In this study, we intent to explore do people believe deepfakes and their sharing intentions of deepfake videos.
We pre-registerd our study in this -
Data sets can be found in our Github Repo -
## New names:
## Rows: 130 Columns: 261
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (261): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## New names:
## Rows: 131 Columns: 261
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (261): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `1P_R_IMPT` -> `1P_R_IMPT...27`
## • `1P_R_INTEREST` -> `1P_R_INTEREST...28`
## • `1P_R_FAMILIAR` -> `1P_R_FAMILIAR...29`
## • `1P_R_NOVEL` -> `1P_R_NOVEL...30`
## • `1P_R_SHARE` -> `1P_R_SHARE...31`
## • `1P_R_SHARE_REASONS` -> `1P_R_SHARE_REASONS...32`
## • `1P_R_SHARE_OTHER` -> `1P_R_SHARE_OTHER...33`
## • `1P_R_DNSHARE_REASONS` -> `1P_R_DNSHARE_REASONS...34`
## • `1P_R_DNSHARE_OTHER` -> `1P_R_DNSHARE_OTHER...35`
## • `2P_DF_IMPT` -> `2P_DF_IMPT...37`
## • `2P_DF_INTEREST` -> `2P_DF_INTEREST...38`
## • `2P_DF_FAMILIAR` -> `2P_DF_FAMILIAR...39`
## • `2P_DF_NOVEL` -> `2P_DF_NOVEL...40`
## • `2P_DF_SHARE` -> `2P_DF_SHARE...41`
## • `2P_DF_SHARE_REASONS` -> `2P_DF_SHARE_REASONS...42`
## • `2P_DF_SHARE_OTHER` -> `2P_DF_SHARE_OTHER...43`
## • `2P_DF_DNSHARE_REASON` -> `2P_DF_DNSHARE_REASON...44`
## • `2P_DF_DNSHARE_OTHER` -> `2P_DF_DNSHARE_OTHER...45`
## • `4P_DF_IMPT` -> `4P_DF_IMPT...47`
## • `4P_DF_INTEREST` -> `4P_DF_INTEREST...48`
## • `4P_DF_FAMILIAR` -> `4P_DF_FAMILIAR...49`
## • `4P_DF_NOVEL` -> `4P_DF_NOVEL...50`
## • `4P_DF_SHARE` -> `4P_DF_SHARE...51`
## • `4P_DF_SHARE_REASONS` -> `4P_DF_SHARE_REASONS...52`
## • `4P_DF_SHARE_OTHER` -> `4P_DF_SHARE_OTHER...53`
## • `4P_DF_DNSHARE_REASON` -> `4P_DF_DNSHARE_REASON...54`
## • `4P_DF_DNSHARE_OTHER` -> `4P_DF_DNSHARE_OTHER...55`
## • `5P_R_IMPT` -> `5P_R_IMPT...57`
## • `5P_R_INTEREST` -> `5P_R_INTEREST...58`
## • `5P_R_FAMILIAR` -> `5P_R_FAMILIAR...59`
## • `5P_R_NOVEL` -> `5P_R_NOVEL...60`
## • `5P_R_SHARE` -> `5P_R_SHARE...61`
## • `5P_R_SHARE_REASONS` -> `5P_R_SHARE_REASONS...62`
## • `5P_R_SHARE_OTHER` -> `5P_R_SHARE_OTHER...63`
## • `5P_R_DNSHARE_REASONS` -> `5P_R_DNSHARE_REASONS...64`
## • `5P_R_DNSHARE_OTHER` -> `5P_R_DNSHARE_OTHER...65`
## • `6P_DF_IMPT` -> `6P_DF_IMPT...67`
## • `6P_DF_INTEREST` -> `6P_DF_INTEREST...68`
## • `6P_DF_FAMILIAR` -> `6P_DF_FAMILIAR...69`
## • `6P_DF_NOVEL` -> `6P_DF_NOVEL...70`
## • `6P_DF_SHARE` -> `6P_DF_SHARE...71`
## • `6P_DF_SHARE_REASONS` -> `6P_DF_SHARE_REASONS...72`
## • `6P_DF_SHARE_OTHER` -> `6P_DF_SHARE_OTHER...73`
## • `6P_DF_DNSHARE_REASON` -> `6P_DF_DNSHARE_REASON...74`
