3 3 7 1 1 6 1 7 3 7 5 3 3 7 7 6 7 7 5 6 7 5 7 3 5 7 4 7 6 5 7
## [31897] 1 6 1 7 1 3 7 6 1 4 1 3 5 7 7 7 7 7 1 6 7 1 6 1 3 3 1 6 4 6 1 1 6 1 7 3
## [31933] 7 7 3 3 7 7 3 7 5 3 7 7 2 1 1 6 6 7 6 1 1 6 7 7 3 6 3 7 6 7 3 6 7 1 6 7
## [31969] 5 6 3 1 7 3 6 7 3 5 6 4 3 2 4 3 7 5 3 6 5 7 7 1 4 5 1 1 7 6 3 7 6 3 7 4
## [32005] 1 3 4 7 7 7 6 5 7 7 3 7 3 3 3 1 7 3 1 6 1 2 7 7 3 1 2 7 7 3 6 3 7 7 5 3
## [32041] 3 3 7 4 7 4 1 1 6 3 7 1 7 6 7 5 3 6 5 3 2 7 3 7 3 5 5 1 3 6 3 6 1 1 1 5
## [32077] 5 5 2 1 7 6 7 7 5 7 5 3 7 6 1 7 7 5 7 7 5 3 7 6 6 1 1 7 1 3 3 5 5 7 1 7
## [32113] 6 3 4 6 6 3 7 7 1 6 7 3 5 4 2 3 1 4 3 5 1 2 7 1 1 3 7 3 3 5 7 3 7 1 2 4
## [32149] 6 3 7 3 7 6 7 3 1 3 3 7 6 7 5 6 6 1 3 6 3 1 1 3 6 1 1 1 6 3 7 1 6 1 3 7
## [32185] 3 7 6 3 7 4 5 7 7 5 1 3 6 3 5 7 7 5 6 6 1 7 7 1 2 1 1 3 7 6 7 1 1 4 3 1
## [32221] 1 3 3 3 3 6 6 6 6 5 3 3 5 6 7 5 7 6 7 1 3 2 3 6 1 7 4 3 3 7 1 1 1 3 1 6
## [32257] 3 4 5 5 6 7 3 7 7 3 7 6 5 7 7 5 7 5 7 3 6 1 1 1 3 1 7 3 1 4 1 7 2 2 6 3
## [32293] 1 1 7 5 7 6 3 4 5 3 3 1 2 3 1 3 5 7 1 1 1 1 5 1 1 1 7 3 3 7 1 4 3 1 6 6
## [32329] 1 7 1 6 1 7 1 7 6 6 3 3 2 7 7 5 5 4 3 7 6 1 7 3 5 6 3 3 7 3 6 3 1 1 6 3
## [32365] 7 6 4 4 3 6 3 6 6 7 1 6 3 6 7 7 5 7 7 1 2 3 7 7 7 3 7 1 5 6 5 6 3 7 6 3
## [32401] 7 7 7 5 3 5 7 7 3 7 1 1 6 5 1 7 2 3 5 6 3 5 7 3 7 7 3 6 6 7 3 1 7 1 1 1
## [32437] 3 3 1 1 5 3 7 1 2 7 3 1 1 3 6 5 3 3 1 3 3 3 7 5 6 5 2 1 1 7 5 5 6 3 7 1
## [32473] 7 2 3 7 7 3 1 7 7 3 7 5 3 1 1 1 1 5 3 7 1 1 6 1 1 6 1 6 7 3 6 1 3 3 7 5
## [32509] 3 1 7 6 7 5 1 3 7 5 3 5 6 1 3 7 7 7 2 3 5 5 7 5 6 3 4 3 5 4 2 1 3 5 7 4
## [32545] 5 1 7 3 6 3 7 7 7 5 2 7 7 5 4 6 7 1 7 7 1 7 6 7 5 5 7 7 6 3 6 1 7 6 1 4
## [32581] 1 3 7 4 3 1 7 5 5 2 5 1 7 7 7 6 5 6 7 6 1 1 2 1 1 1 4 7 5 6 7 1 6 1 3 5
## [32617] 7 1 7 5 1 1 3 7 6 7 5 7 6 6 6 3 4 1 7 5 7 7 1 1 7 3 3 1 1 5 2 7 1 7 5 7
## [32653] 5 3 3 3 5 7 5 3 6 3 6 1 5 1 1 5 1 5 5 3 7 6 1 1 5 7 1 7 2 3 7 7 7 6 7 3
## [32689] 6 1 1 7 3 6 5 3 7 1 4 7 6 3 7 7 3 1 5 6 7 6 4 5 3 1 1 1 1 7 5 1 7 3 5 1
## [32725] 3 1 1 2 7 5 1 6 7 3 6 4 2 1 7 7 7 6 1 4 3 7 1 7 7 4 6 3 5 6 1 1 1 3 3 3
## [32761] 3 5 7 3 1 4 3 7 1 7 1 5 6 1 1 1 2 2 1 7 7 4 7 5 7 6 1 1 1 3 7 5 3 5 6 1
## [32797] 7 3 7 1 7 5 3 4 7 5 1 1 7 4 3 3 3 7 7 6 2 4 7 3 1 7 3 7 3 5 7 7 1 5 5 5
## [32833] 3 3 3 1 4 7 2 1 7 5 3 5 2 6 3 7 3 3 5 4 7 1 7 3 6 1 5 1 4 7 7 3 1 1 5 1
## [32869] 4 3 1 3 6 3 7 5 3 6 7 3 1 1 2 5 7 7 1 1 1 1 1 1 1 1 1 3 1 1 1 5 1 6 3 5
## [32905] 7 5 7 5 6 5 5 7 3 5 5 6 7 1 1 1 1 6 3 6 1 5 7 1 5 2 3 5 7 6 7 1 3 1 5 1
## [32941] 1 6 6 1 7 5 7 1 7 7 1 6 3 5 3 3 3 5 6 6 3 1 6 1 5 3 1 5 6 5 5 3 3 7 7 1
## [32977] 7 6 6 6 1 1 3 1 4 7 1 1 7 7 7 7 4 5 5 6 7 5 1 1 1 7 3 6 4 1 3 6 7 5 7 5
## [33013] 3 6 1 3 1 1 4 7 3 7 7 3 5 7 6 7 1 7 2 3 2 3 7 6 5 1 5 5 1 5 1 3 7 3 3 1
## [33049] 2 3 6 1 5 3 3 4 4 5 5 5 3 5 3 5 4 5 5 1 7 3 3 3 5 3 7 7 3 3 7 6 7 7 7 7
## [33085] 5 7 5 6 7 5 6 5 7 1 7 7 7 7 6 1 4 6 2 1 1 7 1 6 6 6 6 1 5 6 6 5 5 6 3 5
## [33121] 7 7 1 7 3 1 2 4 1 7 7 6 7 4 4 3 7 3 6 6 7 7 7 1 3 3 1 7 1 7 7 6 3 4 7 3
## [33157] 7 5 1 1 7 6 6 1 1 3 7 5 3 1 5 3 7 6 5 3 7 7 7 1 1 5 7 1 5 3 5 1 4 6 1 3
## [33193] 7 7 6 7 1 7 1 1 6 1 2 4 5 1 1 1 1 5 2 7 3 7 1 1 7 5 7 3 5 4 1 1 4 3 5 2
## [33229] 1 3 6 3 1 7 5 1 1 4 3 1 3 7 6 5 3 7 1 4 1 3 7 5 3 5 6 3 1 1 6 7 3 1 1 7
## [33265] 3 1 6 7 6 3 7 3 1 5 3 3 7 7 5 3 7 7 7 3 1 7 7 3 3 3 7 3 7 3 1 5 3 7 6 1
## [33301] 7 7 7 5 7 1 7 3 1 7 7 4 7 5 1 5 6 1 7 1 6 3 5 7 3 1 7 7 5 3 1 6 1 1 6 7
## [33337] 6 1 1 7 6 1 1 6 7 3 6 7 5 5 5 1 3 1 7 7 1 3 3 1 6 1 6 7 7 1 4 3 7 7 5 6
## [33373] 7 7 7 3 3 4 7 1 4 6 7 3 1 7 1 7 6 5 3 6 1 1 1 1 1 7 3 6 6 5 5 7 7 7 7 5
## [33409] 5 3 3 1 1 2 6 7 3 4 1 4 4 7 6 1 5 6 3 5 7 5 7 1 1 1 1 6 1 3 3 3 5 4 1 7
## [33445] 3 3 1 1 4 5 5 7 1 5 7 3 7 3 5 1 5 7 6 3 6 6 7 3 1 6 7 1 1 4 3 1 5 1 3 7
## [33481] 1 1 1 1 1 7 2 5 3 5 7 1 3 6 1 6 3 6 4 7 5 6 6 3 3 5 1 5 3 3 7 3 3 1 1 5
## [33517] 7 1 7 3 6 6 7 7 7 7 6 5 1 3 3 3 6 3 1 1 1 7 7 6 7 1 3 5 7 1 5 1 1 7 6 1
## [33553] 7 7 3 3 5 7 3 7 3 5 6 5 6 1 1 7 6 1 7 6 5 5 1 7 5 7 1 7 2 5 7 7 7 3 6 6
## [33589] 3 1 3 6 3 5 7 2 7 7 7 6 5 3 7 1 6 5 2 1 1 6 2 1 5 7 5 1 1 7 7 7 5 7 1 7
## [33625] 7 5 7 5 3 6 3 5 7 7 7 6 6 4 3 3 5 5 5 5 3 7 3 7 3 3 1 3 1 5 7 1 7 5 3 5
## [33661] 7 7 5 7 7 1 6 7 6 5 7 3 7 1 1 7 6 7 3 3 6 6 6 1 6 7 7 3 1 5 3 7 3 3 1 7
## [33697] 1 1 1 7 4 1 3 7 5 1 3 1 5 5 6 3 7 7 5 5 7 1 6 5 7 4 3 5 1 3 5 3 5 7 1 7
## [33733] 6 3 6 3 6 3 3 5 1 1 7 6 6 6 7 6 3 7 6 7 6 2 7 5 3 3 6 1 3 7 1 7 3 1 4 5
## [33769] 3 5 3 1 7 6 7 7 5 5 3 7 6 5 5 1 3 1 6 7 6 7 6 7 1 3 7 5 3 3 1 1 6 3 6 3
## [33805] 7 3 7 1 3 5 1 4 3 3 3 3 1 7 7 7 5 3 5 7 5 4 7 7 7 6 5 1 6 7 6 7 3 1 1 3
## [33841] 3 1 1 1 6 3 1 7 3 2 4 7 6 3 1 7 6 6 6 3 5 4 3 7 4 3 3 1 1 5 6 1 7 3 3 7
## [33877] 6 1 7 7 6 7 7 1 3 1 5 5 6 1 3 3 5 5 3 3 3 5 6 1 7 7 5 7 5 1 7 7 1 2 7 7
## [33913] 1 7 3 5 3 1 3 7 7 1 7 3 7 3 5 3 7 7 1 1 4 6 6 5 6 7 7 7 1 7 5 7 7 7 1 6
## [33949] 4 5 1 5 6 6 3 3 7 6 1 6 7 3 1 3 1 1 1 6 2 7 3 6 1 7 3 6 3 5 6 1 1 6 3 7
## [33985] 7 2 7 6 5 7 1 7 3 7 1 3 7 7 6 1 1 1 2 5 6 3 6 1 3 7 1 1 7 1 6 1 1 2 7 7
## [34021] 7 4 7 5 5 5 6 3 7 7 1 1 7 1 6 1 3 5 1 7 7 1 5 6 5 7 3 4 7 5 6 1 4 7 1 7
## [34057] 7 3 5 3 1 7 2 7 1 6 1 2 6 2 6 6 6 3 1 7 7 3 3 1 7 6 5 1 1 3 7 7 1 5 7 5
## [34093] 6 1 3 1 7 1 6 6 6 3 7 7 3 6 5 3 4 7 6 7 7 1 7 6 1 7 4 3 6 7 3 3 6 1 2 7
## [34129] 4 7 7 1 6 5 3 6 1 5 4 1 6 1 3 7 7 3 2 3 4 7 7 4 4 6 1 7 7 7 7 4 5 3 1 7
## [34165] 3 1 5 7 4 7 7 3 7 7 5 7 5 5 7 1 5 5 5 3 3 7 7 6 4 1 1 6 1 7 7 7 6 7 1 3
## [34201] 3 6 3 6 6 5 7 6 5 5 3 7 3 5 1 7 3 1 1 3 7 5 7 1 6 6 7 7 7 7 6 1 7 3 6 6
## [34237] 3 3 1 6 1 1 5 3 7 6 5 3 5 5 3 1 5 6 7 3 5 5 1 2 3 7 7 6 1 1 6 1 1 5 3 4
## [34273] 7 4 6 1 3 5 3 3 6 5 5 3 3 7 3 1 7 7 7 7 1 4 4 3 7 5 3 5 5 7 7 7 5 7 7 3
## [34309] 1 1 7 7 5 6 3 1 3 1 7 3 1 1 5 2 3 7 7 6 3 7 7 7 6 2 6 1 6 7 3 3 1 5 1 7
## [34345] 3 7 6 7 7 5 7 1 5 7 3 1 2 5 1 5 5 7 6 3 6 3 3 7 3 1 1 7 3 5 7 1 6 3 7 6
## [34381] 6 7 5 7 7 4 7 3 7 3 6 6 3 6 7 5 1 5 7 3 1 6 5 7 3 7 1 7 1 2 1 6 1 7 1 3
## [34417] 6 3 1 7 7 1 7 7 1 7 3 7 5 7 7 7 1 6 7 7 7 2 3 7 7 3 1 1 3 7 5 1 3 3 7 4
## [34453] 7 7 7 1 5 5 6 3 3 1 1 7 1 2 7 3 7 1 5 1 1 3 6 1 1 1 7 7 3 6 3 3 1 3 5 1
## [34489] 3 5 3 3 6 5 1 5 1 6 5 5 7 6 2 4 7 7 3 1 7 7 5 7 3 6 1 7 3 7 3 6 7 4 7 3
## [34525] 1 5 7 3 2 3 6 6 4 7 7 1 7 3 1 5 5 5 1 1 6 1 6 2 1 5 5 7 7 5 6 7 6 1 5 3
## [34561] 6 6 5 7 2 3 6 6 3 1 7 1 7 1 7 3 5 1 6 3 7 7 4 1 2 3 5 5 1 3 1 5 7 7 4 7
## [34597] 7 1 7 6 3 7 6 3 7 7 2 1 5 1 1 2 1 3 5 7 7 2 6 3 1 3 5 7 1 3 7 3 7 1 3 5
## [34633] 1 7 1 2 7 7 6 3 5 1 6 7 7 1 7 7 1 7 5 5 1 7 7 3 1 7 7 1 3 5 7 3 7 7 6 5
## [34669] 7 7 7 5 1 7 1 3 4 7 3 7 5 6 2 4 6 3 7 1 7 7 7 6 5 5 5 5 6 3 1 7 6 6 3 7
## [34705] 1 6 7 6 6 4 1 7 6 1 1 7 5 6 6 5 4 7 1 1 1 1 6 1 1 2 4 1 7 7 5 5 4 2 5 1
## [34741] 7 6 7 4 6 3 7 7 7 6 1 5 3 7 6 3 7 3 5 5 7 1 7 3 3 7 1 5 7 7 1 1 7 3 1 4
## [34777] 6 6 7 6 3 7 1 1 7 6 6 6 3 5 3 5 1 4 1 7 4 4 3 1 3 1 6 1 7 1 7 1 7 7 4 7
## [34813] 1 1 1 6 6 7 2 3 5 1 7 7 3 3 7 3 4 3 3 3 5 6 3 7 6 6 6 4 7 7 6 1 3 4 7 1
## [34849] 7 1 6 5 5 1 3 6 5 3 3 5 6 7 3 2 5 5 5 7 6 5 1 5 5 4 7 3 3 6 5 6 2 3 6 3
## [34885] 6 7 3 6 4 5 3 6 5 7 4 7 7 1 7 7 7 7 6 7 7 1 7 7 3 7 5 4 7 1 7 5 6 1 1 7
## [34921] 5 7 7 1 5 5 5 1 3 7 2 1 7 7 4 3 6 3 1 5 7 3 3 3 1 1 5 7 5 6 5 6 1 3 3 5
## [34957] 3 1 5 3 7 7 3 7 5 1 1 1 1 4 3 5 7 3 7 1 7 3 7 5 7 3 3 5 6 7 3 1 2 6 7 6
## [34993] 3 6 1 6 3 7 7 3 1 6 3 7 6 6 6 1 1 3 2 5 7 3 1 1 7 4 1 7 7 7 6 1 4 5 1 7
## [35029] 1 3 1 7 6 5 7 7 6 5 1 6 3 3 6 6 5 7 7 7 6 3 1 5 7 3 7 5 3 7 6 6 1 3 3 3
## [35065] 4 3 4 7 6 7 3 6 3 1 4 7 5 3 1 7 1 1 5 6 1 1 1 7 3 7 7 7 7 6 3 3 1 1 6 5
## [35101] 5 7 3 2 5 6 4 3 6 1 4 6 1 5 6 4 3 3 4 6 5 3 3 7 6 3 3 1 1 7 7 3 3 5 1 7
## [35137] 3 1 3 7 5 1 1 1 6 6 3 3 7 3 5 3 3 1 6 1 6 1 7 7 3 1 1 4 1 1 7 5 7 7 1 3
## [35173] 7 3 3 6 3 7 3 1 3 5 5 1 6 4 7 3 3 6 3 5 5 7 5 7 1 1 1 1 7 5 7 1 7 7 3 7
## [35209] 7 1 7 7 3 6 5 7 7 3 1 3 3 6 1 3 1 3 5 3 5 2 4 1 1 7 2 1 2 6 1 3 