setwd("C:/Users/victo/Downloads/ECON 4310/Exercise")
We are using various R packages that need to be installed and added. You might have to uncomment/run the chunk below. Alternatively, you may be able to install the missing packages through RStudio, selecting “packages” and “install”, entering the names.
#install.packages("invgamma")
library(invgamma)
#install.packages("matlib")
library(matlib)
#install.packages("MASS")
library(MASS)
#install.packages("MCMCpack")
library(MCMCpack) #for Inverse Wishart
## Warning: package 'MCMCpack' was built under R version 4.2.3
## Loading required package: coda
## Warning: package 'coda' was built under R version 4.2.3
## ##
## ## Markov Chain Monte Carlo Package (MCMCpack)
## ## Copyright (C) 2003-2023 Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park
## ##
## ## Support provided by the U.S. National Science Foundation
## ## (Grants SES-0350646 and SES-0350613)
## ##
##
## Attaching package: 'MCMCpack'
## The following objects are masked from 'package:invgamma':
##
## dinvgamma, rinvgamma
#install.packages("mvtnorm")
library(mvtnorm) #for multivariate Normal
#install.packages("HypergeoMat")
library(HypergeoMat) #for multivariate gamma function (VAR-MDD calculation)
## Warning: package 'HypergeoMat' was built under R version 4.2.3
data <- read.csv("R_UR_PCE.csv", header=TRUE)
FFR <- ts(data$FEDFUNDS, frequency=12, start=c(1959,1))
UR <- ts(data$UNRATE, frequency=12, start=c(1959,1))
PCE <- ts(data$PCEPILFE, frequency=12, start=c(1959,1))
INFL <- 1200*diff(log(PCE))
FFR <- window(FFR,c(1960,1),c(2020,1))
UR <- window(UR,c(1960,1),c(2020,1))
INFL <- window(INFL,c(1960,1),c(2020,1))
# Prepare data
FFR <- window(FFR,c(1984,1),c(2006,4))
UR <- window(UR,c(1984,1),c(2006,4))
INFL <- window(INFL,c(1984,1),c(2006,4))
Tall <- length(INFL) # total number of observations, starting 1984:M1
T1 <- (1+12) # estimation sample will start in T1 = 1985:Q1
p <- 2 # number of lags
n <- 3
yyall <- cbind(FFR,UR,INFL)
yy <- yyall[T1:Tall,]
xx <- matrix(1,nrow=(Tall-T1+1), ncol=(n*p+1))
for(i in 1:p){
# first column of xx is vector of 1s
# followed by y(t-1), y(t-2), ..., y(t-p)
xx[,(1+(i-1)*n+1):(1+i*n)] <- yyall[(T1-i):(Tall-i),]
}
Compute OLS/ML estimators of Phi and Sigma
Phi_hat <- solve(t(xx)%*%xx,t(xx)%*%yy)
Sigma_hat <- (t(yy)%*%yy - t(yy)%*%xx%*%Phi_hat)/(Tall-T1+1)
print(Phi_hat)
## FFR UR INFL
## [1,] 0.15078450 0.108953815 -1.70207812
## [2,] 1.34436825 -0.201572713 0.55127471
## [3,] -0.32194100 0.791665697 0.52755007
## [4,] 0.02134402 0.004869783 0.01666898
## [5,] -0.36252381 0.199668669 -0.26254317
## [6,] 0.29417067 0.181697060 -0.03099540
## [7,] 0.01442170 0.009764637 -0.04721704
print(Sigma_hat)
## FFR UR INFL
## FFR 0.034323148 -0.006268862 0.037896164
## UR -0.006268862 0.016746806 -0.001034543
## INFL 0.037896164 -0.001034543 1.824616397
IRFVARp <- function(Phi,Sigma_tr,sh_ind,Hmax){
n <- ncol(Phi)
k <- nrow(Phi)
p <- k/n
yy <- matrix(0, nrow=(Hmax+1), ncol=n )
# define xx without intercept
xt <- matrix(0, nrow=1, ncol=n*p)
# Impact effect
yy[1,] <- t(Sigma_tr[,sh_ind])
# loop to generate the impulse responses
xt[,1:n] <- yy[1,]
for(t in 2:(Hmax+1)){
epst <- rnorm(n, mean=1, sd=1)
ut <- Sigma_tr*epst
yy[t,] <- xt%*%Phi + ut
# update the x(t) vector -> x(t+1)
if(p > 1){
xt[,(n+1):(p*n)] <- xt[,1:((p-1)*n)]
xt[,1:n] <- yy[t,]}
else{
xt[,1:n] <- yy[t,]}
}
return(yy)
}
ForecastVARp <- function(Phi,Sigma_tr,sh_ind,Hmax){
n <- ncol(Phi)
k <- nrow(Phi)
p <- k/n
yy <- matrix(0, nrow=(Hmax+1), ncol=n )
# define xx without intercept
xt <- matrix(0, nrow=1, ncol=n*p)
# Impact effect
yy[1,] <- t(Sigma_tr[,sh_ind])
# loop to generate the impulse responses
xt[,1:n] <- yy[1,]
for(t in 2:(Hmax+1)){
epst <- rnorm(n, mean=1, sd=1)
ut <- Sigma_tr*epst
yy[t,] <- xt%*%Phi + ut
# update the x(t) vector -> x(t+1)
if(p > 1){
xt[,(n+1):(p*n)] <- xt[,1:((p-1)*n)]
xt[,1:n] <- yy[t,]}
else{
xt[,1:n] <- yy[t,]}
}
return(yy)
}
# recursive estimation
# forecast generation