<- read_csv("Alimentro-Depurada.csv")
alimentro %>% head() alimentro
<- c(13.94, 15.30, 16.92, 14.89, 17.34, 17.43, 16.83, 15.61,
linea_a 16.95, 17.69, 15.16, 16.53, 17.22, 15.17, 16.63)
<-c(15.62, 13.84, 14.25, 12.79, 17.01, 16.92, 11.13, 13.72,
linea_b 14.26, 14.55, 14.11, 18.04, 12.17, 13.59, 13.81)
<- data.frame(area = c(29.2, 17.0, 28.9, 17.3, 13.8, 5.8, 27.5, 18.2, 27.6, 30.9,
area 32.8, 22.6, 15.3, 23.3, 12.4, 30.0, 19.5, 17.0, 18.7, 20.4,
18.6, 44.1, 17.9, 17.9, 30.0, 25.1, 24.3, 22.1, 21.8, 21.9))
%>% head() area
<- read_csv("Resultados_de_An_lisis_de_Laboratorio_Suelos_en_Colombia.csv") %>%
suelos select(-numfila) %>%
clean_names() %>%
select(cultivo, estado, drenaje,
ph = p_h_agua_suelo_2_5_1_0,
materia_org = materia_organica_mo_percent,
conductividad = conductividad_el_ctrica_ce_relacion_2_5_1_0_d_s_m,
cice = capacidad_de_intercambio_cationico_cice_suma_de_bases_cmol_kg) %>%
mutate(conductividad = as.numeric(conductividad)) %>%
filter(!estado %in% c("NO INDICA", "No indica"))
%>% head() suelos
%>%
suelos count(cultivo, sort = TRUE)