## • `6P_DF_DNSHARE_OTHER` -> `6P_DF_DNSHARE_OTHER...75`
## • `7P_R_IMPT` -> `7P_R_IMPT...77`
## • `7P_R_INTEREST` -> `7P_R_INTEREST...78`
## • `7P_R_FAMILIAR` -> `7P_R_FAMILIAR...79`
## • `7P_R_NOVEL` -> `7P_R_NOVEL...80`
## • `7P_R_SHARE` -> `7P_R_SHARE...81`
## • `7P_R_SHARE_REASONS` -> `7P_R_SHARE_REASONS...82`
## • `7P_R_SHARE_OTHER` -> `7P_R_SHARE_OTHER...83`
## • `7P_R_DNSHARE_REASONS` -> `7P_R_DNSHARE_REASONS...84`
## • `7P_R_DNSHARE_OTHER` -> `7P_R_DNSHARE_OTHER...85`
## • `13P_DF_IMPT` -> `13P_DF_IMPT...87`
## • `13P_DF_INTEREST` -> `13P_DF_INTEREST...88`
## • `13P_DF_FAMILIAR` -> `13P_DF_FAMILIAR...89`
## • `13P_DF_NOVEL` -> `13P_DF_NOVEL...90`
## • `13P_DF_SHARE` -> `13P_DF_SHARE...91`
## • `13P_DF_SHARE_REASONS` -> `13P_DF_SHARE_REASONS...92`
## • `13P_DF_SHARE_OTHER` -> `13P_DF_SHARE_OTHER...93`
## • `13P_DF_DNSHARE_REASO` -> `13P_DF_DNSHARE_REASO...94`
## • `13P_DF_DNSHARE_OTHER` -> `13P_DF_DNSHARE_OTHER...95`
## • `15P_DF_IMPT` -> `15P_DF_IMPT...97`
## • `15P_DF_INTEREST` -> `15P_DF_INTEREST...98`
## • `15P_DF_FAMILIAR` -> `15P_DF_FAMILIAR...99`
## • `15P_DF_NOVEL` -> `15P_DF_NOVEL...100`
## • `15P_DF_SHARE` -> `15P_DF_SHARE...101`
## • `15P_DF_SHARE_REASONS` -> `15P_DF_SHARE_REASONS...102`
## • `15P_DF_SHARE_OTHER` -> `15P_DF_SHARE_OTHER...103`
## • `15P_DF_DNSHARE_REASO` -> `15P_DF_DNSHARE_REASO...104`
## • `15P_DF_DNSHARE_OTHER` -> `15P_DF_DNSHARE_OTHER...105`
## • `17P_R_IMPT` -> `17P_R_IMPT...107`
## • `17P_R_INTEREST` -> `17P_R_INTEREST...108`
## • `17P_R_FAMILIAR` -> `17P_R_FAMILIAR...109`
## • `17P_R_NOVEL` -> `17P_R_NOVEL...110`
## • `17P_R_SHARE` -> `17P_R_SHARE...111`
## • `17P_R_SHARE_REASONS` -> `17P_R_SHARE_REASONS...112`
## • `17P_R_SHARE_OTHER` -> `17P_R_SHARE_OTHER...113`
## • `17P_R_DNSHARE_REASON` -> `17P_R_DNSHARE_REASON...114`
## • `17P_R_DNSHARE_OTHER` -> `17P_R_DNSHARE_OTHER...115`
## • `19P_DF_IMPT` -> `19P_DF_IMPT...117`
## • `19P_DF_INTEREST` -> `19P_DF_INTEREST...118`
## • `19P_DF_FAMILIAR` -> `19P_DF_FAMILIAR...119`
## • `19P_DF_NOVEL` -> `19P_DF_NOVEL...120`
## • `19P_DF_SHARE` -> `19P_DF_SHARE...121`
## • `19P_DF_SHARE_REASONS` -> `19P_DF_SHARE_REASONS...122`
## • `19P_DF_SHARE_OTHER` -> `19P_DF_SHARE_OTHER...123`
## • `19P_DF_DNSHARE_REASO` -> `19P_DF_DNSHARE_REASO...124`
## • `19P_DF_DNSHARE_OTHER` -> `19P_DF_DNSHARE_OTHER...125`
## • `21P_R_IMPT` -> `21P_R_IMPT...127`
## • `21P_R_INTEREST` -> `21P_R_INTEREST...128`
## • `21P_R_FAMILIAR` -> `21P_R_FAMILIAR...129`
## • `21P_R_NOVEL` -> `21P_R_NOVEL...130`
## • `21P_R_SHARE` -> `21P_R_SHARE...131`
## • `21P_R_SHARE_REASONS` -> `21P_R_SHARE_REASONS...132`