7 4 3 7
## [35245] 2 3 3 5 3 7 7 3 2 1 6 5 2 3 3 5 7 7 1 3 3 3 7 3 3 3 1 7 1 3 7 2 7 6 1 7
## [35281] 7 7 7 5 5 7 7 6 7 5 1 4 6 3 7 7 1 7 3 1 3 7 7 2 3 6 1 7 7 7 5 2 1 7 7 4
## [35317] 4 3 1 2 3 1 6 7 6 1 3 5 1 5 7 7 6 4 1 7 3 1 5 6 5 6 5 1 3 7 1 7 1 6 2 7
## [35353] 1 2 7 7 3 1 5 7 1 7 1 7 3 7 4 3 1 3 7 3 4 1 3 1 3 1 5 1 5 3 1 6 1 7 7 5
## [35389] 1 4 5 6 1 6 6 4 1 3 7 3 7 5 5 4 7 3 3 3 5 3 7 1 1 7 5 5 1 7 3 7 6 2 6 2
## [35425] 5 7 1 6 3 1 6 3 1 3 1 2 6 6 3 2 3 1 5 1 6 7 7 7 4 7 6 7 4 6 3 6 3 3 7 7
## [35461] 3 3 5 3 1 5 7 6 3 6 3 6 5 5 5 7 3 5 3 3 5 6 1 1 1 7 3 3 7 6 1 6 1 1 2 7
## [35497] 6 3 7 4 7 2 7 3 7 1 5 1 3 7 1 3 3 1 7 7 1 1 7 7 1 7 7 4 3 1 7 3 1 7 5 7
## [35533] 1 6 5 3 7 3 3 3 2 1 5 3 5 1 7 1 1 1 3 1 3 7 1 6 7 1 3 7 6 6 5 7 1 5 7 3
## [35569] 7 3 4 6 5 6 5 3 3 6 7 3 7 7 3 7 6 1 1 7 5 7 3 1 5 7 1 7 3 2 3 5 7 5 1 6
## [35605] 6 3 1 1 1 6 4 7 7 3 1 7 7 1 6 1 5 3 7 6 5 4 6 7 1 1 2 1 1 7 1 6 3 4 3 6
## [35641] 3 1 3 6 3 3 7 1 7 5 1 3 7 5 7 6 6 3 1 5 1 1 5 6 1 7 3 7 7 1 1 7 4 5 7 1
## [35677] 3 7 6 3 1 1 6 1 1 5 3 3 3 6 7 1 1 4 2 7 6 5 1 7 5 7 1 7 6 7 1 6 7 6 1 6
## [35713] 5 5 1 3 6 5 5 5 1 1 1 2 6 3 3 1 1 7 5 3 4 1 1 3 7 3 7 7 3 7 5 7 7 4 4 7
## [35749] 2 1 4 6 1 7 7 7 6 4 1 6 6 2 1 7 5 1 3 2 7 1 3 3 7 7 3 1 4 1 3 3 6 7 1 7
## [35785] 3 6 5 5 6 3 5 3 5 6 1 7 5 1 1 3 6 6 7 7 7 6 7 7 2 7 5 3 4 6 1 5 6 6 7 7
## [35821] 3 2 5 1 1 7 7 6 5 7 6 5 7 7 7 3 4 2 1 7 7 6 3 6 7 5 1 6 1 7 6 5 6 3 7 7
## [35857] 1 1 7 5 7 3 6 7 1 6 7 4 1 4 7 3 1 5 3 3 5 7 5 7 5 7 7 5 7 6 1 3 7 1 3 5
## [35893] 5 3 3 7 7 5 7 7 3 7 6 1 7 1 2 6 6 7 3 4 3 5 5 7 3 5 1 2 7 5 7 7 1 6 4 7
## [35929] 7 1 3 7 7 6 5 7 5 3 2 7 7 1 3 6 6 7 7 2 6 4 6 7 6 7 3 1 3 3 6 3 6 7 7 7
## [35965] 3 4 1 4 1 7 1 1 4 6 2 3 6 5 5 3 7 6 1 7 7 1 1 3 3 6 3 7 1 4 5 4 6 6 3 7
## [36001] 1 7 7 6 7 5 3 1 7 1 3 7 1 7 5 6 5 5 3 2 5 1 6 7 3 7 3 5 3 1 5 1 5 7 7 6
## [36037] 5 3 5 1 6 1 3 6 7 3 5 1 7 5 7 1 3 7 4 5 7 1 1 1 6 7 6 3 7 3 6 6 7 1 6 7
## [36073] 3 3 3 1 3 7 7 1 5 3 6 7 2 3 7 7 1 7 3 3 6 1 6 6 1 7 7 5 6 7 7 1 3 1 4 3
## [36109] 5 6 1 6 7 7 6 1 7 5 6 3 5 6 5 1 7 5 5 3 3 6 5 5 4 5 7 6 6 3 1 7 7 6 3 1
## [36145] 4 6 5 3 1 7 5 7 6 7 7 7 5 1 3 7 3 7 5 7 5 4 2 7 2 1 1 1 1 7 1 7 5 1 3 7
## [36181] 3 6 6 7 1 7 1 1 7 1 7 5 5 1 7 7 7 3 3 1 6 5 3 3 1 4 1 1 6 3 1 1 1 3 6 7
## [36217] 6 5 4 1 1 1 1 3 5 7 7 1 4 6 5 6 7 7 7 4 3 1 7 3 3 1 5 5 3 4 6 1 7 2 6 7
## [36253] 5 7 3 7 3 7 1 6 5 7 3 7 3 6 3 2 3 5 3 1 6 3 5 4 1 1 1 3 7 7 7 1 7 3 6 6
## [36289] 1 6 5 3 6 5 3 7 1 1 6 3 3 6 1 6 6 1 1 1 1 6 3 6 3 7 6 5 1 7 2 7 7 7 7 7
## [36325] 1 7 6 5 1 2 6 5 7 6 1 1 7 3 3 7 1 7 7 7 5 6 6 7 7 7 3 1 7 1 5 7 1 1 6 6
## [36361] 1 7 5 1 7 6 3 7 7 7 5 3 3 1 2 6 3 6 6 6 2 6 7 5 2 2 3 6 6 7 7 7 1 6 5 1
## [36397] 1 1 3 5 7 3 5 3 3 3 7 3 3 1 6 7 3 5 6 7 7 2 3 5 5 7 6 1 5 6 1 1 6 1 3 6
## [36433] 1 1 5 5 3 1 5 7 2 2 5 7 1 2 5 6 7 7 1 7 7 7 1 4 4 5 6 5 1 3 7 3 3 3 7 7
## [36469] 3 6 1 5 5 5 6 1 7 7 3 3 6 1 3 5 1 7 1 3 7 5 2 3 5 3 5 6 6 3 7 7 1 3 1 3
## [36505] 5 7 5 2 7 3 1 1 3 7 3 7 3 7 7 5 1 6 1 5 1 1 3 5 7 3 1 6 3 2 1 3 7 2 1 6
## [36541] 7 3 7 7 7 7 7 5 3 3 1 7 6 5 3 6 7 6 7 1 3 7 5 3 1 1 7 3 7 3 1 7 2 3 7 7
## [36577] 1 1 3 3 1 3 6 7 5 6 5 1 7 1 6 7 5 1 1 1 3 3 3 1 7 3 7 1 6 6 1 1 1 4 3 6
## [36613] 6 7 6 7 4 7 6 7 3 1 6 7 5 7 1 1 3 7 3 7 1 5 5 6 6 3 7 2 5 7 1 6 3 3 1 3
## [36649] 3 7 3 7 1 1 5 7 6 1 4 3 5 6 1 6 3 6 7 5 3 6 7 7 5 3 3 5 4 3 1 7 1 3 7 3
## [36685] 7 1 1 2 6 1 3 6 6 1 1 3 3 5 1 3 6 3 7 5 7 6 5 7 3 7 1 5 6 1 6 5 6 5 3 5
## [36721] 1 7 6 3 7 6 4 3 7 3 5 1 7 3 6 1 1 1 7 7 6 7 7 2 4 6 6 1 7 3 1 4 7 6 1 1
## [36757] 1 7 7 4 6 6 6 6 5 7 7 1 3 4 7 5 7 5 5 7 3 1 6 6 7 1 5 3 7 3 3 1 1 1 7 1
## [36793] 3 3 1 5 1 7 6 1 5 1 7 1 6 3 6 5 3 1 6 7 7 1 1 6 1 3 3 3 5 7 5 7 7 7 1 7
## [36829] 5 3 1 2 3 6 6 7 7 7 7 6 6 1 1 3 7 2 6 5 5 1 1 1 1 4 6 1 7 3 5 1 3 2 7 7
## [36865] 6 1 3 5 7 3 7 1 7 1 1 6 7 7 1 4 5 7 6 6 6 3 3 1 7 5 7 1 6 6 3 3 6 3 6 6
## [36901] 6 1 1 1 7 5 1 6 3 6 5 7 7 1 7 7 3 3 5 6 1 3 1 7 3 1 6 5 4 5 1 3 1 1 1 1
## [36937] 1 1 6 3 4 6 5 2 5 1 6 7 5 7 5 1 3 7 3 5 7 7 1 3 3 3 1 3 4 4 7 6 5 1 6 3
## [36973] 2 1 1 7 7 6 3 2 5 5 1 1 3 7 3 7 1 7 7 7 1 3 7 3 7 6 2 3 3 3 1 6 3 3 7 5
## [37009] 5 3 4 7 1 5 3 7 5 1 7 7 7 1 5 1 7 6 3 5 7 6 3 7 6 1 6 6 1 5 7 5 3 7 5 5
## [37045] 2 2 4 7 7 1 5 1 7 7 6 7 6 6 1 4 7 1 6 1 1 7 1 1 1 4 4 1 6 2 6 6 3 3 7 7
## [37081] 3 5 1 5 3 1 6 7 5 3 1 1 7 3 1 5 7 7 3 7 7 7 5 1 5 2 4 4 3 6 1 1 7 1 5 5
## [37117] 5 1 2 7 5 6 1 1 3 7 1 3 5 7 6 7 5 7 1 7 1 7 5 3 3 3 4 1 1 7 1 7 7 2 3 3
## [37153] 3 6 1 7 6 7 1 1 1 6 1 1 7 6 5 3 6 7 5 7 7 3 7 5 1 6 6 1 3 3 6 6 6 2 7 6
## [37189] 6 6 1 5 7 3 1 7 5 1 6 4 5 1 5 7 7 7 3 4 7 4 6 6 6 3 1 7 3 1 1 7 7 7 1 6
## [37225] 7 4 2 7 5 1 5 7 2 7 2 5 7 7 1 5 1 7 6 7 5 3 7 5 3 1 3 1 1 7 7 7 6 3 7 7
## [37261] 1 7 1 7 6 6 3 7 6 3 4 4 1 6 7 5 7 7 1 7 7 1 7 7 5 7 1 1 7 6 7 6 4 3 4 5
## [37297] 7 6 1 5 7 6 1 3 1 1 3 5 3 6 3 6 1 3 3 6 3 1 7 3 3 5 5 7 4 5 7 5 4 7 1 7
## [37333] 7 3 6 7 7 6 6 3 1 5 7 5 1 7 2 6 6 4 3 7 5 5 1 3 1 6 4 4 7 7 6 3 6 3 3 1
## [37369] 7 7 5 6 5 1 7 1 1 1 7 1 5 3 1 7 6 7 5 6 5 1 7 5 3 3 2 6 6 1 7 7 6 7 7 5
## [37405] 3 3 1 7 7 3 1 3 1 6 7 3 6 7 1 6 5 3 6 1 4 6 7 4 3 6 7 1 6 6 6 7 3 6 1 3
## [37441] 5 7 6 1 7 3 6 6 3 3 7 6 7 1 5 6 2 6 3 7 5 6 6 1 7 7 2 1 7 6 5 6 3 5 6 1
## [37477] 7 7 7 3 6 7 3 6 3 6 1 1 5 6 7 3 5 3 5 4 7 1 6 7 1 5 3 7 5 3 7 7 4 1 1 6
## [37513] 7 2 5 3 1 6 6 3 7 1 7 7 1 7 1 3 3 3 4 1 7 3 6 1 7 7 7 1 7 7 4 7 6 7 2 7
## [37549] 1 1 7 3 3 3 6 7 7 1 7 3 3 7 1 6 7 4 6 1 7 6 7 3 3 5 5 7 1 6 7 5 2 5 1 6
## [37585] 1 7 5 7 5 6 1 6 4 1 3 6 1 6 7 6 6 6 3 4 3 5 3 5 4 1 6 6 7 3 3 4 7 7 7 7
## [37621] 7 3 1 6 7 1 3 7 1 7 5 3 1 2 5 5 4 6 1 3 3 2 5 6 3 6 6 7 5 5 3 7 7 1 3 3
## [37657] 3 5 1 7 6 6 7 3 7 7 7 3 1 1 1 3 5 6 6 1 6 3 5 6 6 1 1 1 1 7 5 6 1 1 1 3
## [37693] 3 5 7 1 3 7 3 7 2 5 6 1 4 4 3 1 3 2 1 5 7 6 2 1 1 5 5 6 6 7 7 5 6 1 5 6
## [37729] 6 4 6 6 1 6 3 5 1 1 1 1 1 3 1 1 7 7 7 3 3 6 7 3 3 7 6 7 6 7 1 3 5 7 7 4
## [37765] 5 7 1 3 7 6 7 7 1 3 5 7 6 6 1 1 7 7 6 7 2 7 5 3 1 2 1 5 5 7 6 6 3 1 7 7
## [37801] 1 7 1 6 6 3 6 1 5 1 3 5 7 5 5 5 6 7 5 7 5 7 1 2 6 3 6 1 2 1 5 6 1 1 1 6
## [37837] 1 5 5 4 5 4 5 7 1 6 7 7 3 7 1 1 1 5 3 1 1 7 5 5 3 3 7 6 5 7 6 7 7 6 3 5
## [37873] 4 3 7 4 1 3 6 4 1 6 7 6 2 7 7 3 1 1 6 7 1 3 6 6 6 1 7 7 3 3 7 3 3 6 3 7
## [37909] 3 7 1 1 5 7 7 3 1 7 3 7 3 1 6 3 3 1 3 4 7 1 1 7 4 5 7 5 3 5 4 1 7 6 4 7
## [37945] 1 6 5 1 1 1 4 7 7 1 3 7 1 2 3 1 7 1 3 7 7 1 6 7 1 7 1 6 1 3 1 1 7 3 5 6
## [37981] 7 1 3 1 7 1 7 2 1 7 7 6 3 7 6 3 7 7 7 7 6 3 7 1 1 7 3 1 3 2 7 1 3 7 5 6
## [38017] 1 7 4 5 1 7 1 6 3 1 1 5 3 1 6 3 5 1 1 5 3 5 1 6 6 7 1 1 4 2 3 4 6 7 3 1
## [38053] 5 5 7 3 2 6 7 1 2 1 3 7 5 1 1 1 6 1 1 5 3 3 6 3 3 6 6 7 3 3 6 6 1 1 7 7
## [38089] 1 1 6 5 3 6 3 1 3 5 3 1 1 7 7 2 3 7 3 1 3 7 5 5 3 1 5 3 3 6 1 3 6 4 7 1
## [38125] 7 5 5 5 7 5 5 7 2 6 1 7 7 2 6 3 3 1 7 6 4 6 1 1 1 3 1 7 7 1 1 4 1 1 7 1
## [38161] 7 7 1 5 7 7 7 1 6 1 3 6 6 1 5 6 1 1 6 3 7 1 3 1 5 2 3 3 3 3 7 7 7 4 5 1
## [38197] 3 1 3 1 3 7 3 2 3 7 7 1 7 7 7 5 1 6 3 6 4 7 5 5 7 6 3 1 7 7 7 7 3 1 4 1
## [38233] 3 3 7 3 3 7 7 3 3 7 6 7 4 1 1 1 7 7 4 3 5 6 3 7 6 7 2 7 7 2 3 7 6 1 6 7
## [38269] 7 1 6 5 7 2 1 4 6 3 5 3 7 7 5 5 7 7 7 7 7 6 3 7 6 1 1 7 1 7 1 3 1 6 5 3
## [38305] 7 3 7 7 1 6 6 7 3 5 5 7 3 5 1 5 5 2 5 7 5 7 7 6 6 1 7 1 2 7 1 3 3 6 6 6
## [38341] 5 1 4 1 7 3 1 7 7 1 5 1 4 3 5 1 7 3 7 7 7 3 7 7 6 7 2 5 4 6 1 7 6 6 1 3
## [38377] 3 7 7 3 3 3 6 1 4 3 3 7 7 1 7 6 7 1 5 3 4 2 3 3 5 1 7 7 5 7 7 5 3 5 6 5
## [38413] 7 5 3 2 7 3 1 6 3 1 1 7 5 5 7 5 1 6 1 3 7 7 1 7 5 5 1 2 1 7 5 1 3 3 3 4
## [38449] 5 3 2 7 6 3 7 7 1 1 4 7 5 3 3 1 4 5 7 3 6 5 6 7 3 5 1 7 3 7 6 4 7 6 3 7
## [38485] 6 7 7 5 2 7 7 7 7 5 6 1 5 7 1 3 5 1 1 7 3 6 7 5 5 6 1 3 5 1 5 6 3 6 3 2
## [38521] 7 1 7 3 4 4 3 1 7 3 7 5 7 6 3 3 6 7 7 1 3 1 7 1 1 7 3 2 6 3 5 2 5 5 5 5
## [38557] 6 1 6 6 7 3 3 7 1 2 1 7 2 7 7 4 5 1 3 3 7 7 5 1 6 5 5 3 5 7 3 1 5 1 5 5
## [38593] 1 3 7 7 1 6 5 5 3 7 7 1 3 1 7 3 4 4 