# Factor
genotipo = gl(n = 6, k = 6, length = 36,
labels = paste0('gen', 1:6))
# Variable respuesta
set.seed(123)
PS = c(
rnorm(12, 1200, 120),
rnorm(12, 1500, 100),
rnorm(12, 1420, 250)
)
aleat = sample(36)
datos = data.frame(genotipo, PS)
head(datos)
## genotipo PS
## 1 gen1 1132.743
## 2 gen1 1172.379
## 3 gen1 1387.045
## 4 gen1 1208.461
## 5 gen1 1215.515
## 6 gen1 1405.808
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
ggplot(datos)+
aes(genotipo, PS)+
geom_boxplot()
mod1b = aov(PS ~ genotipo, datos)
smod1b = summary(mod1b)
shapiro.test(mod1b$residuals)
##
## Shapiro-Wilk normality test
##
## data: mod1b$residuals
## W = 0.98349, p-value = 0.8558
bartlett.test(mod1b$residuals, datos$genotipo)
##
## Bartlett test of homogeneity of variances
##
## data: mod1b$residuals and datos$genotipo
## Bartlett's K-squared = 12.401, df = 5, p-value = 0.02969
*Como se rechaza la hipotesis nula de igualdad de variazan se incumple el supuesto lo cual complica la interpretación.
mod1c =oneway.test(PS ~ genotipo, datos)
mod1c
##
## One-way analysis of means (not assuming equal variances)
##
## data: PS and genotipo
## F = 8.6764, num df = 5.000, denom df = 13.702, p-value = 0.0006918
Cuando se incumple normalidade igualdad de varianzas (Prueba de Kruskal para cuando no se cumplen los dos supuestos): permite comparar los tratamientos
*Analisis de varianza no parametrico para un diseño en arreglo factorial simple en arreglo completamente al azar
\[H_0: R1=R2=R3=R4=R5=R6=\]
mod1d = kruskal.test(PS, genotipo)
mod1d
##
## Kruskal-Wallis rank sum test
##
## data: PS and genotipo
## Kruskal-Wallis chi-squared = 17.204, df = 5, p-value = 0.004128
# library(PMCMR)
# posthoc.kruskal.nemenyi.test(PS, genotipo)
library(PMCMRplus)
## Warning: package 'PMCMRplus' was built under R version 4.2.3
kwAllPairsNemenyiTest(PS, genotipo)
##
## Pairwise comparisons using Tukey-Kramer-Nemenyi all-pairs test with Tukey-Dist approximation
## data: PS and genotipo
## gen1 gen2 gen3 gen4 gen5
## gen2 0.998 - - - -
## gen3 0.172 0.058 - - -
## gen4 0.443 0.205 0.995 - -
## gen5 0.807 0.533 0.883 0.993 -
## gen6 0.046 0.012 0.995 0.904 0.587
##
## P value adjustment method: single-step
## alternative hypothesis: two.sided
library(FSA)
## Warning: package 'FSA' was built under R version 4.2.3
## ## FSA v0.9.4. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
dunnTest(PS, genotipo)
## Dunn (1964) Kruskal-Wallis multiple comparison
## p-values adjusted with the Holm method.
## Comparison Z P.unadj P.adj
## 1 gen1 - gen2 0.4383973 0.6610983037 0.66109830
## 2 gen1 - gen3 -2.3563855 0.0184537565 0.22144508
## 3 gen2 - gen3 -2.7947828 0.0051934597 0.06751498
## 4 gen1 - gen4 -1.8357887 0.0663889146 0.66388915
## 5 gen2 - gen4 -2.2741860 0.0229548062 0.25250287
## 6 gen3 - gen4 0.5205968 0.6026476838 1.00000000
## 7 gen1 - gen5 -1.2603922 0.2075279011 1.00000000
## 8 gen2 - gen5 -1.6987895 0.0893588460 0.80422961
## 9 gen3 - gen5 1.0959932 0.2730817290 1.00000000
## 10 gen4 - gen5 0.5753965 0.5650232007 1.00000000
## 11 gen1 - gen6 -2.8769823 0.0040149814 0.05620974
## 12 gen2 - gen6 -3.3153796 0.0009151876 0.01372781
## 13 gen3 - gen6 -0.5205968 0.6026476838 1.00000000
## 14 gen4 - gen6 -1.0411936 0.2977857118 1.00000000
## 15 gen5 - gen6 -1.6165900 0.1059668029 0.84773442
rangos = rank(PS, ties.method = 'average')
rangos
## [1] 4 7 16 8 9 19 11 2 3 6 15 10 27 25 21 35 28 13 29 22 17 24 18 20 12
## [26] 1 32 23 5 36 26 14 34 33 31 30
boxplot(rangos ~ genotipo)
Se corre el analisis de varianza haciendo simulación,
library(RVAideMemoire)
## Warning: package 'RVAideMemoire' was built under R version 4.2.3
## *** Package RVAideMemoire v 0.9-81-2 ***
##
## Attaching package: 'RVAideMemoire'
## The following object is masked from 'package:FSA':
##
## se
perm.anova(PS ~ genotipo, data = datos, nperm = 999)
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|==== | 5%
|
|==== | 6%
|
|===== | 7%
|
|====== | 8%
|
|====== | 9%
|
|======= | 10%
|
|======== | 11%
|
|======== | 12%
|
|========= | 13%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 16%
|
|============ | 17%
|
|============= | 18%
|
|============= | 19%
|
|============== | 20%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 23%
|
|================= | 24%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 30%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 40%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 47%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 50%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 56%
|
|======================================== | 57%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 60%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 67%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 70%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 77%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 80%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 87%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 90%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 93%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 100%
## Permutation Analysis of Variance Table
##
## Response: PS
## 999 permutations
## Sum Sq Df Mean Sq F value Pr(>F)
## genotipo 627712 5 125542 5.3717 0.001 ***
## Residuals 701126 30 23371
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Rechaza la hipotesis nula, los genotipos son diferentes.