## • `21P_R_SHARE_OTHER` -> `21P_R_SHARE_OTHER...133`
## • `21P_R_DNSHARE_REASON` -> `21P_R_DNSHARE_REASON...134`
## • `21P_R_DNSHARE_OTHER` -> `21P_R_DNSHARE_OTHER...135`
## • `23P_R_IMPT` -> `23P_R_IMPT...137`
## • `23P_R_INTEREST` -> `23P_R_INTEREST...138`
## • `23P_R_FAMILIAR` -> `23P_R_FAMILIAR...139`
## • `23P_R_NOVEL` -> `23P_R_NOVEL...140`
## • `23P_R_SHARE` -> `23P_R_SHARE...141`
## • `23P_R_SHARE_REASONS` -> `23P_R_SHARE_REASONS...142`
## • `23P_R_SHARE_OTHER` -> `23P_R_SHARE_OTHER...143`
## • `23P_R_DNSHARE_REASON` -> `23P_R_DNSHARE_REASON...144`
## • `23P_R_DNSHARE_OTHER` -> `23P_R_DNSHARE_OTHER...145`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...147`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...148`
## • `1P_R_IMPT` -> `1P_R_IMPT...150`
## • `1P_R_INTEREST` -> `1P_R_INTEREST...151`
## • `1P_R_FAMILIAR` -> `1P_R_FAMILIAR...152`
## • `1P_R_NOVEL` -> `1P_R_NOVEL...153`
## • `1P_R_SHARE` -> `1P_R_SHARE...154`
## • `1P_R_SHARE_REASONS` -> `1P_R_SHARE_REASONS...155`
## • `1P_R_SHARE_OTHER` -> `1P_R_SHARE_OTHER...156`
## • `1P_R_DNSHARE_REASONS` -> `1P_R_DNSHARE_REASONS...157`
## • `1P_R_DNSHARE_OTHER` -> `1P_R_DNSHARE_OTHER...158`
## • `2P_DF_IMPT` -> `2P_DF_IMPT...159`
## • `2P_DF_INTEREST` -> `2P_DF_INTEREST...160`
## • `2P_DF_FAMILIAR` -> `2P_DF_FAMILIAR...161`
## • `2P_DF_NOVEL` -> `2P_DF_NOVEL...162`
## • `2P_DF_SHARE` -> `2P_DF_SHARE...163`
## • `2P_DF_SHARE_REASONS` -> `2P_DF_SHARE_REASONS...164`
## • `2P_DF_SHARE_OTHER` -> `2P_DF_SHARE_OTHER...165`
## • `2P_DF_DNSHARE_REASON` -> `2P_DF_DNSHARE_REASON...166`
## • `2P_DF_DNSHARE_OTHER` -> `2P_DF_DNSHARE_OTHER...167`
## • `4P_DF_IMPT` -> `4P_DF_IMPT...168`
## • `4P_DF_INTEREST` -> `4P_DF_INTEREST...169`
## • `4P_DF_FAMILIAR` -> `4P_DF_FAMILIAR...170`
## • `4P_DF_NOVEL` -> `4P_DF_NOVEL...171`
## • `4P_DF_SHARE` -> `4P_DF_SHARE...172`
## • `4P_DF_SHARE_REASONS` -> `4P_DF_SHARE_REASONS...173`
## • `4P_DF_SHARE_OTHER` -> `4P_DF_SHARE_OTHER...174`
## • `4P_DF_DNSHARE_REASON` -> `4P_DF_DNSHARE_REASON...175`
## • `4P_DF_DNSHARE_OTHER` -> `4P_DF_DNSHARE_OTHER...176`
## • `5P_R_IMPT` -> `5P_R_IMPT...177`
## • `5P_R_INTEREST` -> `5P_R_INTEREST...178`
## • `5P_R_FAMILIAR` -> `5P_R_FAMILIAR...179`
## • `5P_R_NOVEL` -> `5P_R_NOVEL...180`
## • `5P_R_SHARE` -> `5P_R_SHARE...181`
## • `5P_R_SHARE_REASONS` -> `5P_R_SHARE_REASONS...182`
## • `5P_R_SHARE_OTHER` -> `5P_R_SHARE_OTHER...183`
## • `5P_R_DNSHARE_REASONS` -> `5P_R_DNSHARE_REASONS...184`
## • `5P_R_DNSHARE_OTHER` -> `5P_R_DNSHARE_OTHER...185`
## • `6P_DF_IMPT` -> `6P_DF_IMPT...186`