1 7 6 3 3 3 7 1 3 7 6 6 5 5 3 7 1 6
## [38629] 5 7 7 6 6 6 7 7 1 1 6 7 1 5 3 6 3 1 3 3 7 7 6 7 3 6 7 3 3 6 3 7 3 6 7 7
## [38665] 1 3 3 3 3 7 1 7 6 6 3 5 3 3 7 3 1 1 1 3 1 2 7 1 7 7 7 6 1 6 4 3 3 7 7 2
## [38701] 1 3 3 7 3 7 3 3 5 5 5 1 7 7 6 3 7 4 7 7 7 3 7 7 3 4 1 3 1 2 7 1 2 7 3 7
## [38737] 1 6 6 5 5 6 7 3 6 3 1 1 1 1 5 1 2 7 3 5 5 7 5 7 3 1 6 1 1 7 1 7 5 7 3 1
## [38773] 5 5 1 6 7 7 1 3 5 5 3 3 6 7 6 1 4 1 7 6 7 3 7 3 1 5 6 4 6 7 7 7 7 3 3 1
## [38809] 2 1 6 6 5 1 6 3 7 7 6 4 1 5 5 6 3 7 1 3 4 2 1 5 1 3 4 5 3 6 5 7 5 3 7 7
## [38845] 7 7 7 3 3 6 5 3 1 7 7 3 4 1 7 5 5 1 3 7 4 3 7 5 1 6 1 1 7 6 7 5 4 1 1 7
## [38881] 1 7 7 7 1 7 3 7 1 6 2 7 5 1 7 7 7 1 5 5 3 1 6 6 7 6 4 3 3 1 5 1 6 1 3 6
## [38917] 6 1 1 6 3 7 3 5 1 2 2 1 3 7 3 3 2 6 3 7 4 6 1 1 3 1 3 3 6 3 3 6 3 3 1 3
## [38953] 7 1 2 6 5 5 1 6 5 3 5 1 4 7 6 7 1 6 6 7 6 7 3 3 7 6 1 5 1 1 6 3 6 1 1 1
## [38989] 6 7 6 6 5 6 7 7 6 1 7 5 7 6 6 5 7 5 7 7 6 6 4 3 6 6 6 7 6 3 4 7 4 5 2 7
## [39025] 1 7 3 6 4 3 5 1 2 1 6 1 7 5 1 7 6 7 7 5 5 7 1 7 1 7 3 7 7 6 7 3 1 7 5 7
## [39061] 1 3 6 3 7 1 6 5 6 6 1 6 6 6 2 6 5 1 3 7 3 7 3 5 6 5 1 1 6 1 1 3 5 3 1 7
## [39097] 5 7 2 3 5 3 4 4 1 1 3 7 4 7 3 3 1 5 3 1 6 3 7 1 7 6 6 1 7 7 1 4 4 7 1 5
## [39133] 3 3 1 7 3 7 7 6 3 3 4 1 6 7 1 7 6 7 4 3 3 1 7 7 6 7 7 4 7 3 7 6 3 5 1 3
## [39169] 3 1 3 3 4 7 6 7 3 5 3 1 6 1 5 6 6 7 1 3 7 6 1 1 5 1 7 7 5 6 1 3 7 3 3 1
## [39205] 7 3 6 3 6 4 3 1 4 6 6 1 6 1 4 3 5 6 7 6 3 6 1 1 3 7 7 6 3 4 5 7 1 6 3 1
## [39241] 7 1 2 5 3 6 1 6 6 3 7 6 6 7 7 5 3 6 3 3 6 5 5 3 7 5 3 3 7 7 7 3 1 6 6 6
## [39277] 6 5 1 6 4 5 5 3 5 7 3 7 3 7 3 7 6 6 7 1 7 5 7 3 3 6 3 6 2 3 1 6 5 7 1 6
## [39313] 1 5 6 5 3 3 5 5 1 6 3 5 1 3 4 6 2 7 3 6 3 7 7 5 7 7 1 6 7 3 6 7 3 3 6 6
## [39349] 6 6 3 7 5 3 1 5 5 7 7 5 3 5 2 1 5 7 1 7 3 5 5 3 1 5 3 7 3 3 7 6 4 3 6 7
## [39385] 3 6 7 1 3 6 7 2 3 6 5 7 7 1 1 7 3 5 2 5 7 5 3 7 7 7 6 7 1 2 7 6 1 3 4 1
## [39421] 3 1 7 3 3 1 1 3 7 5 3 6 7 7 7 1 6 7 5 1 7 4 3 5 5 7 1 7 1 5 7 7 3 7 3 3
## [39457] 7 6 3 3 3 3 3 7 7 6 3 6 3 1 1 6 3 3 5 6 1 6 7 6 6 5 1 6 1 7 3 5 3 1 1 7
## [39493] 6 3 7 4 5 3 7 3 3 6 7 7 7 7 5 5 1 3 7 7 1 1 5 1 7 1 1 6 1 6 3 7 7 3 7 4
## [39529] 5 2 1 6 5 3 3 6 6 5 7 6 1 5 7 3 3 6 6 7 7 2 5 7 2 1 1 5 6 1 5 6 7 6 1 1
## [39565] 3 5 3 3 7 6 3 1 7 3 6 6 6 4 7 7 3 6 7 7 7 3 6 3 1 7 1 1 6 6 7 7 3 7 1 1
## [39601] 5 7 5 7 4 1 7 1 7 6 7 2 6 6 1 5 2 7 3 5 3 1 7 1 1 1 7 7 7 1 1 6 7 3 1 6
## [39637] 1 4 3 2 3 1 7 1 7 4 6 1 1 1 7 1 5 7 6 1 6 1 1 3 1 4 1 3 7 1 5 7 6 7 6 4
## [39673] 6 1 7 7 7 1 6 5 7 1 1 7 7 3 1 5 5 4 3 1 6 1 1 1 7 1 4 6 5 3 7 6 3 7 1 1
## [39709] 7 3 7 2 1 4 1 4 5 1 1 6 3 3 6 4 1 3 1 7 4 7 7 7 5 3 5 7 5 1 1 5 3 4 6 6
## [39745] 1 5 7 4 1 5 7 5 6 3 4 1 7 1 6 7 2 7 3 1 1 3 1 1 7 1 4 7 2 5 1 7 7 6 1 2
## [39781] 3 7 7 1 1 6 5 1 1 6 7 7 3 7 4 6 3 7 5 1 3 7 7 3 7 4 1 7 1 1 6 7 7 3 3 7
## [39817] 6 7 2 1 1 7 6 4 7 4 3 6 5 6 7 1 7 5 7 2 5 1 1 1 5 5 6 2 5 7 1 1 7 5 1 3
## [39853] 6 3 7 5 6 7 3 3 1 1 7 3 6 6 7 1 3 7 5 2 2 2 4 1 1 1 6 4 7 5 1 3 3 7 1 3
## [39889] 7 2 3 1 6 6 5 3 4 4 2 6 5 2 6 3 3 1 7 5 3 1 7 3 7 1 6 3 1 3 2 4 5 5 7 7
## [39925] 3 5 7 7 4 5 2 5 7 3 7 6 4 1 7 3 7 4 5 7 3 3 3 3 3 3 5 3 6 6 3 7 1 6 5 1
## [39961] 7 1 3 5 3 7 5 6 3 3 6 5 3 7 6 3 6 7 7 3 6 6 1 7 6 5 1 6 1 1 6 2 2 6 1 2
## [39997] 7 5 7 6 5 1 6 3 3 6 7 7 5 1 1 1 3 5 1 6 2 6 1 6 6 7 3 3 5 1 6 7 6 7 7 4
## [40033] 6 3 1 7 1 1 7 5 4 7 7 1 3 5 5 5 6 1 1 4 4 3 3 6 7 3 1 7 5 7 7 6 1 4 5 7
## [40069] 7 6 7 7 6 7 7 1 5 7 7 2 3 3 1 3 1 7 6 5 7 1 7 5 6 1 1 5 6 6 6 5 1 7 7 1
## [40105] 7 3 7 6 3 3 1 6 5 5 4 3 7 7 1 7 1 7 7 1 1 7 4 6 5 7 3 1 3 1 7 4 7 5 3 7
## [40141] 1 3 3 1 6 5 6 6 2 4 7 6 7 1 7 7 1 5 6 5 7 5 5 5 5 6 7 3 3 1 5 1 3 7 7 7
## [40177] 2 1 6 7 5 2 4 5 7 6 1 3 6 7 6 5 6 1 4 1 7 5 5 3 6 7 1 3 6 5 1 6 5 5 3 7
## [40213] 6 3 1 1 1 6 4 7 2 1 3 3 7 5 1 6 6 7 1 3 7 5 6 3 7 4 1 7 1 1 7 1 3 1 3 2
## [40249] 7 6 3 1 3 2 3 7 1 5 5 4 2 1 7 1 1 1 5 6 7 3 1 1 5 7 5 3 7 7 6 6 7 5 4 7
## [40285] 7 5 6 6 6 5 1 6 7 4 7 7 3 5 5 3 6 7 7 5 1 5 1 7 3 6 5 5 6 7 3 3 5 7 1 7
## [40321] 5 1 7 7 5 5 4 7 1 5 7 3 3 1 3 3 7 7 1 6 7 3 7 3 7 6 6 1 7 4 3 3 6 7 3 7
## [40357] 7 7 7 2 6 1 6 3 3 3 7 7 1 6 1 5 7 2 5 6 1 7 1 5 1 6 7 7 1 3 3 3 4 2 6 7
## [40393] 6 7 7 1 4 7 3 1 3 1 7 6 6 6 1 7 1 4 7 3 1 7 6 6 1 6 3 7 5 1 6 3 1 6 2 7
## [40429] 6 1 6 6 5 7 7 5 5 7 7 2 7 1 3 7 6 3 5 7 1 1 5 7 7 3 5 7 3 1 2 7 5 1 7 3
## [40465] 7 3 6 1 1 1 5 7 3 7 2 3 5 1 5 4 6 1 3 1 4 5 6 6 5 5 1 6 7 2 7 1 2 7 5 7
## [40501] 3 7 3 1 7 4 3 6 7 6 1 7 7 3 1 6 5 7 5 1 5 6 5 1 7 1 7 7 3 7 1 1 3 7 7 1
## [40537] 7 2 6 5 1 4 7 6 6 1 3 6 5 1 3 1 4 2 5 7 3 3 3 2 2 3 3 7 7 7 5 5 3 4 1 7
## [40573] 3 3 7 2 4 1 7 7 3 6 3 4 7 3 1 7 4 2 5 7 3 7 7 1 7 7 3 7 3 3 3 1 1 5 7 6
## [40609] 7 6 5 1 7 6 1 7 1 1 7 5 7 7 3 3 6 7 7 3 7 1 6 7 7 7 1 3 1 6 3 3 7 6 6 7
## [40645] 7 3 7 6 7 7 6 1 1 3 4 7 3 1 6 1 3 1 7 3 1 4 7 3 3 6 5 6 6 6 7 6 6 6 7 6
## [40681] 6 7 3 7 3 6 1 7 1 7 5 5 1 3 6 5 5 6 1 5 7 7 6 5 5 1 7 1 1 6 1 6 3 1 3 3
## [40717] 4 1 7 1 7 1 3 6 3 7 1 3 7 3 1 5 3 7 3 7 7 6 7 5 3 2 2 3 6 3 7 3 1 5 6 7
## [40753] 2 7 3 3 5 1 3 3 7 7 4 7 3 7 7 1 2 5 7 7 1 7 2 3 7 7 1 6 7 5 5 6 7 1 1 3
## [40789] 3 7 6 1 7 7 3 7 6 5 3 2 5 1 3 7 7 7 5 5 1 7 1 7 7 6 5 7 1 1 2 7 6 1 3 1
## [40825] 3 5 1 7 1 4 1 3 7 6 6 1 7 3 3 7 2 3 7 2 7 1 7 3 6 5 1 1 5 1 6 6 3 3 3 5
## [40861] 7 6 3 6 4 1 7 2 1 1 5 1 3 3 3 5 5 6 1 1 5 7 6 6 6 4 6 1 6 7 1 3 7 7 7 5
## [40897] 4 6 7 7 2 1 7 1 4 6 5 7 2 7 1 7 3 7 1 3 1 7 4 3 5 5 3 5 7 1 5 7 7 7 1 3
## [40933] 1 1 7 4 1 7 3 1 3 3 6 7 6 7 7 7 7 1 3 3 3 7 3 1 2 6 1 3 6 1 3 6 6 7 4 3
## [40969] 7 1 6 4 7 6 1 5 4 3 6 6 4 1 7 3 5 6 3 4 7 6 6 3 2 3 7 4 6 1 1 7 5 5 7 2
## [41005] 6 1 3 7 3 6 1 3 1 5 1 1 7 2 3 3 1 7 3 2 3 7 7 1 3 2 1 1 1 1 7 5 1 3 1 6
## [41041] 7 1 3 3 3 7 1 1 5 1 4 3 4 5 1 7 7 1 3 3 1 1 3 5 7 2 3 6 4 7 7 6 6 7 5 3
## [41077] 3 3 7 5 1 6 1 1 1 4 6 7 1 1 7 6 6 1 5 1 6 6 3 1 7 1 3 5 1 1 3 7 4 7 7 3
## [41113] 7 1 7 1 1 1 7 7 1 3 7 7 3 7 5 7 3 5 7 4 6 3 4 6 1 3 2 3 6 1 6 7 5 3 3 5
## [41149] 7 3 3 3 7 1 5 7 6 1 7 1 4 6 6 7 5 2 7 1 1 3 1 1 1 5 7 5 1 6 7 5 7 3 7 7
## [41185] 6 7 7 7 7 3 7 1 7 6 1 7 5 4 6 7 7 6 7 6 6 1 7 7 7 1 7 1 2 1 3 1 5 6 5 7
## [41221] 3 6 6 1 6 7 3 6 2 1 2 1 1 4 1 6 5 6 7 1 1 1 7 3 1 3 3 7 7 5 7 7 7 7 2 3
## [41257] 6 3 6 6 3 3 6 6 1 3 1 3 3 7 1 1 3 3 3 7 6 5 6 3 1 3 6 6 1 2 7 7 1 7 6 3
## [41293] 7 3 7 5 7 5 7 1 7 4 7 7 1 7 6 3 7 6 3 5 6 5 7 1 6 1 1 7 1 7 1 7 5 6 7 7
## [41329] 6 1 7 1 6 6 1 1 1 1 6 3 7 3 5 7 7 1 6 6 7 7 4 6 6 3 7 5 3 7 1 1 5 5 6 3
## [41365] 7 2 7 5 5 7 7 7 1 3 6 2 5 7 3 1 6 2 3 3 3 6 7 1 7 1 3 3 4 3 3 7 2 7 3 7
## [41401] 1 5 2 7 1 3 5 7 3 1 7 6 5 1 1 1 4 7 1 2 2 1 1 7 6 5 7 1 4 7 6 4 6 7 1 5
## [41437] 3 5 3 3 6 7 1 3 3 1 7 7 6 3 2 2 1 6 1 3 7 7 2 1 3 7 7 7 6 1 7 3 1 7 1 6
## [41473] 5 7 3 1 1 3 7 2 5 5 7 6 1 5 1 3 7 1 4 6 7 1 7 6 7 5 1 3 5 3 5 3 7 5 5 5
## [41509] 6 6 5 7 1 3 3 1 7 1 5 4 6 7 1 6 5 5 7 6 1 5 7 6 6 6 2 3 7 1 3 6 7 6 3 7
## [41545] 1 4 1 6 6 3 1 1 7 7 7 6 3 7 3 7 1 7 6 7 7 2 7 5 3 7 5 6 7 6 6 3 7 6 3 1
## [41581] 7 3 7 6 3 1 7 5 6 3 3 1 6 7 3 7 3 1 3 1 7 3 7 3 7 5 6 3 1 6 7 7 5 7 7 6
## [41617] 6 1 3 3 7 3 6 7 3 7 3 5 2 5 1 3 5 6 1 6 7 1 2 4 7 1 7 3 4 5 3 2 3 7 7 5
## [41653] 4 5 5 3 6 6 3 5 6 7 7 7 7 7 1 6 3 1 1 3 7 3 3 2 7 7 7 5 7 7 1 6 7 1 1 7
## [41689] 7 6 3 5 4 3 5 7 1 1 7 7 6 2 3 4 7 3 6 6 6 1 1 7 5 1 3 7 1 1 5 6 5 1 7 1
## [41725] 7 7 3 7 7 7 3 5 1 6 2 7 1 6 1 1 1 3 3 1 1 3 1 1 6 1 5 3 3 5 4 1 5 4 3 6
## [41761] 6 3 5 7 6 3 3 5 2 3 6 1 3 7 1 7 7 3 7 7 7 5 1 6 1 1 6 7 6 7 2 2 7 7 3 1
## [41797] 2 1 7 3 7 1 3 6 6 3 5 7 1 3 7 3 3 1 6 1 6 6 3 6 5 7 2 5 1 5 1 7 6 3 5 7
## [41833] 7 3 6 3 5 7 1 2 4 5 7 1 7 6 5 7 6 4 2 6 7 1 3 3 3 7 5 1 7 7 3 2 3 7 1 3
## [41869] 5 6 3 7 3 6 7 3 1 7 4 3 1 7 6 3 3 6 1 6 5 7 1 1 4 6 7 3 1 1 2 5 3 7 1 1
## [41905] 5 5 1 7 4 2 3 1 3 1 3 5 4 6 6 7 7 7 3 7 7 6 1 6 6 1 1 3 3 7 4 6 7 7 1 3
## [41941] 6 7 6 6 4 5 5 6 1 6 3 1 3 3 2 6 3 2 3 1 7 3 1 7 1 7 6 3 6 1 3 3 7 7 5 7
## [41977] 3 2 7 1 