## • `6P_DF_INTEREST` -> `6P_DF_INTEREST...187`
## • `6P_DF_FAMILIAR` -> `6P_DF_FAMILIAR...188`
## • `6P_DF_NOVEL` -> `6P_DF_NOVEL...189`
## • `6P_DF_SHARE` -> `6P_DF_SHARE...190`
## • `6P_DF_SHARE_REASONS` -> `6P_DF_SHARE_REASONS...191`
## • `6P_DF_SHARE_OTHER` -> `6P_DF_SHARE_OTHER...192`
## • `6P_DF_DNSHARE_REASON` -> `6P_DF_DNSHARE_REASON...193`
## • `6P_DF_DNSHARE_OTHER` -> `6P_DF_DNSHARE_OTHER...194`
## • `7P_R_IMPT` -> `7P_R_IMPT...195`
## • `7P_R_INTEREST` -> `7P_R_INTEREST...196`
## • `7P_R_FAMILIAR` -> `7P_R_FAMILIAR...197`
## • `7P_R_NOVEL` -> `7P_R_NOVEL...198`
## • `7P_R_SHARE` -> `7P_R_SHARE...199`
## • `7P_R_SHARE_REASONS` -> `7P_R_SHARE_REASONS...200`
## • `7P_R_SHARE_OTHER` -> `7P_R_SHARE_OTHER...201`
## • `7P_R_DNSHARE_REASONS` -> `7P_R_DNSHARE_REASONS...202`
## • `7P_R_DNSHARE_OTHER` -> `7P_R_DNSHARE_OTHER...203`
## • `13P_DF_IMPT` -> `13P_DF_IMPT...204`
## • `13P_DF_INTEREST` -> `13P_DF_INTEREST...205`
## • `13P_DF_FAMILIAR` -> `13P_DF_FAMILIAR...206`
## • `13P_DF_NOVEL` -> `13P_DF_NOVEL...207`
## • `13P_DF_SHARE` -> `13P_DF_SHARE...208`
## • `13P_DF_SHARE_REASONS` -> `13P_DF_SHARE_REASONS...209`
## • `13P_DF_SHARE_OTHER` -> `13P_DF_SHARE_OTHER...210`
## • `13P_DF_DNSHARE_REASO` -> `13P_DF_DNSHARE_REASO...211`
## • `13P_DF_DNSHARE_OTHER` -> `13P_DF_DNSHARE_OTHER...212`
## • `15P_DF_IMPT` -> `15P_DF_IMPT...213`
## • `15P_DF_INTEREST` -> `15P_DF_INTEREST...214`
## • `15P_DF_FAMILIAR` -> `15P_DF_FAMILIAR...215`
## • `15P_DF_NOVEL` -> `15P_DF_NOVEL...216`
## • `15P_DF_SHARE` -> `15P_DF_SHARE...217`
## • `15P_DF_SHARE_REASONS` -> `15P_DF_SHARE_REASONS...218`
## • `15P_DF_SHARE_OTHER` -> `15P_DF_SHARE_OTHER...219`
## • `15P_DF_DNSHARE_REASO` -> `15P_DF_DNSHARE_REASO...220`
## • `15P_DF_DNSHARE_OTHER` -> `15P_DF_DNSHARE_OTHER...221`
## • `17P_R_IMPT` -> `17P_R_IMPT...222`
## • `17P_R_INTEREST` -> `17P_R_INTEREST...223`
## • `17P_R_FAMILIAR` -> `17P_R_FAMILIAR...224`
## • `17P_R_NOVEL` -> `17P_R_NOVEL...225`
## • `17P_R_SHARE` -> `17P_R_SHARE...226`
## • `17P_R_SHARE_REASONS` -> `17P_R_SHARE_REASONS...227`
## • `17P_R_SHARE_OTHER` -> `17P_R_SHARE_OTHER...228`
## • `17P_R_DNSHARE_REASON` -> `17P_R_DNSHARE_REASON...229`
## • `17P_R_DNSHARE_OTHER` -> `17P_R_DNSHARE_OTHER...230`
## • `19P_DF_IMPT` -> `19P_DF_IMPT...231`
## • `19P_DF_INTEREST` -> `19P_DF_INTEREST...232`
## • `19P_DF_FAMILIAR` -> `19P_DF_FAMILIAR...233`
## • `19P_DF_NOVEL` -> `19P_DF_NOVEL...234`
## • `19P_DF_SHARE` -> `19P_DF_SHARE...235`
## • `19P_DF_SHARE_REASONS` -> `19P_DF_SHARE_REASONS...236`
## • `19P_DF_SHARE_OTHER` -> `19P_DF_SHARE_OTHER...237`
## • `19P_DF_DNSHARE_REASO` -> `19P_DF_DNSHARE_REASO...238`
## • `19P_DF_DNSHARE_OTHER` -> `19P_DF_DNSHARE_OTHER...239`
## • `21P_R_IMPT` -> `21P_R_IMPT...240`
## • `21P_R_INTEREST` -> `21P_R_INTEREST...241`
## • `21P_R_FAMILIAR` -> `21P_R_FAMILIAR...242`
## • `21P_R_NOVEL` -> `21P_R_NOVEL...243`
## • `21P_R_SHARE` -> `21P_R_SHARE...244`
## • `21P_R_SHARE_REASONS` -> `21P_R_SHARE_REASONS...245`
## • `21P_R_SHARE_OTHER` -> `21P_R_SHARE_OTHER...246`
## • `21P_R_DNSHARE_REASON` -> `21P_R_DNSHARE_REASON...247`
## • `21P_R_DNSHARE_OTHER` -> `21P_R_DNSHARE_OTHER...248`
## • `23P_R_IMPT` -> `23P_R_IMPT...249`
## • `23P_R_INTEREST` -> `23P_R_INTEREST...250`
## • `23P_R_FAMILIAR` -> `23P_R_FAMILIAR...251`
## • `23P_R_NOVEL` -> `23P_R_NOVEL...252`
## • `23P_R_SHARE` -> `23P_R_SHARE...253`
## • `23P_R_SHARE_REASONS` -> `23P_R_SHARE_REASONS...254`
## • `23P_R_SHARE_OTHER` -> `23P_R_SHARE_OTHER...255`
## • `23P_R_DNSHARE_REASON` -> `23P_R_DNSHARE_REASON...256`
## • `23P_R_DNSHARE_OTHER` -> `23P_R_DNSHARE_OTHER...257`
The influence of believing and sharing political videos :
#Likert scale has
likely_values <- c(
"very unlikely",
"moderately unlikely",
"slightly unlikely",
"slightly likely",
"moderately likely",
"very likely"
)
consume_values <- c(
"Less than 1 hour per day",
"1-2 hours per day",
"2-3 hours per day",
"3-4 hours per day",
"5+ hours per day"
)
likley_shory_values <- c("Very unlikely",
"Unlikely",
"Neither likely nor unlikely",
"Likely",
"Very likely")
knowledgable_values <- c(
"Very unknowledgeable",
"Somewhat Unknowledgeable",
"Neither",
"Somewhat Knowledgeable",
"Very knowledgeable"
)
easy_levels <- c("Very difficult",
"Difficult",
"Neither difficult nor easy",
"Easy",
"Very easy")
# Clean Political data frame separating video into deepfake/real, share likely values and,
clean_data_pol <- data_raw_pol |> filter(Finished == "True") |>
select(ResponseId, matches("_DF_"), matches("_R_")) |>
pivot_longer(-ResponseId, values_drop_na = TRUE) |>
separate(name, c("video", "fake", "question", "question_detail")) |>
group_by(ResponseId) |>
mutate(condition = if_else(any(grepl("BELIEVE", question)), "Treatment", "Control")) |>
ungroup() |>
filter(question == "SHARE", question_detail != "REASONS", question_detail != "OTHER") |>
select(-question_detail) |>
pivot_wider(names_from = question, values_from = value) |>
unite("video", video, fake) |>
mutate(
SHARE = str_to_lower(SHARE),
share = ordered(SHARE,levels = likely_values),
share_numerical = as.numeric(share)
) |>
separate(video, c("video", "type")) |>
mutate(type = if_else(type == "R", "Real", "Deepfake")) |>
select(-SHARE)