6 7 5 7 3 3 5 7 7 5 6 6 1 7 7 7 5 7 1 3 1 5 1 7 7 3 2 1 6 7 5 5
## [42013] 1 3 7 6 3 5 4 7 7 1 3 7 7 5 1 7 7 3 7 3 1 3 3 5 7 7 6 6 5 1 3 7 3 6 4 7
## [42049] 7 7 3 1 7 7 3 6 6 2 7 3 6 5 6 7 1 7 1 6 4 4 1 7 1 7 1 5 3 5 5 6 5 7 7 7
## [42085] 7 4 7 1 3 4 1 1 7 7 1 6 5 7 3 3 7 7 1 1 6 7 7 3 1 1 1 5 5 7 1 7 7 4 1 1
## [42121] 7 7 3 3 3 7 3 3 1 5 6 7 1 5 4 3 1 3 3 2 1 3 3 3 1 5 1 6 7 5 7 1 7 1 6 6
## [42157] 6 3 3 7 3 6 6 6 3 7 5 7 7 7 3 5 1 7 7 7 5 3 7 7 7 6 6 7 6 7 6 5 2 7 3 4
## [42193] 6 6 5 7 3 1 7 1 4 3 2 6 7 5 1 3 3 3 7 3 3 5 6 7 7 5 5 5 7 3 3 7 3 5 5 3
## [42229] 1 6 1 1 7 7 5 7 1 2 3 6 6 1 1 3 7 3 1 7 5 3 2 2 5 1 3 1 3 7 7 7 3 1 7 6
## [42265] 4 5 1 7 1 1 7 6 3 3 1 6 7 1 5 2 1 5 3 3 2 7 3 2 7 3 6 7 3 1 3 1 3 1 7 7
## [42301] 7 1 1 3 1 1 7 1 1 3 7 1 6 1 5 7 2 1 7 7 3 2 1 7 3 3 7 1 6 7 6 6 3 6 7 1
## [42337] 5 6 7 3 1 1 2 3 3 1 7 3 1 6 1 4 3 7 1 2 7 7 6 7 7 5 6 7 6 5 3 7 6 7 1 3
## [42373] 3 7 7 4 7 3 1 1 6 3 3 5 3 7 4 5 5 3 5 5 1 3 1 5 1 7 5 1 6 6 5 3 1 3 7 3
## [42409] 1 7 3 7 3 1 7 3 7 1 7 6 7 2 3 1 4 1 3 3 5 6 7 5 1 7 7 4 3 3 5 1 1 6 7 5
## [42445] 7 1 7 6 6 6 7 3 5 4 6 7 7 5 7 1 3 7 3 3 3 7 3 1 6 5 6 3 6 3 3 1 7 1 6 6
## [42481] 1 1 3 5 6 2 5 1 5 3 1 3 3 3 3 6 3 7 4 6 1 7 1 5 5 5 7 1 6 7 3 6 5 6 1 6
## [42517] 3 1 5 3 6 1 3 1 6 6 5 6 3 7 5 5 7 7 4 5 7 1 6 3 3 1 1 7 6 4 7 5 7 5 4 6
## [42553] 5 7 1 2 7 3 1 5 7 1 6 1 5 3 5 1 6 7 3 2 5 5 5 1 5 5 1 5 5 6 5 6 7 6 4 3
## [42589] 3 1 3 7 2 7 4 4 1 1 3 7 6 6 6 2 3 7 5 1 3 7 6 7 1 1 2 6 1 3 3 5 7 6 6 1
## [42625] 6 1 2 5 7 1 5 7 6 1 6 1 1 7 7 6 1 3 6 1 7 1 2 5 6 6 7 6 7 6 7 6 7 7 4 1
## [42661] 5 4 7 1 7 7 5 5 1 7 1 1 2 5 7 5 1 7 5 7 6 6 6 4 3 7 5 7 7 3 7 1 6 5 1 4
## [42697] 3 7 4 5 7 5 7 7 7 1 7 5 3 7 6 6 7 1 1 7 1 7 7 7 7 7 6 2 1 2 1 7 3 6 7 5
## [42733] 5 5 7 6 1 4 3 1 1 1 7 6 6 1 2 7 6 5 7 7 4 7 3 7 3 4 7 4 5 3 1 3 1 3 7 7
## [42769] 6 7 5 2 1 3 6 7 6 5 4 1 1 1 3 5 3 6 7 3 1 4 4 7 7 7 2 6 6 7 1 7 6 6 1 4
## [42805] 3 5 7 1 7 6 5 7 7 1 2 5 6 3 1 6 1 6 7 6 6 7 5 1 7 4 1 7 3 3 1 1 6 2 1 5
## [42841] 6 4 6 5 7 3 1 7 5 3 6 3 5 6 1 1 1 7 1 5 7 7 3 3 5 3 1 1 3 7 6 4 1 5 6 6
## [42877] 6 7 1 5 1 1 1 7 6 7 1 7 3 1 7 1 7 1 6 3 6 6 1 6 7 3 3 5 3 5 6 7 6 1 3 5
## [42913] 3 1 1 1 1 6 1 7 6 3 1 7 1 2 5 5 5 1 1 6 3 1 7 5 6 1 6 3 7 1 3 5 1 5 3 5
## [42949] 3 6 7 3 7 7 5 7 7 1 6 7 3 6 6 6 3 3 5 6 7 3 2 4 1 2 6 7 1 1 1 7 3 5 1 5
## [42985] 6 4 7 1 1 3 3 1 3 1 7 3 1 5 7 6 1 7 3 1 1 6 1 6 6 4 7 7 4 5 3 2 3 5 7 1
## [43021] 7 1 7 1 7 4 5 1 5 1 7 3 7 1 6 1 1 7 7 1 6 1 3 7 6 1 7 3 1 5 1 3 4 7 3 7
## [43057] 7 6 7 7 7 5 5 1 6 6 6 6 1 1 5 3 3 3 1 1 1 1 6 7 6 1 6 5 3 1 6 1 1 7 3 6
## [43093] 1 4 7 6 6 1 1 7 6 5 1 5 3 7 7 5 3 3 7 7 3 6 3 7 7 5 2 7 3 1 5 7 5 5 7 6
## [43129] 2 7 7 1 1 7 3 7 5 7 3 4 3 3 3 3 5 3 3 3 1 3 3 1 7 1 6 4 1 5 7 3 7 5 4 1
## [43165] 3 2 7 1 3 7 1 3 3 3 3 7 6 6 7 1 6 3 7 5 4 6 7 7 2 7 7 7 7 1 3 5 7 3 3 2
## [43201] 5 7 5 7 7 3 3 7 3 7 7 5 6 1 3 5 1 3 3 7 6 1 7 3 5 2 7 6 3 7 7 7 7 7 7 7
## [43237] 4 4 5 4 1 7 1 1 7 7 7 6 1 3 3 7 1 6 7 5 1 7 3 6 1 6 6 6 5 7 7 5 1 5 2 7
## [43273] 1 5 7 3 3 3 3 1 7 1 7 3 3 3 7 5 7 2 1 3 7 6 3 5 7 7 7 6 5 7 7 1 7 7 6 5
## [43309] 3 1 7 7 2 6 6 5 7 5 3 5 3 1 3 1 6 7 1 2 3 3 2 7 3 7 2 7 3 1 7 2 1 3 1 6
## [43345] 3 1 6 4 1 6 7 3 1 4 7 6 7 4 5 1 5 7 3 6 6 7 3 5 3 7 7 3 3 6 7 1 3 5 5 7
## [43381] 7 5 1 7 6 5 7 6 7 5 3 6 3 6 5 3 1 6 1 7 5 3 1 1 6 3 7 1 3 7 4 2 5 7 5 1
## [43417] 5 7 7 1 4 5 3 1 7 1 3 7 5 6 7 7 1 6 6 1 3 1 1 7 6 1 5 3 4 1 5 6 7 1 7 7
## [43453] 6 3 3 3 5 7 6 5 6 7 1 4 6 5 7 7 5 6 5 6 7 7 5 3 1 6 6 7 7 6 3 6 5 6 3 6
## [43489] 7 5 3 3 1 5 4 7 6 7 1 1 1 6 6 3 1 7 7 3 3 5 7 1 7 3 3 1 3 3 1 5 1 6 3 5
## [43525] 1 3 3 2 6 7 3 7 5 7 4 7 1 3 7 4 6 7 6 5 4 7 3 1 1 7 1 4 6 3 7 7 7 5 1 3
## [43561] 6 7 3 5 7 1 4 1 7 5 6 2 1 1 1 3 7 1 7 1 3 4 7 3 1 6 6 3 3 3 6 1 3 7 5 1
## [43597] 1 5 1 7 7 7 2 3 3 7 1 1 3 1 1 5 5 5 3 5 1 3 6 5 5 3 3 5 3 4 5 4 3 7 5 5
## [43633] 5 6 7 2 1 4 1 1 6 7 3 5 3 7 6 7 7 7 2 2 6 1 7 3 6 1 6 6 3 1 5 6 6 5 1 7
## [43669] 3 3 3 3 5 3 7 3 7 1 5 7 7 4 7 3 6 1 1 3 3 3 1 3 5 5 5 5 3 1 7 1 1 1 7 1
## [43705] 4 6 3 3 1 7 6 7 2 7 7 2 5 7 3 7 1 7 6 5 3 7 4 5 7 1 7 7 1 1 3 6 1 7 1 1
## [43741] 6 7 3 6 5 1 6 1 1 7 7 3 1 7 1 7 3 7 7 7 6 1 6 1 6 1 7 6 6 5 7 7 5 4 1 3
## [43777] 5 1 3 2 6 1 4 6 5 7 4 5 7 1 3 7 7 7 7 4 6 3 3 6 7 5 7 6 6 3 3 7 3 1 3 7
## [43813] 7 7 3 6 3 7 5 7 5 7 1 1 1 3 7 6 2 3 6 6 5 3 5 1 5 5 6 1 5 1 3 7 4 3 3 6
## [43849] 5 6 3 3 5 5 7 1 6 6 6 3 3 6 2 6 4 6 7 7 1 2 7 3 7 6 6 6 7 3 7 7 2 1 7 7
## [43885] 5 7 1 4 3 3 4 7 3 1 7 3 6 3 4 1 7 7 1 1 6 3 1 3 1 5 4 5 1 6 3 2 6 3 6 7
## [43921] 5 5 6 6 5 7 5 3 1 7 3 5 1 7 7 6 6 7 7 4 7 7 4 5 7 7 5 3 5 3 3 1 3 5 3 7
## [43957] 3 3 6 5 3 6 6 3 5 7 7 3 5 7 6 5 7 7 1 6 7 6 6 6 3 3 7 6 3 1 1 6 7 7 7 7
## [43993] 1 5 5 3 7 7 7 5 7 7 6 7 3 3 1 1 1 7 7 2 6 7 6 3 1 7 4 5 7 6 5 7 7 2 1 5
## [44029] 3 3 5 3 3 6 1 5 1 7 7 6 7 7 3 7 6 7 7 1 5 3 6 7 6 5 4 4 3 7 1 4 3 1 3 1
## [44065] 3 7 6 3 7 1 5 1 5 3 6 7 1 1 5 1 1 1 5 7 7 3 5 1 4 6 7 5 3 6 4 6 1 4 7 5
## [44101] 3 7 1 6 3 3 3 7 5 7 3 5 3 6 7 7 6 5 6 7 4 3 5 7 6 3 7 7 2 6 1 7 3 5 2 1
## [44137] 3 7 6 3 1 7 1 3 4 6 7 7 3 1 7 1 7 6 3 6 4 5 3 7 6 6 5 1 7 3 7 1 3 1 7 1
## [44173] 6 6 1 6 1 3 4 6 7 1 2 3 7 7 3 6 6 1 7 1 3 1 3 4 7 7 7 1 7 6 7 6 4 4 7 4
## [44209] 6 6 2 1 3 1 7 7 7 7 1 2 4 7 1 2 3 6 7 7 2 4 3 1 7 6 7 3 1 5 4 3 7 4 1 6
## [44245] 5 3 1 5 6 7 7 3 1 1 7 7 3 7 1 6 5 2 6 6 1 5 5 7 6 5 2 6 7 1 4 7 6 1 3 7
## [44281] 1 7 4 3 7 7 7 1 6 1 1 7 6 1 5 7 3 7 3 2 6 1 1 6 1 6 5 7 1 6 3 7 1 6 3 1
## [44317] 5 1 1 1 7 1 1 5 6 1 5 7 5 3 1 1 1 4 5 7 1 6 7 3 6 5 1 4 5 3 3 3 7 3 5 4
## [44353] 6 7 6 7 7 6 6 2 3 7 7 7 7 5 5 1 5 3 6 7 7 6 7 3 4 1 7 3 7 6 2 6 7 1 7 3
## [44389] 5 5 7 5 6 6 5 7 1 3 7 1 1 3 1 5 7 6 4 2 6 6 1 3 7 1 3 7 7 7 1 6 7 1 3 6
## [44425] 1 6 3 1 7 7 3 7 7 1 7 7 7 7 7 3 1 7 4 6 1 3 3 3 3 1 1 7 1 1 1 4 6 3 6 7
## [44461] 6 6 7 5 5 5 3 7 6 6 6 5 5 7 5 7 1 6 4 5 3 1 1 3 3 6 2 7 6 1 3 5 1 1 3 4
## [44497] 2 1 1 5 1 7 5 3 7 5 3 7 1 6 4 6 6 6 7 2 6 2 6 6 7 3 3 1 6 1 6 3 4 6 3 6
## [44533] 6 3 5 6 7 1 4 3 7 6 7 6 3 6 7 7 4 1 5 3 2 3 7 1 7 6 5 7 5 3 7 3 1 5 1 3
## [44569] 1 7 5 7 7 3 1 7 6 1 2 3 3 5 6 7 6 2 1 1 7 6 7 3 5 4 5 1 6 4 7 3 7 5 7 1
## [44605] 5 7 7 3 1 6 7 3 5 7 6 3 3 4 6 7 5 7 5 3 3 3 3 2 1 4 1 5 4 6 3 7 7 7 1 5
## [44641] 3 1 7 1 6 3 6 7 7 1 5 2 7 6 1 1 6 6 7 7 4 1 5 1 4 3 1 6 3 3 7 1 1 6 3 7
## [44677] 1 6 5 6 1 6 3 3 7 7 7 1 3 6 7 2 5 6 3 7 3 6 5 7 3 7 7 7 1 3 6 7 6 3 7 7
## [44713] 1 6 7 7 6 7 5 5 5 1 5 1 7 1 3 7 7 3 5 6 6 1 2 4 7 7 2 3 6 6 6 3 1 5 2 1
## [44749] 6 3 3 6 7 1 6 7 5 3 1 6 1 7 7 6 5 4 7 5 7 3 7 5 1 4 7 7 5 6 5 7 3 7 7 3
## [44785] 7 5 6 7 5 3 3 7 1 3 5 5 7 5 3 1 3 6 3 7 6 7 6 4 7 7 1 7 3 3 3 5 3 7 5 1
## [44821] 1 7 6 6 3 7 1 5 5 5 3 6 1 1 1 3 4 7 3 5 6 1 6 1 3 2 7 3 6 6 3 5 1 7 6 6
## [44857] 5 1 5 5 1 3 3 4 6 5 5 7 7 5 7 1 6 7 6 3 6 5 1 5 5 7 5 3 1 7 7 4 6 7 6 3
## [44893] 6 5 1 3 3 3 6 1 1 2 3 7 1 7 3 1 7 6 1 2 7 1 1 6 1 6 7 1 7 3 7 3 6 1 7 5
## [44929] 3 3 1 3 7 5 5 6 6 7 4 3 1 5 7 6 1 7 3 4 2 7 6 6 6 7 1 7 6 7 3 7 3 1 1 3
## [44965] 1 6 3 7 5 5 1 6 3 3 1 7 1 6 7 1 4 1 6 6 7 7 3 7 2 7 7 5 2 3 7 3 7 1 2 6
## [45001] 1 7 3 1 6 5 3 6 7 1 2 6 2 1 5 1 7 5 5 7 5 3 7 4 6 1 7 3 7 3 1 6 3 1 7 2
## [45037] 7 5 7 7 7 6 1 7 3 3 5 6 7 5 1 7 1 7 2 3 5 7 1 5 7 7 4 1 1 7 7 3 3 5 3 3
## [45073] 1 1 3 6 6 1 7 2 1 7 1 3 5 7 1 3 3 1 7 7 1 5 6 5 4 1 1 6 2 1 4 5 7 1 2 6
## [45109] 1 7 6 3 6 5 3 7 3 1 7 1 1 3 7 7 1 7 7 1 6 3 6 6 6 1 5 7 7 6 1 6 7 3 5 3
## [45145] 6 5 7 3 7 3 4 6 1 7 1 5 4 1 7 3 7 1 1 3 3 1 7 3 3 7 6 7 5 3 7 6 2 1 1 3
## [45181] 4 7 7 1 7 7 7 1 7 7 3 1 7 3 4 1 6 6 1 3 5 3 5 1 5 1 4 5 2 5 1 7 7 7 5 6
## [45217] 3 4 7 1 3 4
## 
## Within cluster sum of squares by cluster:
## [1] 891850.9 458095.2 762949.4 219191.0 512456.9 609274.8 851664.8
##  (between_SS / total_SS =  14.7 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
# Adding cluster to the data set
results_cluster <- augment(final_kmeans, income_features)