## Warning: Expected 4 pieces. Additional pieces discarded in 1621 rows [6, 12, 18, 24, 30,
## 36, 42, 48, 54, 60, 66, 72, 79, 86, 93, 100, 107, 114, 121, 122, ...].
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 756 rows [73, 80, 87, 94,
## 101, 108, 115, 123, 130, 137, 144, 152, 232, 239, 246, 253, 260, 267, 274, 281,
## ...].
head(clean_data_pol)
## # A tibble: 6 × 6
## ResponseId video type condition share share_numerical
## <chr> <chr> <chr> <chr> <ord> <dbl>
## 1 R_ezxZ4Fh2teO3yCZ 2P Deepfake Control very unlikely 1
## 2 R_ezxZ4Fh2teO3yCZ 4P Deepfake Control slightly unlikely 3
## 3 R_ezxZ4Fh2teO3yCZ 6P Deepfake Control very unlikely 1
## 4 R_ezxZ4Fh2teO3yCZ 13P Deepfake Control slightly unlikely 3
## 5 R_ezxZ4Fh2teO3yCZ 15P Deepfake Control very unlikely 1
## 6 R_ezxZ4Fh2teO3yCZ 19P Deepfake Control very unlikely 1
clean_data_ent <- data_raw_ent |> filter(Finished == "True") |>
select(ResponseId, matches("_DF_"), matches("_R_")) |>
pivot_longer(-ResponseId, values_drop_na = TRUE) |>
separate(name, c("video", "fake", "question", "question_detail")) |>
group_by(ResponseId) |>
mutate(condition = if_else(any(grepl("BELIEVE", question)), "Treatment", "Control")) |>
ungroup() |>
filter(question == "SHARE", question_detail != "REASONS", question_detail != "OTHER") |>
select(-question_detail) |>
pivot_wider(names_from = question, values_from = value) |>
unite("video", video, fake) |>
mutate(
SHARE = str_to_lower(SHARE),
share = ordered(SHARE,levels = likely_values),
share_numerical = as.numeric(share)
) |>
separate(video, c("video", "type")) |>
mutate(type = if_else(type == "R", "Real", "Deepfake")) |>
select(-SHARE)
## Warning: Expected 4 pieces. Additional pieces discarded in 1610 rows [7, 14, 21, 28, 35,
## 42, 49, 56, 63, 70, 77, 84, 90, 96, 102, 108, 114, 120, 126, 132, ...].
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 780 rows [1, 8, 15, 22,
## 29, 36, 43, 50, 57, 64, 71, 78, 230, 237, 244, 251, 258, 265, 272, 279, ...].
head(clean_data_ent)
## # A tibble: 6 × 6
## ResponseId video type condition share share_numerical
## <chr> <chr> <chr> <chr> <ord> <dbl>
## 1 R_3Jh3kj1y3kaZbyl 8E Deepfake Treatment very unlikely 1
## 2 R_3Jh3kj1y3kaZbyl 10E Deepfake Treatment moderately unlikely 2
## 3 R_3Jh3kj1y3kaZbyl 12E Deepfake Treatment very unlikely 1
## 4 R_3Jh3kj1y3kaZbyl 14E Deepfake Treatment very unlikely 1
## 5 R_3Jh3kj1y3kaZbyl 16E Deepfake Treatment very unlikely 1
## 6 R_3Jh3kj1y3kaZbyl 24E Deepfake Treatment moderately unlikely 2
library(stringr)
All_combined_pol_ent <- rbind( clean_data_ent,clean_data_pol)
All_videos_combined<- All_combined_pol_ent |>
mutate (Videotype = ifelse(str_detect (All_combined_pol_ent$video, "P"), "Political", "Entertainment"))
tail (All_videos_combined)
## # A tibble: 6 × 7
## ResponseId video type condition share share_numerical Videotype
## <chr> <chr> <chr> <chr> <ord> <dbl> <chr>
## 1 R_3lukBqCKhPAkNjn 1P Real Control very likely 6 Political
## 2 R_3lukBqCKhPAkNjn 5P Real Control slightly un… 3 Political
## 3 R_3lukBqCKhPAkNjn 7P Real Control slightly un… 3 Political
## 4 R_3lukBqCKhPAkNjn 17P Real Control very likely 6 Political
## 5 R_3lukBqCKhPAkNjn 21P Real Control slightly li… 4 Political
## 6 R_3lukBqCKhPAkNjn 23P Real Control very unlike… 1 Political
Analyzing the variance of sharing likely behavior when there is a deepfake believablity question
#---------Political videos---------
clean_data_pol |>
group_by(condition,type) |>
summarise(share = mean(share_numerical))
## `summarise()` has grouped output by 'condition'. You can override using the
## `.groups` argument.
## # A tibble: 4 × 3
## # Groups: condition [2]
## condition type share
## <chr> <chr> <dbl>
## 1 Control Deepfake 1.54
## 2 Control Real 1.81
## 3 Treatment Deepfake 1.70
## 4 Treatment Real 1.71
clean_data_pol |> ggplot(aes(condition,share_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
#---------Entertainment videos-----------
clean_data_ent |>
group_by(condition,type) |>
summarise(share = mean(share_numerical))
## `summarise()` has grouped output by 'condition'. You can override using the
## `.groups` argument.
## # A tibble: 4 × 3
## # Groups: condition [2]
## condition type share
## <chr> <chr> <dbl>
## 1 Control Deepfake 1.80
## 2 Control Real 2.32
## 3 Treatment Deepfake 1.57
## 4 Treatment Real 1.90
clean_data_ent |> ggplot(aes(condition,share_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
clean_data_ent |>
group_by(condition,type) |>
summarise(share = mean(share_numerical))
## `summarise()` has grouped output by 'condition'. You can override using the
## `.groups` argument.
## # A tibble: 4 × 3
## # Groups: condition [2]
## condition type share
## <chr> <chr> <dbl>
## 1 Control Deepfake 1.80
## 2 Control Real 2.32
## 3 Treatment Deepfake 1.57
## 4 Treatment Real 1.90
clean_data_ent |> ggplot(aes(condition,share_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
# ----- All video types ------------------
All_videos_combined |>
group_by(condition,type, Videotype ) |>
summarise(share = mean(share_numerical))
## `summarise()` has grouped output by 'condition', 'type'. You can override using
## the `.groups` argument.
## # A tibble: 8 × 4
## # Groups: condition, type [4]
## condition type Videotype share
## <chr> <chr> <chr> <dbl>
## 1 Control Deepfake Entertainment 1.80
## 2 Control Deepfake Political 1.54
## 3 Control Real Entertainment 2.37
## 4 Control Real Political 1.84
## 5 Treatment Deepfake Entertainment 1.57
## 6 Treatment Deepfake Political 1.70
## 7 Treatment Real Entertainment 1.93
## 8 Treatment Real Political 1.72
All_videos_combined |> ggplot(aes(condition,share_numerical)) +
# facet_wrap(vars(video)) +
stat_summary(
fun.data = mean_cl_boot,
geom = "pointrange",
shape = 21,
fill = "white"
)
#-------1-One way ANOVA -----------------
pol_oneway <- aov(share_numerical ~ condition, data = clean_data_pol)
summary(pol_oneway)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 0.4 0.424 0.326 0.568
## Residuals 1534 1993.2 1.299
#----------2-Two way ANOVA without interactions----------
#ANOVA Two way without interactions
pol_twoway_no_interactions <- aov (share_numerical ~ type + condition,
data= clean_data_pol)
summary (pol_twoway_no_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 8.0 8.021 6.194 0.0129 *
## condition 1 0.4 0.424 0.327 0.5673
## Residuals 1533 1985.2 1.295
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-----------3-Two way ANOVA with Interactions----------------
#ANOVA 2 way with interactions
pol_twoway_with_interactions <- aov (share_numerical ~type * condition,
data=clean_data_pol)
summary ( pol_twoway_with_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 8.0 8.021 6.209 0.0128 *
## condition 1 0.4 0.424 0.328 0.5668
## type:condition 1 5.9 5.910 4.574 0.0326 *
## Residuals 1532 1979.3 1.292
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-------1-One way ANOVA -----------------
ent_oneway <- aov(share_numerical ~ condition, data = clean_data_ent)
summary(ent_oneway)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 40.3 40.29 21.2 4.46e-06 ***
## Residuals 1546 2937.5 1.90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#----------2-Two way ANOVA without interactions----------
#ANOVA Two way without interactions
ent_twoway_no_interactions <- aov (share_numerical ~ type + condition,
data= clean_data_ent)
summary (ent_twoway_no_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 70.8 70.78 38.14 8.39e-10 ***
## condition 1 40.3 40.29 21.71 3.44e-06 ***
## Residuals 1545 2866.8 1.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-----------3-Two way ANOVA with Interactions----------------
#ANOVA 2 way with interactions
ent_twoway_with_interactions <- aov (share_numerical ~type * condition,
data=clean_data_ent)
summary ( ent_twoway_with_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 70.8 70.78 38.163 8.31e-10 ***
## condition 1 40.3 40.29 21.726 3.42e-06 ***
## type:condition 1 3.3 3.31 1.784 0.182
## Residuals 1544 2863.5 1.85
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-------1-One way ANOVA -----------------
combined_oneway <- aov(share_numerical ~ condition, data = All_videos_combined)
summary(combined_oneway)
## Df Sum Sq Mean Sq F value Pr(>F)
## condition 1 16 15.765 9.74 0.00182 **
## Residuals 3082 4989 1.619
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#----------2-Two way ANOVA without interactions----------
#ANOVA Two way without interactions