results_cluster %>% group_by(.cluster) %>% count()
## # A tibble: 7 × 2
## # Groups:   .cluster [7]
##   .cluster     n
##   <fct>    <int>
## 1 1         9215
## 2 2         1477
## 3 3         8481
## 4 4         2048
## 5 5         5784
## 6 6         6832
## 7 7        11385

From the output, we see that three clusters have been found. For each cluster, the squared distances between the observations to the centroids are calculated. So, each observation will be assigned to one of the five clusters.

Bivariate chart(s) against meaningful variables and/or analysis of density plots

Now, I will visualize the scatter plot between husbands and fnlwgt and color the points based on the cluster id:

clust_spc_plot <- results_cluster  %>% 
    ggplot(mapping = aes(x = low_ed_male_laborer, y = husbands)) +
    geom_point(aes(shape = .cluster, color= .cluster),size = 2,alpha=0.3)+ 

  scale_color_manual(values = c("darkslateblue","goldenrod","deeppink", "green", "red", "yellow", "skyblue"))+ theme_minimal()


clust_spc_plot
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 11385 rows containing missing values (`geom_point()`).

clust_spc_plot2 <- results_cluster  %>% 
    ggplot(mapping = aes(x = age, y = education_num)) +
    geom_point(aes(shape = .cluster, color= .cluster),size = 2,alpha=0.3)+ 

  scale_color_manual(values = c("darkslateblue","goldenrod","deeppink", "green", "red", "yellow", "skyblue"))+ theme_minimal()


clust_spc_plot2
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 11385 rows containing missing values (`geom_point()`).

clust_spc_plot3 <- results_cluster  %>% 
    ggplot(mapping = aes(x = education_num, y = fnlwgt)) +
    geom_point(aes(shape = .cluster, color= .cluster),size = 2,alpha=0.3)+ 

  scale_color_manual(values = c("darkslateblue","goldenrod","deeppink", "green", "red", "yellow", "skyblue"))+ theme_minimal()


clust_spc_plot3
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 7. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 11385 rows containing missing values (`geom_point()`).

Looking at clusters in terms of PC1 and PC2, we see good distinct among the clusters.

results_cluster %>%
pivot_longer(c(husbands, low_ed_male_laborer),names_to = "feature") %>%
ggplot(aes(value, fill=.cluster))+
geom_density(alpha=0.3)+
facet_wrap(~feature)

results_cluster %>%
pivot_longer(c(age, hours_per_week),names_to = "feature") %>%
ggplot(aes(value, fill=.cluster))+
geom_density(alpha=0.3)+
facet_wrap(~feature)

Meaningful interpretation / discussion of conclusions

We think that k-means is not suitable for this dataset. Some of these plots do not show clear definition of clusters and the plot clust_spc_plot shows non-spherical shape, the algorithm suggests that each point is close to each other (A to B and B to C, and so on). Analyzing the ratio between_SS / total_SS, we see that the differences between clusters explain 14.7% of the total variation in the dataset.

A negative value of between_SS is mathematically possible, but it can occur only in certain circumstances. Specifically, negative values of between_SS can occur when the clusters are too small and the variance within the clusters is greater than the variance between the clusters. In such cases, the total sum of squares can be smaller than the sum of squares due to the between-cluster differences, resulting in a negative value for between_SS.

However, negative values of between_SS are generally uncommon and may indicate issues with the cluster analysis, such as inappropriate choice of clustering algorithm or incorrect data preprocessing. It’s important to investigate the reasons behind the negative value and to ensure that the results of the analysis are valid and reliable.

We suggest using an algorithm that handle non-spherical shaped data as well as other forms, such as Gaussian Mixtures Models [https://jakevdp.github.io/PythonDataScienceHandbook/05.12-gaussian-mixtures.html]

Nevertheless, we will add our cluster column to our dataset to see if it helps our predictive modeling.

# adding PC1 and PC2 to ds 
income = bind_cols(prc %>% select(2:3), income) %>% relocate(income_above_50k)
# adding clusters 
income = bind_cols(income, results_cluster[107])
income = income %>% rename("cluster" = .cluster)

PART III SUPERVISED LEARNING

Logistic Regression Model to examine log-odds of each feature

income = income %>% mutate(income_above_50k = factor(ifelse(income_above_50k == 'TRUE','yes','no'), levels = c('yes','no')))

income_index <- createDataPartition(income$income_above_50k, p = 0.80, list = FALSE)
train <- income[income_index, ]
test <- income[-income_index, ]

control <- trainControl(method = "cv", number = 5)

fit.lr <- train(income_above_50k ~ .,
             data = train,
             trControl = control,
             method = "glm",
             family = "binomial")
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading

## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
odds_ratio = exp(coef(fit.lr$finalModel))
data.frame(name = names(odds_ratio), odds_ratio = odds_ratio) %>%
arrange(desc(odds_ratio))
##                                                                                                name
## relationship_husband                                                           relationship_husband
## education_7th_8th                                                                 education_7th_8th
## education_9th                                                                         education_9th
## marital_status_married_civ_spouse                                 marital_status_married_civ_spouse
## education_1st_4th                                                                 education_1st_4th
## education_10th                                                                       education_10th
## education_5th_6th                                                                 education_5th_6th
## native_country_laos                                                             native_country_laos
## education_preschool                                                             education_preschool
## relationship_other_relative                                             relationship_other_relative
## native_country_greece                                                         native_country_greece
## native_country_columbia                                                     native_country_columbia
## native_country_taiwan                                                         native_country_taiwan
## native_country_south                                                           native_country_south
## occupation_farming_fishing                                               occupation_farming_fishing
## native_country_thailand                                                     native_country_thailand
## workclass_self_emp_not_inc                                               workclass_self_emp_not_inc
## education_11th                                                                       education_11th
## relationship_own_child                                                       relationship_own_child
## native_country_india                                                           native_country_india
## education_hs_grad                                                                 education_hs_grad
## native_country_china                                                           native_country_china
## native_country_iran                                                             native_country_iran
## native_country_scotland                                                     native_country_scotland
## cluster2                                                                                   cluster2
## workclass_self_emp_inc                                                       workclass_self_emp_inc
## relationship_not_in_family                                               relationship_not_in_family
## cluster4                                                                                   cluster4
## low_ed_male_laborer                                                             low_ed_male_laborer
## education_12th                                                                       education_12th
## education_assoc_voc                                                             education_assoc_voc
## education_num                                                                         education_num
## marital_status_divorced                                                     marital_status_divorced
## relationship_unmarried                                                       relationship_unmarried
## hours_per_week                                                                       hours_per_week
## age                                                                                             age
## education_assoc_acdm                                                           education_assoc_acdm
## native_country_japan                                                           native_country_japan
## fnlwgt                                                                                       fnlwgt
## education_bachelors                                                             education_bachelors
## l_capital_loss                                                                       l_capital_loss
## education_masters                                                                 education_masters
## marital_status_separated                                                   marital_status_separated
## l_capital_gain                                                                       l_capital_gain
## native_country_hong                                                             native_country_hong
## marital_status_married_spouse_absent                           marital_status_married_spouse_absent
## occupation_craft_repair                                                     occupation_craft_repair
## marital_status_never_married                                           marital_status_never_married
## `\\`native_country_trinadad&tobago\\``                       `\\`native_country_trinadad&tobago\\``
## education_doctorate                                                             education_doctorate
## native_country_ecuador                                                       native_country_ecuador
## cluster3                                                                                   cluster3
## native_country_peru                                                             native_country_peru
## native_country_cuba                                                             native_country_cuba
## occupation_prof_specialty                                                 occupation_prof_specialty
## workclass_state_gov                                                             workclass_state_gov
## native_country_hungary                                                       native_country_hungary
## cluster5                                                                                   cluster5
## cluster6                                                                                   cluster6
## native_country_germany                                                       native_country_germany
## workclass_local_gov                                                             workclass_local_gov
## cluster7                                                                                   cluster7
## native_country_canada                                                         native_country_canada
## native_country_poland                                                         native_country_poland
## occupation_protective_serv                                               occupation_protective_serv
## native_country_portugal                                                     native_country_portugal
## occupation_exec_managerial                                               occupation_exec_managerial
## native_country_italy                                                           native_country_italy
## occupation_armed_forces                                                     occupation_armed_forces
## native_country_england                                                       native_country_england
## occupation_handlers_cleaners                                           occupation_handlers_cleaners
## occupation_machine_op_inspct                                           occupation_machine_op_inspct
## native_country_philippines                                               native_country_philippines
## native_country_france                                                         native_country_france
## native_country_mexico                                                         native_country_mexico
## workclass_federal_gov                                                         workclass_federal_gov
## native_country_puerto_rico                                               native_country_puerto_rico
## occupation_sales                                                                   occupation_sales
## native_country_nicaragua                                                   native_country_nicaragua
## occupation_other_service                                                   occupation_other_service
## native_country_cambodia                                                     native_country_cambodia
## `\\`native_country_outlying_us(guam_usvi_etc)\\`` `\\`native_country_outlying_us(guam_usvi_etc)\\``
## race_amer_indian_eskimo                                                     race_amer_indian_eskimo
## occupation_tech_support                                                     occupation_tech_support
## native_country_ireland                                                       native_country_ireland
## native_country_dominican_republic                                 native_country_dominican_republic
## race_asian_pac_islander                                                     race_asian_pac_islander
## native_country_honduras                                                     native_country_honduras
## (Intercept)                                                                             (Intercept)
## native_country_el_salvador                                               native_country_el_salvador
## occupation_priv_house_serv                                               occupation_priv_house_serv
## occupation_adm_clerical                                                     occupation_adm_clerical
## marital_status_married_af_spouse                                   marital_status_married_af_spouse
## native_country_haiti                                                           native_country_haiti
## race_black                                                                               race_black
## workclass_private                                                                 workclass_private
## race_other                                                                               race_other
## native_country_jamaica                                                       native_country_jamaica
## native_country_guatemala                                                   native_country_guatemala
## husbands                                                                                   husbands
## sex_female                                                                               sex_female
## workclass_without_pay                                                         workclass_without_pay
## education_prof_school                                                         education_prof_school
## education_some_college                                                       education_some_college
## marital_status_widowed                                                       marital_status_widowed
## occupation_transport_moving                                             occupation_transport_moving
## relationship_wife                                                                 relationship_wife
## race_white                                                                               race_white
## sex_male                                                                                   sex_male
## native_country_holand_netherlands                                 native_country_holand_netherlands
## native_country_united_states                                           native_country_united_states
## native_country_vietnam                                                       native_country_vietnam
## native_country_yugoslavia                                                 native_country_yugoslavia
##                                                     odds_ratio
## relationship_husband                              111.92485930
## education_7th_8th                                  15.89998293
## education_9th                                       6.08715806
## marital_status_married_civ_spouse                   5.09319545
## education_1st_4th                                   4.76632739
## education_10th                                      3.95043675
## education_5th_6th                                   3.90842626
## native_country_laos                                 3.27887038
## education_preschool                                 2.93754411
## relationship_other_relative                         2.81862172
## native_country_greece                               2.81634597
## native_country_columbia                             2.67660694
## native_country_taiwan                               2.65177537
## native_country_south                                2.61125693
## occupation_farming_fishing                          2.54828776
## native_country_thailand                             2.42030177
## workclass_self_emp_not_inc                          2.26060578
## education_11th                                      2.19640010
## relationship_own_child                              2.11881143
## native_country_india                                2.05716960
## education_hs_grad                                   1.90169065
## native_country_china                                1.89121141
## native_country_iran                                 1.80699331
## native_country_scotland                             1.80575164
## cluster2                                            1.80115289
## workclass_self_emp_inc                              1.75306434
## relationship_not_in_family                          1.69047411
## cluster4                                            1.58461278
## low_ed_male_laborer                                 1.48220513
## education_12th                                      1.44999183
## education_assoc_voc                                 1.42040093
## education_num                                       1.38569228
## marital_status_divorced                             1.34665460
## relationship_unmarried                              1.33240597
## hours_per_week                                      1.02299576
## age                                                 1.02169994
## education_assoc_acdm                                1.00852201
## native_country_japan                                1.00282314
## fnlwgt                                              0.99999822
## education_bachelors                                 0.99972625
## l_capital_loss                                      0.96896717
## education_masters                                   0.95751042
## marital_status_separated                            0.93446943
## l_capital_gain                                      0.93071163
## native_country_hong                                 0.90162382
## marital_status_married_spouse_absent                0.89549989
## occupation_craft_repair                             0.86951345
## marital_status_never_married                        0.86334595
## `\\`native_country_trinadad&tobago\\``              0.85760022
## education_doctorate                                 0.77384224
## native_country_ecuador                              0.76741027
## cluster3                                            0.74081882
## native_country_peru                                 0.72954740
## native_country_cuba                                 0.72919511
## occupation_prof_specialty                           0.72674162
## workclass_state_gov                                 0.69334869
## native_country_hungary                              0.67490997
## cluster5                                            0.67271580
## cluster6                                            0.66906353
## native_country_germany                              0.65404960
## workclass_local_gov                                 0.65307003
## cluster7                                            0.64216210
## native_country_canada                               0.62870427
## native_country_poland                               0.59660467
## occupation_protective_serv                          0.58688656
## native_country_portugal                             0.57641571
## occupation_exec_managerial                          0.57066924
## native_country_italy                                0.56061691
## occupation_armed_forces                             0.53606846
## native_country_england                              0.51176848
## occupation_handlers_cleaners                        0.49219796
## occupation_machine_op_inspct                        0.44070701
## native_country_philippines                          0.39350929
## native_country_france                               0.36362989
## native_country_mexico                               0.35489051
## workclass_federal_gov                               0.34820591
## native_country_puerto_rico                          0.34819719
## occupation_sales                                    0.34391147
## native_country_nicaragua                            0.32900078
## occupation_other_service                            0.27262604
## native_country_cambodia                             0.26764746
## `\\`native_country_outlying_us(guam_usvi_etc)\\``   0.24681197
## race_amer_indian_eskimo                             0.24554677
## occupation_tech_support                             0.23725758
## native_country_ireland                              0.20895086
## native_country_dominican_republic                   0.20257562
## race_asian_pac_islander                             0.18147064
## native_country_honduras                             0.16717527
## (Intercept)                                         0.16385896
## native_country_el_salvador                          0.15934610
## occupation_priv_house_serv                          0.15233020
## occupation_adm_clerical                             0.14381178
## marital_status_married_af_spouse                    0.14294829
## native_country_haiti                                0.13039464
## race_black                                          0.11704690
## workclass_private                                   0.11120250
## race_other                                          0.10601700
## native_country_jamaica                              0.09828295
## native_country_guatemala                            0.09742095
## husbands                                            0.04212538
## sex_female                                          0.02822186
## workclass_without_pay                                       NA
## education_prof_school                                       NA
## education_some_college                                      NA
## marital_status_widowed                                      NA
## occupation_transport_moving                                 NA
## relationship_wife                                           NA
## race_white                                                  NA
## sex_male                                                    NA
## native_country_holand_netherlands                           NA
## native_country_united_states                                NA
## native_country_vietnam                                      NA
## native_country_yugoslavia                                   NA
confusionMatrix(predict(fit.lr, test),factor(test$income_above_50k))
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1348  510
##        no   893 6292
##                                                
##                Accuracy : 0.8449               
##                  95% CI : (0.8372, 0.8523)     
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.5585               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.6015               
##             Specificity : 0.9250               
##          Pos Pred Value : 0.7255               
##          Neg Pred Value : 0.8757               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1491               
##    Detection Prevalence : 0.2055               
##       Balanced Accuracy : 0.7633               
##                                                
##        'Positive' Class : yes                  
## 
myRoc <- roc(test$income_above_50k, predict(fit.lr, test, type="prob")[,2])
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc, main = 'AUC = .89')

auc(myRoc)
## Area under the curve: 0.9002

PC1, education, and marital status are meaningful variables in predicting income level.

Feature Engineering

age_dummies = income %>% mutate(age_bin = case_when( 
                      age < 20 ~ "teen", 
                      age >=20 & age <30 ~ "20-29",
                      age >=30 & age <40 ~ "30-39", 
                      age >=40 & age <50 ~ "40-50",
                      age >=50 & age <66 ~ "50-65",
                      age >=65  ~ "65+")) %>% select(age_bin) %>%  dummy_cols(remove_selected_columns = T)

#people who work over 40 hours a week will get overtime pay if an hourly worker. 
income = bind_cols(income, age_dummies) %>% mutate(overtime = as.numeric(ifelse(hours_per_week > 40, 1, 0)))

Gradient Boosted Model

 #resplitting after addition of new features: 
income_index <- createDataPartition(income$income_above_50k, p = 0.80, list = FALSE)
train <- income[income_index, ]
test <- income[-income_index, ]


ctrl <- trainControl(method = "cv", number = 3, classProbs=TRUE, summaryFunction = twoClassSummary)

fit.gbm <- train(income_above_50k ~ .,
             data = train,
             method = "gbm",
             tuneLength = 4,
             preProcess = c("center","scale"),
             metric = "ROC",
             trControl = ctrl)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0802             nan     0.1000    0.0204
##      2        1.0453             nan     0.1000    0.0176
##      3        1.0188             nan     0.1000    0.0129
##      4        0.9933             nan     0.1000    0.0125
##      5        0.9700             nan     0.1000    0.0114
##      6        0.9522             nan     0.1000    0.0084
##      7        0.9352             nan     0.1000    0.0083
##      8        0.9222             nan     0.1000    0.0064
##      9        0.9062             nan     0.1000    0.0081
##     10        0.8952             nan     0.1000    0.0053
##     20        0.8098             nan     0.1000    0.0022
##     40        0.7343             nan     0.1000    0.0012
##     60        0.6970             nan     0.1000    0.0008
##     80        0.6721             nan     0.1000    0.0003
##    100        0.6553             nan     0.1000    0.0002
##    120        0.6443             nan     0.1000    0.0001
##    140        0.6357             nan     0.1000    0.0002
##    160        0.6299             nan     0.1000    0.0002
##    180        0.6255             nan     0.1000    0.0000
##    200        0.6213             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0650             nan     0.1000    0.0277
##      2        1.0237             nan     0.1000    0.0209
##      3        0.9880             nan     0.1000    0.0181
##      4        0.9546             nan     0.1000    0.0167
##      5        0.9270             nan     0.1000    0.0135
##      6        0.9015             nan     0.1000    0.0124
##      7        0.8812             nan     0.1000    0.0101
##      8        0.8605             nan     0.1000    0.0104
##      9        0.8432             nan     0.1000    0.0085
##     10        0.8317             nan     0.1000    0.0054
##     20        0.7445             nan     0.1000    0.0028
##     40        0.6774             nan     0.1000    0.0010
##     60        0.6463             nan     0.1000    0.0006
##     80        0.6303             nan     0.1000    0.0004
##    100        0.6184             nan     0.1000    0.0002
##    120        0.6103             nan     0.1000    0.0002
##    140        0.6046             nan     0.1000    0.0000
##    160        0.5984             nan     0.1000   -0.0000
##    180        0.5942             nan     0.1000   -0.0000
##    200        0.5913             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0528             nan     0.1000    0.0336
##      2        1.0074             nan     0.1000    0.0222
##      3        0.9667             nan     0.1000    0.0207
##      4        0.9357             nan     0.1000    0.0152
##      5        0.9067             nan     0.1000    0.0145
##      6        0.8810             nan     0.1000    0.0127
##      7        0.8599             nan     0.1000    0.0107
##      8        0.8440             nan     0.1000    0.0079
##      9        0.8285             nan     0.1000    0.0076
##     10        0.8130             nan     0.1000    0.0076
##     20        0.7196             nan     0.1000    0.0033
##     40        0.6528             nan     0.1000    0.0007
##     60        0.6252             nan     0.1000    0.0004
##     80        0.6105             nan     0.1000    0.0002
##    100        0.6003             nan     0.1000    0.0000
##    120        0.5920             nan     0.1000    0.0000
##    140        0.5854             nan     0.1000    0.0002
##    160        0.5804             nan     0.1000   -0.0001
##    180        0.5764             nan     0.1000   -0.0001
##    200        0.5733             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0509             nan     0.1000    0.0335
##      2        1.0003             nan     0.1000    0.0252
##      3        0.9597             nan     0.1000    0.0199
##      4        0.9255             nan     0.1000    0.0169
##      5        0.8975             nan     0.1000    0.0136
##      6        0.8711             nan     0.1000    0.0132
##      7        0.8477             nan     0.1000    0.0113
##      8        0.8279             nan     0.1000    0.0098
##      9        0.8113             nan     0.1000    0.0084
##     10        0.7963             nan     0.1000    0.0072
##     20        0.7041             nan     0.1000    0.0033
##     40        0.6386             nan     0.1000    0.0007
##     60        0.6119             nan     0.1000    0.0004
##     80        0.5967             nan     0.1000    0.0000
##    100        0.5881             nan     0.1000    0.0001
##    120        0.5812             nan     0.1000   -0.0001
##    140        0.5748             nan     0.1000   -0.0001
##    160        0.5697             nan     0.1000   -0.0000
##    180        0.5662             nan     0.1000   -0.0001
##    200        0.5624             nan     0.1000   -0.0000
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0804             nan     0.1000    0.0195
##      2        1.0474             nan     0.1000    0.0170
##      3        1.0185             nan     0.1000    0.0140
##      4        0.9961             nan     0.1000    0.0115
##      5        0.9759             nan     0.1000    0.0097
##      6        0.9576             nan     0.1000    0.0092
##      7        0.9388             nan     0.1000    0.0094
##      8        0.9253             nan     0.1000    0.0069
##      9        0.9128             nan     0.1000    0.0060
##     10        0.8972             nan     0.1000    0.0076
##     20        0.8138             nan     0.1000    0.0025
##     40        0.7395             nan     0.1000    0.0015
##     60        0.6999             nan     0.1000    0.0005
##     80        0.6766             nan     0.1000    0.0003
##    100        0.6604             nan     0.1000    0.0005
##    120        0.6490             nan     0.1000    0.0001
##    140        0.6409             nan     0.1000    0.0001
##    160        0.6335             nan     0.1000    0.0001
##    180        0.6286             nan     0.1000    0.0001
##    200        0.6240             nan     0.1000    0.0000
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0653             nan     0.1000    0.0268
##      2        1.0191             nan     0.1000    0.0229
##      3        0.9830             nan     0.1000    0.0181
##      4        0.9507             nan     0.1000    0.0161
##      5        0.9253             nan     0.1000    0.0126
##      6        0.9022             nan     0.1000    0.0117
##      7        0.8840             nan     0.1000    0.0093
##      8        0.8649             nan     0.1000    0.0092
##      9        0.8480             nan     0.1000    0.0083
##     10        0.8343             nan     0.1000    0.0067
##     20        0.7468             nan     0.1000    0.0030
##     40        0.6772             nan     0.1000    0.0007
##     60        0.6464             nan     0.1000    0.0007
##     80        0.6307             nan     0.1000    0.0003
##    100        0.6189             nan     0.1000    0.0001
##    120        0.6102             nan     0.1000    0.0002
##    140        0.6041             nan     0.1000   -0.0001
##    160        0.6000             nan     0.1000   -0.0001
##    180        0.5960             nan     0.1000    0.0000
##    200        0.5921             nan     0.1000    0.0000
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0543             nan     0.1000    0.0331
##      2        1.0036             nan     0.1000    0.0253
##      3        0.9658             nan     0.1000    0.0192
##      4        0.9363             nan     0.1000    0.0146
##      5        0.9113             nan     0.1000    0.0121
##      6        0.8850             nan     0.1000    0.0133
##      7        0.8643             nan     0.1000    0.0104
##      8        0.8443             nan     0.1000    0.0101
##      9        0.8259             nan     0.1000    0.0090
##     10        0.8114             nan     0.1000    0.0071
##     20        0.7216             nan     0.1000    0.0020
##     40        0.6557             nan     0.1000    0.0007
##     60        0.6277             nan     0.1000    0.0003
##     80        0.6103             nan     0.1000    0.0005
##    100        0.6000             nan     0.1000    0.0001
##    120        0.5931             nan     0.1000    0.0000
##    140        0.5864             nan     0.1000   -0.0000
##    160        0.5813             nan     0.1000   -0.0000
##    180        0.5770             nan     0.1000   -0.0000
##    200        0.5718             nan     0.1000    0.0000
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0499             nan     0.1000    0.0346
##      2        0.9965             nan     0.1000    0.0264
##      3        0.9566             nan     0.1000    0.0199
##      4        0.9231             nan     0.1000    0.0170
##      5        0.8950             nan     0.1000    0.0141
##      6        0.8689             nan     0.1000    0.0130
##      7        0.8496             nan     0.1000    0.0096
##      8        0.8300             nan     0.1000    0.0096
##      9        0.8138             nan     0.1000    0.0079
##     10        0.7987             nan     0.1000    0.0071
##     20        0.7083             nan     0.1000    0.0029
##     40        0.6407             nan     0.1000    0.0011
##     60        0.6123             nan     0.1000    0.0005
##     80        0.5971             nan     0.1000    0.0002
##    100        0.5864             nan     0.1000    0.0000
##    120        0.5792             nan     0.1000   -0.0000
##    140        0.5731             nan     0.1000   -0.0000
##    160        0.5668             nan     0.1000    0.0001
##    180        0.5624             nan     0.1000    0.0000
##    200        0.5585             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0812             nan     0.1000    0.0191
##      2        1.0474             nan     0.1000    0.0164
##      3        1.0222             nan     0.1000    0.0124
##      4        0.9975             nan     0.1000    0.0120
##      5        0.9746             nan     0.1000    0.0114
##      6        0.9556             nan     0.1000    0.0097
##      7        0.9369             nan     0.1000    0.0092
##      8        0.9231             nan     0.1000    0.0072
##      9        0.9072             nan     0.1000    0.0075
##     10        0.8966             nan     0.1000    0.0053
##     20        0.8138             nan     0.1000    0.0038
##     40        0.7400             nan     0.1000    0.0012
##     60        0.7034             nan     0.1000    0.0008
##     80        0.6806             nan     0.1000    0.0003
##    100        0.6654             nan     0.1000    0.0006
##    120        0.6536             nan     0.1000    0.0003
##    140        0.6460             nan     0.1000    0.0000
##    160        0.6400             nan     0.1000    0.0001
##    180        0.6353             nan     0.1000    0.0001
##    200        0.6317             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0658             nan     0.1000    0.0269
##      2        1.0231             nan     0.1000    0.0208
##      3        0.9852             nan     0.1000    0.0187
##      4        0.9552             nan     0.1000    0.0150
##      5        0.9281             nan     0.1000    0.0137
##      6        0.9008             nan     0.1000    0.0138
##      7        0.8801             nan     0.1000    0.0103
##      8        0.8635             nan     0.1000    0.0081
##      9        0.8481             nan     0.1000    0.0075
##     10        0.8323             nan     0.1000    0.0078
##     20        0.7491             nan     0.1000    0.0030
##     40        0.6830             nan     0.1000    0.0007
##     60        0.6543             nan     0.1000    0.0002
##     80        0.6385             nan     0.1000    0.0001
##    100        0.6275             nan     0.1000    0.0002
##    120        0.6192             nan     0.1000    0.0003
##    140        0.6125             nan     0.1000    0.0000
##    160        0.6066             nan     0.1000    0.0000
##    180        0.6032             nan     0.1000   -0.0000
##    200        0.5998             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0564             nan     0.1000    0.0316
##      2        1.0099             nan     0.1000    0.0235
##      3        0.9681             nan     0.1000    0.0205
##      4        0.9379             nan     0.1000    0.0146
##      5        0.9087             nan     0.1000    0.0147
##      6        0.8838             nan     0.1000    0.0125
##      7        0.8617             nan     0.1000    0.0111
##      8        0.8436             nan     0.1000    0.0090
##      9        0.8261             nan     0.1000    0.0085
##     10        0.8112             nan     0.1000    0.0075
##     20        0.7256             nan     0.1000    0.0027
##     40        0.6588             nan     0.1000    0.0008
##     60        0.6318             nan     0.1000    0.0003
##     80        0.6170             nan     0.1000   -0.0000
##    100        0.6080             nan     0.1000    0.0000
##    120        0.5999             nan     0.1000   -0.0000
##    140        0.5950             nan     0.1000   -0.0001
##    160        0.5893             nan     0.1000   -0.0000
##    180        0.5857             nan     0.1000   -0.0000
##    200        0.5828             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0527             nan     0.1000    0.0334
##      2        1.0021             nan     0.1000    0.0258
##      3        0.9588             nan     0.1000    0.0216
##      4        0.9238             nan     0.1000    0.0176
##      5        0.8956             nan     0.1000    0.0144
##      6        0.8693             nan     0.1000    0.0130
##      7        0.8485             nan     0.1000    0.0102
##      8        0.8311             nan     0.1000    0.0086
##      9        0.8157             nan     0.1000    0.0076
##     10        0.8005             nan     0.1000    0.0074
##     20        0.7107             nan     0.1000    0.0029
##     40        0.6450             nan     0.1000    0.0009
##     60        0.6195             nan     0.1000    0.0006
##     80        0.6042             nan     0.1000    0.0001
##    100        0.5949             nan     0.1000    0.0001
##    120        0.5884             nan     0.1000    0.0000
##    140        0.5828             nan     0.1000   -0.0000
##    160        0.5779             nan     0.1000   -0.0001
##    180        0.5737             nan     0.1000   -0.0000
##    200        0.5700             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0541             nan     0.1000    0.0329
##      2        0.9996             nan     0.1000    0.0272
##      3        0.9594             nan     0.1000    0.0202
##      4        0.9251             nan     0.1000    0.0171
##      5        0.8957             nan     0.1000    0.0143
##      6        0.8697             nan     0.1000    0.0125
##      7        0.8482             nan     0.1000    0.0107
##      8        0.8293             nan     0.1000    0.0094
##      9        0.8133             nan     0.1000    0.0080
##     10        0.7989             nan     0.1000    0.0071
##     20        0.7085             nan     0.1000    0.0026
##     40        0.6411             nan     0.1000    0.0011
##     60        0.6152             nan     0.1000    0.0005
##     80        0.6010             nan     0.1000    0.0002
##    100        0.5919             nan     0.1000    0.0001
##    120        0.5852             nan     0.1000   -0.0000
##    140        0.5802             nan     0.1000   -0.0000
##    160        0.5757             nan     0.1000    0.0000
##    180        0.5721             nan     0.1000    0.0000
##    200        0.5684             nan     0.1000   -0.0000
confusionMatrix(predict(fit.gbm, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1444  457
##        no   797 6345
##                                                
##                Accuracy : 0.8613               
##                  95% CI : (0.854, 0.8684)      
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.6081               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.6444               
##             Specificity : 0.9328               
##          Pos Pred Value : 0.7596               
##          Neg Pred Value : 0.8884               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1597               
##    Detection Prevalence : 0.2102               
##       Balanced Accuracy : 0.7886               
##                                                
##        'Positive' Class : yes                  
## 
myRoc <- roc(test$income_above_50k, predict(fit.gbm, test, type="prob")[,2])
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc)

auc(myRoc)
## Area under the curve: 0.9159

The results from the training above tells that we could further tune parameters for performance:

grid.gbm = expand.grid(interaction.depth = seq(4,8,1),
                      n.trees = seq(200,400,50),
                       shrinkage = 0.1, 
                        n.minobsinnode = 10)

fit.gbm.2 <- train(income_above_50k ~ .,
             data = train,
             method = "gbm",
             tuneGrid = grid.gbm,
             preProcess = c("center","scale"),
             metric = "ROC",
             trControl = ctrl)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0496             nan     0.1000    0.0352
##      2        0.9993             nan     0.1000    0.0245
##      3        0.9584             nan     0.1000    0.0203
##      4        0.9226             nan     0.1000    0.0174
##      5        0.8971             nan     0.1000    0.0128
##      6        0.8728             nan     0.1000    0.0119
##      7        0.8490             nan     0.1000    0.0115
##      8        0.8300             nan     0.1000    0.0095
##      9        0.8133             nan     0.1000    0.0080
##     10        0.7982             nan     0.1000    0.0073
##     20        0.7041             nan     0.1000    0.0031
##     40        0.6392             nan     0.1000    0.0009
##     60        0.6113             nan     0.1000    0.0003
##     80        0.5964             nan     0.1000    0.0003
##    100        0.5873             nan     0.1000    0.0002
##    120        0.5794             nan     0.1000   -0.0000
##    140        0.5742             nan     0.1000    0.0000
##    160        0.5698             nan     0.1000   -0.0001
##    180        0.5657             nan     0.1000   -0.0001
##    200        0.5619             nan     0.1000   -0.0000
##    220        0.5580             nan     0.1000   -0.0000
##    240        0.5553             nan     0.1000   -0.0001
##    260        0.5517             nan     0.1000   -0.0000
##    280        0.5484             nan     0.1000   -0.0001
##    300        0.5455             nan     0.1000   -0.0000
##    320        0.5426             nan     0.1000   -0.0001
##    340        0.5402             nan     0.1000   -0.0001
##    360        0.5379             nan     0.1000   -0.0000
##    380        0.5354             nan     0.1000   -0.0001
##    400        0.5330             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0481             nan     0.1000    0.0366
##      2        0.9956             nan     0.1000    0.0259
##      3        0.9530             nan     0.1000    0.0213
##      4        0.9174             nan     0.1000    0.0173
##      5        0.8863             nan     0.1000    0.0155
##      6        0.8612             nan     0.1000    0.0123
##      7        0.8391             nan     0.1000    0.0111
##      8        0.8204             nan     0.1000    0.0094
##      9        0.8033             nan     0.1000    0.0083
##     10        0.7873             nan     0.1000    0.0077
##     20        0.6970             nan     0.1000    0.0024
##     40        0.6289             nan     0.1000    0.0004
##     60        0.6018             nan     0.1000    0.0003
##     80        0.5870             nan     0.1000    0.0004
##    100        0.5790             nan     0.1000   -0.0001
##    120        0.5702             nan     0.1000    0.0001
##    140        0.5634             nan     0.1000   -0.0000
##    160        0.5583             nan     0.1000    0.0000
##    180        0.5529             nan     0.1000   -0.0000
##    200        0.5486             nan     0.1000   -0.0001
##    220        0.5445             nan     0.1000   -0.0001
##    240        0.5406             nan     0.1000   -0.0001
##    260        0.5372             nan     0.1000   -0.0000
##    280        0.5344             nan     0.1000   -0.0001
##    300        0.5312             nan     0.1000   -0.0001
##    320        0.5274             nan     0.1000   -0.0001
##    340        0.5245             nan     0.1000   -0.0001
##    360        0.5215             nan     0.1000   -0.0001
##    380        0.5191             nan     0.1000   -0.0000
##    400        0.5161             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0455             nan     0.1000    0.0368
##      2        0.9897             nan     0.1000    0.0278
##      3        0.9450             nan     0.1000    0.0220
##      4        0.9089             nan     0.1000    0.0180
##      5        0.8783             nan     0.1000    0.0149
##      6        0.8531             nan     0.1000    0.0124
##      7        0.8305             nan     0.1000    0.0110
##      8        0.8126             nan     0.1000    0.0088
##      9        0.7954             nan     0.1000    0.0082
##     10        0.7794             nan     0.1000    0.0077
##     20        0.6840             nan     0.1000    0.0024
##     40        0.6187             nan     0.1000    0.0012
##     60        0.5930             nan     0.1000    0.0001
##     80        0.5782             nan     0.1000    0.0001
##    100        0.5684             nan     0.1000   -0.0000
##    120        0.5603             nan     0.1000    0.0001
##    140        0.5551             nan     0.1000   -0.0001
##    160        0.5503             nan     0.1000   -0.0000
##    180        0.5436             nan     0.1000   -0.0001
##    200        0.5388             nan     0.1000   -0.0000
##    220        0.5347             nan     0.1000   -0.0001
##    240        0.5300             nan     0.1000   -0.0001
##    260        0.5264             nan     0.1000   -0.0001
##    280        0.5223             nan     0.1000   -0.0001
##    300        0.5187             nan     0.1000    0.0001
##    320        0.5151             nan     0.1000   -0.0000
##    340        0.5119             nan     0.1000   -0.0001
##    360        0.5085             nan     0.1000   -0.0002
##    380        0.5057             nan     0.1000   -0.0001
##    400        0.5028             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0439             nan     0.1000    0.0377
##      2        0.9869             nan     0.1000    0.0281
##      3        0.9415             nan     0.1000    0.0221
##      4        0.9037             nan     0.1000    0.0187
##      5        0.8714             nan     0.1000    0.0156
##      6        0.8458             nan     0.1000    0.0125
##      7        0.8231             nan     0.1000    0.0115
##      8        0.8029             nan     0.1000    0.0097
##      9        0.7856             nan     0.1000    0.0084
##     10        0.7702             nan     0.1000    0.0077
##     20        0.6766             nan     0.1000    0.0030
##     40        0.6122             nan     0.1000    0.0011
##     60        0.5873             nan     0.1000    0.0002
##     80        0.5744             nan     0.1000    0.0000
##    100        0.5664             nan     0.1000    0.0000
##    120        0.5578             nan     0.1000    0.0001
##    140        0.5519             nan     0.1000   -0.0001
##    160        0.5461             nan     0.1000    0.0002
##    180        0.5395             nan     0.1000   -0.0001
##    200        0.5337             nan     0.1000   -0.0001
##    220        0.5282             nan     0.1000   -0.0001
##    240        0.5233             nan     0.1000   -0.0001
##    260        0.5189             nan     0.1000   -0.0000
##    280        0.5149             nan     0.1000   -0.0001
##    300        0.5104             nan     0.1000   -0.0001
##    320        0.5063             nan     0.1000   -0.0001
##    340        0.5027             nan     0.1000   -0.0001
##    360        0.4983             nan     0.1000   -0.0000
##    380        0.4952             nan     0.1000   -0.0001
##    400        0.4919             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0437             nan     0.1000    0.0384
##      2        0.9862             nan     0.1000    0.0287
##      3        0.9384             nan     0.1000    0.0238
##      4        0.8997             nan     0.1000    0.0189
##      5        0.8693             nan     0.1000    0.0152
##      6        0.8436             nan     0.1000    0.0126
##      7        0.8202             nan     0.1000    0.0117
##      8        0.7995             nan     0.1000    0.0101
##      9        0.7814             nan     0.1000    0.0088
##     10        0.7653             nan     0.1000    0.0076
##     20        0.6730             nan     0.1000    0.0030
##     40        0.6057             nan     0.1000    0.0011
##     60        0.5799             nan     0.1000    0.0002
##     80        0.5647             nan     0.1000    0.0001
##    100        0.5555             nan     0.1000   -0.0000
##    120        0.5475             nan     0.1000   -0.0001
##    140        0.5398             nan     0.1000   -0.0000
##    160        0.5336             nan     0.1000   -0.0000
##    180        0.5281             nan     0.1000    0.0001
##    200        0.5228             nan     0.1000   -0.0001
##    220        0.5178             nan     0.1000   -0.0001
##    240        0.5134             nan     0.1000   -0.0001
##    260        0.5085             nan     0.1000   -0.0001
##    280        0.5036             nan     0.1000   -0.0001
##    300        0.4991             nan     0.1000   -0.0001
##    320        0.4947             nan     0.1000   -0.0001
##    340        0.4900             nan     0.1000   -0.0001
##    360        0.4854             nan     0.1000   -0.0000
##    380        0.4814             nan     0.1000   -0.0001
##    400        0.4774             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0511             nan     0.1000    0.0343
##      2        0.9983             nan     0.1000    0.0262
##      3        0.9583             nan     0.1000    0.0196
##      4        0.9250             nan     0.1000    0.0161
##      5        0.8958             nan     0.1000    0.0144
##      6        0.8714             nan     0.1000    0.0120
##      7        0.8500             nan     0.1000    0.0108
##      8        0.8316             nan     0.1000    0.0091
##      9        0.8149             nan     0.1000    0.0084
##     10        0.7993             nan     0.1000    0.0075
##     20        0.7089             nan     0.1000    0.0030
##     40        0.6451             nan     0.1000    0.0009
##     60        0.6203             nan     0.1000    0.0005
##     80        0.6051             nan     0.1000    0.0004
##    100        0.5964             nan     0.1000    0.0002
##    120        0.5898             nan     0.1000    0.0001
##    140        0.5840             nan     0.1000    0.0000
##    160        0.5789             nan     0.1000   -0.0000
##    180        0.5747             nan     0.1000    0.0000
##    200        0.5708             nan     0.1000    0.0005
##    220        0.5674             nan     0.1000   -0.0000
##    240        0.5643             nan     0.1000   -0.0001
##    260        0.5611             nan     0.1000   -0.0001
##    280        0.5581             nan     0.1000   -0.0001
##    300        0.5554             nan     0.1000   -0.0001
##    320        0.5530             nan     0.1000   -0.0001
##    340        0.5504             nan     0.1000   -0.0000
##    360        0.5480             nan     0.1000   -0.0001
##    380        0.5449             nan     0.1000   -0.0001
##    400        0.5426             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0500             nan     0.1000    0.0347
##      2        0.9990             nan     0.1000    0.0252
##      3        0.9548             nan     0.1000    0.0218
##      4        0.9210             nan     0.1000    0.0165
##      5        0.8919             nan     0.1000    0.0145
##      6        0.8679             nan     0.1000    0.0119
##      7        0.8461             nan     0.1000    0.0111
##      8        0.8254             nan     0.1000    0.0104
##      9        0.8076             nan     0.1000    0.0087
##     10        0.7930             nan     0.1000    0.0072
##     20        0.6997             nan     0.1000    0.0027
##     40        0.6335             nan     0.1000    0.0005
##     60        0.6090             nan     0.1000    0.0002
##     80        0.5945             nan     0.1000    0.0002
##    100        0.5861             nan     0.1000   -0.0000
##    120        0.5791             nan     0.1000   -0.0001
##    140        0.5739             nan     0.1000    0.0001
##    160        0.5682             nan     0.1000   -0.0001
##    180        0.5629             nan     0.1000    0.0000
##    200        0.5591             nan     0.1000    0.0000
##    220        0.5560             nan     0.1000   -0.0001
##    240        0.5521             nan     0.1000   -0.0001
##    260        0.5487             nan     0.1000   -0.0000
##    280        0.5454             nan     0.1000   -0.0001
##    300        0.5420             nan     0.1000   -0.0001
##    320        0.5381             nan     0.1000   -0.0001
##    340        0.5357             nan     0.1000   -0.0002
##    360        0.5321             nan     0.1000   -0.0000
##    380        0.5293             nan     0.1000   -0.0001
##    400        0.5263             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0466             nan     0.1000    0.0361
##      2        0.9920             nan     0.1000    0.0270
##      3        0.9470             nan     0.1000    0.0226
##      4        0.9116             nan     0.1000    0.0177
##      5        0.8831             nan     0.1000    0.0140
##      6        0.8565             nan     0.1000    0.0130
##      7        0.8351             nan     0.1000    0.0104
##      8        0.8147             nan     0.1000    0.0098
##      9        0.7971             nan     0.1000    0.0085
##     10        0.7813             nan     0.1000    0.0076
##     20        0.6918             nan     0.1000    0.0019
##     40        0.6280             nan     0.1000    0.0007
##     60        0.6021             nan     0.1000    0.0001
##     80        0.5893             nan     0.1000    0.0000
##    100        0.5800             nan     0.1000    0.0001
##    120        0.5736             nan     0.1000   -0.0001
##    140        0.5679             nan     0.1000   -0.0000
##    160        0.5614             nan     0.1000    0.0000
##    180        0.5564             nan     0.1000   -0.0000
##    200        0.5514             nan     0.1000   -0.0001
##    220        0.5467             nan     0.1000   -0.0001
##    240        0.5422             nan     0.1000   -0.0001
##    260        0.5382             nan     0.1000   -0.0001
##    280        0.5345             nan     0.1000   -0.0000
##    300        0.5296             nan     0.1000   -0.0001
##    320        0.5260             nan     0.1000   -0.0001
##    340        0.5225             nan     0.1000   -0.0001
##    360        0.5191             nan     0.1000    0.0001
##    380        0.5159             nan     0.1000   -0.0000
##    400        0.5127             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0472             nan     0.1000    0.0360
##      2        0.9897             nan     0.1000    0.0288
##      3        0.9446             nan     0.1000    0.0223
##      4        0.9095             nan     0.1000    0.0175
##      5        0.8780             nan     0.1000    0.0154
##      6        0.8507             nan     0.1000    0.0132
##      7        0.8287             nan     0.1000    0.0104
##      8        0.8098             nan     0.1000    0.0090
##      9        0.7932             nan     0.1000    0.0083
##     10        0.7776             nan     0.1000    0.0077
##     20        0.6871             nan     0.1000    0.0024
##     40        0.6215             nan     0.1000    0.0009
##     60        0.5985             nan     0.1000    0.0001
##     80        0.5842             nan     0.1000    0.0001
##    100        0.5728             nan     0.1000    0.0001
##    120        0.5657             nan     0.1000   -0.0000
##    140        0.5591             nan     0.1000   -0.0001
##    160        0.5533             nan     0.1000   -0.0000
##    180        0.5471             nan     0.1000   -0.0001
##    200        0.5420             nan     0.1000   -0.0000
##    220        0.5377             nan     0.1000   -0.0001
##    240        0.5335             nan     0.1000   -0.0001
##    260        0.5294             nan     0.1000   -0.0000
##    280        0.5242             nan     0.1000   -0.0001
##    300        0.5201             nan     0.1000   -0.0000
##    320        0.5160             nan     0.1000   -0.0000
##    340        0.5117             nan     0.1000   -0.0000
##    360        0.5080             nan     0.1000   -0.0001
##    380        0.5047             nan     0.1000   -0.0001
##    400        0.5011             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0436             nan     0.1000    0.0385
##      2        0.9869             nan     0.1000    0.0280
##      3        0.9410             nan     0.1000    0.0227
##      4        0.9045             nan     0.1000    0.0184
##      5        0.8727             nan     0.1000    0.0154
##      6        0.8464             nan     0.1000    0.0126
##      7        0.8221             nan     0.1000    0.0117
##      8        0.8014             nan     0.1000    0.0102
##      9        0.7849             nan     0.1000    0.0079
##     10        0.7682             nan     0.1000    0.0079
##     20        0.6773             nan     0.1000    0.0034
##     40        0.6144             nan     0.1000    0.0005
##     60        0.5897             nan     0.1000    0.0002
##     80        0.5767             nan     0.1000    0.0001
##    100        0.5670             nan     0.1000    0.0005
##    120        0.5598             nan     0.1000   -0.0001
##    140        0.5535             nan     0.1000   -0.0002
##    160        0.5465             nan     0.1000   -0.0000
##    180        0.5401             nan     0.1000   -0.0001
##    200        0.5351             nan     0.1000   -0.0000
##    220        0.5303             nan     0.1000    0.0001
##    240        0.5251             nan     0.1000   -0.0001
##    260        0.5204             nan     0.1000   -0.0001
##    280        0.5160             nan     0.1000   -0.0001
##    300        0.5113             nan     0.1000   -0.0002
##    320        0.5068             nan     0.1000   -0.0001
##    340        0.5024             nan     0.1000   -0.0000
##    360        0.4980             nan     0.1000   -0.0001
##    380        0.4942             nan     0.1000   -0.0001
##    400        0.4904             nan     0.1000   -0.0001
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0532             nan     0.1000    0.0328
##      2        0.9994             nan     0.1000    0.0270
##      3        0.9600             nan     0.1000    0.0195
##      4        0.9255             nan     0.1000    0.0173
##      5        0.8950             nan     0.1000    0.0150
##      6        0.8692             nan     0.1000    0.0128
##      7        0.8481             nan     0.1000    0.0104
##      8        0.8295             nan     0.1000    0.0091
##      9        0.8149             nan     0.1000    0.0071
##     10        0.8003             nan     0.1000    0.0073
##     20        0.7081             nan     0.1000    0.0024
##     40        0.6402             nan     0.1000    0.0007
##     60        0.6126             nan     0.1000    0.0003
##     80        0.5967             nan     0.1000    0.0000
##    100        0.5879             nan     0.1000   -0.0000
##    120        0.5807             nan     0.1000   -0.0000
##    140        0.5749             nan     0.1000    0.0000
##    160        0.5703             nan     0.1000   -0.0000
##    180        0.5658             nan     0.1000   -0.0001
##    200        0.5623             nan     0.1000   -0.0001
##    220        0.5583             nan     0.1000   -0.0000
##    240        0.5545             nan     0.1000   -0.0000
##    260        0.5515             nan     0.1000   -0.0000
##    280        0.5480             nan     0.1000   -0.0001
##    300        0.5451             nan     0.1000   -0.0000
##    320        0.5423             nan     0.1000   -0.0001
##    340        0.5397             nan     0.1000   -0.0001
##    360        0.5375             nan     0.1000   -0.0001
##    380        0.5350             nan     0.1000   -0.0000
##    400        0.5322             nan     0.1000   -0.0000
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0485             nan     0.1000    0.0354
##      2        0.9967             nan     0.1000    0.0260
##      3        0.9530             nan     0.1000    0.0219
##      4        0.9174             nan     0.1000    0.0175
##      5        0.8869             nan     0.1000    0.0153
##      6        0.8622             nan     0.1000    0.0121
##      7        0.8399             nan     0.1000    0.0109
##      8        0.8206             nan     0.1000    0.0094
##      9        0.8035             nan     0.1000    0.0084
##     10        0.7875             nan     0.1000    0.0078
##     20        0.6957             nan     0.1000    0.0037
##     40        0.6295             nan     0.1000    0.0007
##     60        0.6036             nan     0.1000    0.0001
##     80        0.5899             nan     0.1000    0.0002
##    100        0.5808             nan     0.1000    0.0000
##    120        0.5732             nan     0.1000    0.0002
##    140        0.5671             nan     0.1000    0.0000
##    160        0.5608             nan     0.1000   -0.0000
##    180        0.5545             nan     0.1000   -0.0000
##    200        0.5506             nan     0.1000   -0.0000
##    220        0.5458             nan     0.1000   -0.0000
##    240        0.5422             nan     0.1000   -0.0001
##    260        0.5384             nan     0.1000    0.0000
##    280        0.5348             nan     0.1000   -0.0001
##    300        0.5313             nan     0.1000   -0.0002
##    320        0.5282             nan     0.1000   -0.0002
##    340        0.5247             nan     0.1000   -0.0001
##    360        0.5217             nan     0.1000   -0.0001
##    380        0.5188             nan     0.1000   -0.0001
##    400        0.5159             nan     0.1000   -0.0001
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0465             nan     0.1000    0.0358
##      2        0.9912             nan     0.1000    0.0276
##      3        0.9482             nan     0.1000    0.0216
##      4        0.9113             nan     0.1000    0.0186
##      5        0.8801             nan     0.1000    0.0153
##      6        0.8534             nan     0.1000    0.0132
##      7        0.8326             nan     0.1000    0.0103
##      8        0.8128             nan     0.1000    0.0095
##      9        0.7966             nan     0.1000    0.0081
##     10        0.7808             nan     0.1000    0.0077
##     20        0.6845             nan     0.1000    0.0026
##     40        0.6190             nan     0.1000    0.0008
##     60        0.5922             nan     0.1000    0.0001
##     80        0.5801             nan     0.1000    0.0000
##    100        0.5692             nan     0.1000   -0.0000
##    120        0.5632             nan     0.1000   -0.0001
##    140        0.5567             nan     0.1000    0.0000
##    160        0.5511             nan     0.1000   -0.0001
##    180        0.5453             nan     0.1000   -0.0001
##    200        0.5406             nan     0.1000   -0.0000
##    220        0.5361             nan     0.1000   -0.0001
##    240        0.5321             nan     0.1000   -0.0000
##    260        0.5283             nan     0.1000   -0.0001
##    280        0.5245             nan     0.1000   -0.0000
##    300        0.5203             nan     0.1000    0.0003
##    320        0.5163             nan     0.1000    0.0000
##    340        0.5128             nan     0.1000   -0.0001
##    360        0.5091             nan     0.1000   -0.0001
##    380        0.5062             nan     0.1000   -0.0001
##    400        0.5033             nan     0.1000   -0.0001
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0463             nan     0.1000    0.0364
##      2        0.9897             nan     0.1000    0.0277
##      3        0.9451             nan     0.1000    0.0217
##      4        0.9071             nan     0.1000    0.0186
##      5        0.8742             nan     0.1000    0.0163
##      6        0.8478             nan     0.1000    0.0129
##      7        0.8249             nan     0.1000    0.0112
##      8        0.8062             nan     0.1000    0.0090
##      9        0.7883             nan     0.1000    0.0086
##     10        0.7725             nan     0.1000    0.0075
##     20        0.6770             nan     0.1000    0.0029
##     40        0.6130             nan     0.1000    0.0003
##     60        0.5866             nan     0.1000    0.0002
##     80        0.5733             nan     0.1000    0.0002
##    100        0.5633             nan     0.1000   -0.0000
##    120        0.5566             nan     0.1000   -0.0001
##    140        0.5511             nan     0.1000   -0.0001
##    160        0.5444             nan     0.1000    0.0000
##    180        0.5386             nan     0.1000   -0.0000
##    200        0.5334             nan     0.1000   -0.0001
##    220        0.5288             nan     0.1000   -0.0000
##    240        0.5240             nan     0.1000   -0.0001
##    260        0.5199             nan     0.1000   -0.0001
##    280        0.5161             nan     0.1000   -0.0001
##    300        0.5119             nan     0.1000   -0.0000
##    320        0.5082             nan     0.1000   -0.0001
##    340        0.5045             nan     0.1000   -0.0001
##    360        0.5000             nan     0.1000   -0.0001
##    380        0.4963             nan     0.1000   -0.0001
##    400        0.4930             nan     0.1000   -0.0001
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0432             nan     0.1000    0.0393
##      2        0.9854             nan     0.1000    0.0283
##      3        0.9392             nan     0.1000    0.0230
##      4        0.8998             nan     0.1000    0.0190
##      5        0.8681             nan     0.1000    0.0154
##      6        0.8418             nan     0.1000    0.0127
##      7        0.8198             nan     0.1000    0.0106
##      8        0.7993             nan     0.1000    0.0100
##      9        0.7819             nan     0.1000    0.0086
##     10        0.7663             nan     0.1000    0.0073
##     20        0.6711             nan     0.1000    0.0034
##     40        0.6063             nan     0.1000    0.0006
##     60        0.5813             nan     0.1000    0.0003
##     80        0.5676             nan     0.1000    0.0000
##    100        0.5585             nan     0.1000    0.0003
##    120        0.5507             nan     0.1000   -0.0000
##    140        0.5420             nan     0.1000   -0.0000
##    160        0.5361             nan     0.1000   -0.0001
##    180        0.5310             nan     0.1000   -0.0001
##    200        0.5250             nan     0.1000   -0.0001
##    220        0.5188             nan     0.1000   -0.0000
##    240        0.5139             nan     0.1000   -0.0001
##    260        0.5091             nan     0.1000   -0.0000
##    280        0.5044             nan     0.1000   -0.0001
##    300        0.5001             nan     0.1000   -0.0001
##    320        0.4949             nan     0.1000    0.0003
##    340        0.4912             nan     0.1000   -0.0001
##    360        0.4870             nan     0.1000   -0.0001
##    380        0.4826             nan     0.1000   -0.0001
##    400        0.4788             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.0447             nan     0.1000    0.0379
##      2        0.9866             nan     0.1000    0.0287
##      3        0.9420             nan     0.1000    0.0226
##      4        0.9029             nan     0.1000    0.0195
##      5        0.8712             nan     0.1000    0.0157
##      6        0.8439             nan     0.1000    0.0134
##      7        0.8221             nan     0.1000    0.0108
##      8        0.8009             nan     0.1000    0.0104
##      9        0.7837             nan     0.1000    0.0085
##     10        0.7684             nan     0.1000    0.0075
##     20        0.6747             nan     0.1000    0.0025
##     40        0.6115             nan     0.1000    0.0007
##     60        0.5867             nan     0.1000    0.0006
##     80        0.5741             nan     0.1000    0.0000
##    100        0.5658             nan     0.1000    0.0000
##    120        0.5594             nan     0.1000    0.0004
##    140        0.5527             nan     0.1000    0.0002
##    160        0.5475             nan     0.1000   -0.0001
##    180        0.5426             nan     0.1000   -0.0000
##    200        0.5391             nan     0.1000   -0.0000
confusionMatrix(predict(fit.gbm.2, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1463  469
##        no   778 6333
##                                                
##                Accuracy : 0.8621               
##                  95% CI : (0.8548, 0.8691)     
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.6122               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.6528               
##             Specificity : 0.9310               
##          Pos Pred Value : 0.7572               
##          Neg Pred Value : 0.8906               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1618               
##    Detection Prevalence : 0.2136               
##       Balanced Accuracy : 0.7919               
##                                                
##        'Positive' Class : yes                  
## 
#kappa - .60


myRoc <- roc(test$income_above_50k, predict(fit.gbm.2, test, type="prob")[,2])
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc, main = "AUC = .92")

auc(myRoc)
## Area under the curve: 0.9183
#AUC = .92

print(fit.gbm.2$bestTune)
##    n.trees interaction.depth shrinkage n.minobsinnode
## 21     200                 8       0.1             10

Downsampling training data to remove imbalance of income_above_50k:

income_index <- createDataPartition(income$income_above_50k, p = 0.80, list = FALSE)
train <- income[income_index, ]
test <- income[-income_index, ]

traindown = downSample(x = train[,-1], y= train$income_above_50k) %>% mutate(income_above_50k = Class) %>% select(-Class)

traindown %>% group_by(income_above_50k) %>% count()
## # A tibble: 2 × 2
## # Groups:   income_above_50k [2]
##   income_above_50k     n
##   <fct>            <int>
## 1 yes               8967
## 2 no                8967
fit.gbm.3 <- train(income_above_50k ~ .,
             data = traindown,
             method = "gbm",
             tuneGrid = fit.gbm.2$bestTune,
             preProcess = c("center","scale"),
             metric = "ROC",
             trControl = ctrl)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2998             nan     0.1000    0.0423
##      2        1.2293             nan     0.1000    0.0348
##      3        1.1706             nan     0.1000    0.0284
##      4        1.1209             nan     0.1000    0.0244
##      5        1.0792             nan     0.1000    0.0206
##      6        1.0429             nan     0.1000    0.0177
##      7        1.0104             nan     0.1000    0.0157
##      8        0.9838             nan     0.1000    0.0125
##      9        0.9595             nan     0.1000    0.0117
##     10        0.9396             nan     0.1000    0.0092
##     20        0.8111             nan     0.1000    0.0035
##     40        0.7303             nan     0.1000    0.0003
##     60        0.6980             nan     0.1000    0.0011
##     80        0.6787             nan     0.1000    0.0000
##    100        0.6634             nan     0.1000   -0.0001
##    120        0.6514             nan     0.1000   -0.0002
##    140        0.6406             nan     0.1000   -0.0002
##    160        0.6314             nan     0.1000   -0.0002
##    180        0.6219             nan     0.1000   -0.0002
##    200        0.6121             nan     0.1000   -0.0001
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
## Warning in (function (x, y, offset = NULL, misc = NULL, distribution =
## "bernoulli", : variable 80: native_country_holand_netherlands has no variation.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3010             nan     0.1000    0.0427
##      2        1.2317             nan     0.1000    0.0346
##      3        1.1744             nan     0.1000    0.0284
##      4        1.1233             nan     0.1000    0.0257
##      5        1.0798             nan     0.1000    0.0214
##      6        1.0445             nan     0.1000    0.0171
##      7        1.0137             nan     0.1000    0.0148
##      8        0.9854             nan     0.1000    0.0137
##      9        0.9610             nan     0.1000    0.0116
##     10        0.9392             nan     0.1000    0.0105
##     20        0.8146             nan     0.1000    0.0042
##     40        0.7293             nan     0.1000    0.0011
##     60        0.6977             nan     0.1000   -0.0001
##     80        0.6766             nan     0.1000    0.0006
##    100        0.6614             nan     0.1000   -0.0002
##    120        0.6490             nan     0.1000   -0.0000
##    140        0.6373             nan     0.1000   -0.0003
##    160        0.6278             nan     0.1000   -0.0001
##    180        0.6174             nan     0.1000   -0.0002
##    200        0.6094             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3026             nan     0.1000    0.0422
##      2        1.2333             nan     0.1000    0.0338
##      3        1.1760             nan     0.1000    0.0286
##      4        1.1234             nan     0.1000    0.0260
##      5        1.0804             nan     0.1000    0.0211
##      6        1.0444             nan     0.1000    0.0174
##      7        1.0142             nan     0.1000    0.0146
##      8        0.9853             nan     0.1000    0.0137
##      9        0.9606             nan     0.1000    0.0117
##     10        0.9375             nan     0.1000    0.0113
##     20        0.8100             nan     0.1000    0.0033
##     40        0.7220             nan     0.1000    0.0008
##     60        0.6918             nan     0.1000   -0.0000
##     80        0.6722             nan     0.1000    0.0001
##    100        0.6581             nan     0.1000   -0.0000
##    120        0.6454             nan     0.1000   -0.0002
##    140        0.6336             nan     0.1000   -0.0001
##    160        0.6234             nan     0.1000   -0.0002
##    180        0.6139             nan     0.1000   -0.0002
##    200        0.6057             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2999             nan     0.1000    0.0428
##      2        1.2290             nan     0.1000    0.0348
##      3        1.1727             nan     0.1000    0.0281
##      4        1.1230             nan     0.1000    0.0245
##      5        1.0799             nan     0.1000    0.0209
##      6        1.0461             nan     0.1000    0.0168
##      7        1.0163             nan     0.1000    0.0148
##      8        0.9896             nan     0.1000    0.0132
##      9        0.9671             nan     0.1000    0.0109
##     10        0.9447             nan     0.1000    0.0109
##     20        0.8173             nan     0.1000    0.0044
##     40        0.7331             nan     0.1000    0.0007
##     60        0.7013             nan     0.1000    0.0000
##     80        0.6836             nan     0.1000    0.0001
##    100        0.6706             nan     0.1000   -0.0001
##    120        0.6606             nan     0.1000   -0.0001
##    140        0.6503             nan     0.1000    0.0000
##    160        0.6428             nan     0.1000   -0.0001
##    180        0.6349             nan     0.1000    0.0000
##    200        0.6287             nan     0.1000   -0.0001
#checking performance of downsampled training on test data
confusionMatrix(predict(fit.gbm.3, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1962 1294
##        no   279 5508
##                                                
##                Accuracy : 0.8261               
##                  95% CI : (0.8181, 0.8338)     
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.5949               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.8755               
##             Specificity : 0.8098               
##          Pos Pred Value : 0.6026               
##          Neg Pred Value : 0.9518               
##              Prevalence : 0.2478               
##          Detection Rate : 0.2170               
##    Detection Prevalence : 0.3601               
##       Balanced Accuracy : 0.8426               
##                                                
##        'Positive' Class : yes                  
## 
myRoc <- roc(test$income_above_50k, predict(fit.gbm.3, test, type="prob")[,2])
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc)

auc(myRoc)
## Area under the curve: 0.923
#AUV = 0.917

Conclusion: the difference between the two training sets is negligible.

Given the relative success of a gradient boosted, let’s try XG Boost:

grid.xgb=expand.grid(nrounds=50, #number of trees in final model
                     eta=c(.1,.3,.7), # our shrinkage parameter
                     max_depth=seq(4,8,1),
                     gamma = 0,
                    min_child_weight = 1,
                    subsample = 1,
                     colsample_bytree = 1)

fit.xgb <- train(income_above_50k ~ .,
             data = train,
             method = "xgbTree",
             tuneGrid = grid.xgb,
             verbose=FALSE,
             trControl = ctrl)
## Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was not
## in the result set. ROC will be used instead.
confusionMatrix(predict(fit.xgb, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1433  399
##        no   808 6403
##                                                
##                Accuracy : 0.8665               
##                  95% CI : (0.8593, 0.8735)     
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.6186               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.6394               
##             Specificity : 0.9413               
##          Pos Pred Value : 0.7822               
##          Neg Pred Value : 0.8879               
##              Prevalence : 0.2478               
##          Detection Rate : 0.1585               
##    Detection Prevalence : 0.2026               
##       Balanced Accuracy : 0.7904               
##                                                
##        'Positive' Class : yes                  
## 
myRoc <- roc(test$income_above_50k, predict(fit.xgb, test, type="prob")[,2])
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc)

auc(myRoc) #0.926
## Area under the curve: 0.9276
fit.xgb$bestTune
##   nrounds max_depth eta gamma colsample_bytree min_child_weight subsample
## 7      50         5 0.3     0                1                1         1

Upsampling training data to equalizes classes:

Note that we are not touching the test data!

set.seed(1001)
income_index <- createDataPartition(income$income_above_50k, p = 0.80, list = FALSE)
train <- income[income_index, ]
test <- income[-income_index, ]

train_up = upSample(x = train[,-1], y= train$income_above_50k) %>% mutate(income_above_50k = Class) %>% select(-Class)

fit.xgb.tu.2 <- train(income_above_50k ~ .,
             data = train_up,
             method = "xgbTree",
             tuneGrid = fit.xgb$bestTune,
            preProcess = c("center","scale"),
             metric = "ROC",
             verbose=FALSE,
             trControl = ctrl)
## Warning in preProcess.default(thresh = 0.95, k = 5, freqCut = 19, uniqueCut =
## 10, : These variables have zero variances: native_country_holand_netherlands
confusionMatrix(predict(fit.xgb.tu.2, test),factor(test$income_above_50k))
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  yes   no
##        yes 1936 1215
##        no   305 5587
##                                                
##                Accuracy : 0.8319               
##                  95% CI : (0.824, 0.8396)      
##     No Information Rate : 0.7522               
##     P-Value [Acc > NIR] : < 0.00000000000000022
##                                                
##                   Kappa : 0.6032               
##                                                
##  Mcnemar's Test P-Value : < 0.00000000000000022
##                                                
##             Sensitivity : 0.8639               
##             Specificity : 0.8214               
##          Pos Pred Value : 0.6144               
##          Neg Pred Value : 0.9482               
##              Prevalence : 0.2478               
##          Detection Rate : 0.2141               
##    Detection Prevalence : 0.3484               
##       Balanced Accuracy : 0.8426               
##                                                
##        'Positive' Class : yes                  
## 
myRoc <- roc(test$income_above_50k, predict(fit.xgb.tu.2, test, type="prob")[,2])
## Setting levels: control = yes, case = no
## Setting direction: controls < cases
plot(myRoc)

auc(myRoc)
## Area under the curve: 0.9256

Choice of Metric:

We chose ROC/AUC as our metric to determine model performance because this is a binary classification problem. Given that there are 3x more negative (<50K) observations, our priority was improving the true positive (sensitivity) rate of our model. We can most easily interpret our TP rate in terms of the ROC/AUC metric. The ROC curve is helpful in showing us our TP vs FP at many different cut offs (decision threshold) for classification.

Conlusion:

Applying PCA helped us find a signal in an otherwise noisy dataset. K-means unsupervised learning did not meaningfully assist us to make predictions. We were able to improve the amount of true positives in validating our model as a result of training on an a balanced training dataset.