combined_twoway_no_interactions <- aov (share_numerical ~ type + condition,
data= All_videos_combined)
summary (combined_twoway_no_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 63 63.35 39.627 3.51e-10 ***
## condition 1 16 15.77 9.862 0.0017 **
## Residuals 3081 4925 1.60
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#-----------3-Two way ANOVA with Interactions----------------
#ANOVA 2 way with interactions
combined_twoway_with_interactions <- aov (share_numerical ~type * condition,
data=All_videos_combined)
summary ( combined_twoway_with_interactions)
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 63 63.35 39.685 3.41e-10 ***
## condition 1 16 15.77 9.876 0.00169 **
## type:condition 1 9 8.75 5.482 0.01927 *
## Residuals 3080 4916 1.60
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Combined being political and entertainment effect
combined_twoway_without_interactions_videotype <-
aov (share_numerical ~type + Videotype+ condition,
data=All_videos_combined)
summary ( combined_twoway_without_interactions_videotype )
## Df Sum Sq Mean Sq F value Pr(>F)
## type 1 63 63.35 39.90 3.06e-10 ***
## Videotype 1 34 34.45 21.70 3.33e-06 ***
## condition 1 16 16.27 10.25 0.00138 **
## Residuals 3080 4890 1.59
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# One way
library (lsr)
# Eta sqr one way
Eta_oneway <-etaSquared(pol_oneway)
print (Eta_oneway)
## eta.sq eta.sq.part
## condition 0.0002126591 0.0002126591
#Eta sqr for twoway without interactions
Eta_twoway_nointeraction<-etaSquared(pol_twoway_no_interactions)
print(Eta_twoway_nointeraction)
## eta.sq eta.sq.part
## type 0.0040235686 0.0040244245
## condition 0.0002126591 0.0002135182
Eta_twoway_with_interaction<-etaSquared(pol_twoway_with_interactions)
print(Eta_twoway_with_interaction)
## eta.sq eta.sq.part
## type 0.0040235686 0.0040363927
## condition 0.0002126591 0.0002141556
## type:condition 0.0029644487 0.0029770602
#Clean Political data frame to explore the effect of measured other variables
Exploratory_data<- read.csv("C:/Users/Dell/OneDrive/Documents/CREST Postdoc/Deepfakes Experiment/Analysis/Study_1aPolitical/Study1_Political_Control_Treament.csv")
individual_data_pol <- data_raw_pol |> filter(Finished == "True") |>
mutate(Duration = as.numeric(`Duration (in seconds)`),
AGE = as.numeric(AGE),
BROWSE_INTERNET = ordered(BROWSE_INTERNET, levels = consume_values),
USE_SNS = ordered(USE_SNS, levels = consume_values),
WATCHING_BEHAVIOR = ordered(WATCHING_BEHAVIOR, levels = likley_shory_values),
SHARING_BEHAVIOR = ordered(SHARING_BEHAVIOR, levels = likley_shory_values),
KNOW_DEEPFAKE = KNOW_DEEPFAKE == "Yes",
EXP_CREATE_DF = EXP_CREATE_DF == "Yes",
KNOW_CREATE_DF = ordered(KNOW_CREATE_DF, levels = knowledgable_values),
EASE_CREATE_DF = ordered(EASE_CREATE_DF, levels = easy_levels)
# KNOW_CREATE_DF = KNOW_CREATE_DF == "Yes"
) |>
select(
ResponseId,
Duration,
AGE,
BROWSE_INTERNET,
USE_SNS,
SNS_PLATFORM_USE,
WATCHING_BEHAVIOR,
SHARING_BEHAVIOR,
KNOW_DEEPFAKE,
KNOW_CREATE_DF,
EXP_CREATE_DF,
EASE_CREATE_DF
) |> mutate(
SNS_PLATFORM_USE = strsplit(SNS_PLATFORM_USE,split = ","),
value = TRUE
) |>
unnest() |>
mutate(SNS_PLATFORM_USE = paste0("Plat_",SNS_PLATFORM_USE)) |>
pivot_wider(names_from = SNS_PLATFORM_USE, values_fill = FALSE)
## Warning: `cols` is now required when using `unnest()`.
## ℹ Please use `cols = c(SNS_PLATFORM_USE)`.
head(individual_data_pol)
## # A tibble: 6 × 29
## ResponseId Duration AGE BROWSE_INTERNET USE_SNS WATCHING_BEHAVIOR
## <chr> <dbl> <dbl> <ord> <ord> <ord>
## 1 R_ezxZ4Fh2teO3yCZ 546 25 3-4 hours per day 2-3 hour… Very likely
## 2 R_oXNZs9xxIElDLOh 826 23 5+ hours per day 3-4 hour… Very likely
## 3 R_sHFekJJgmMVPn2N 564 25 5+ hours per day 5+ hours… Very likely
## 4 R_wRA5rgVjq1efbt7 979 30 2-3 hours per day Less tha… Likely
## 5 R_1NkXnrpmhSPr3ZX 545 22 3-4 hours per day 1-2 hour… Very likely
## 6 R_2CEbMiHBHh4LB4T 637 30 5+ hours per day 1-2 hour… Very likely
## # ℹ 23 more variables: SHARING_BEHAVIOR <ord>, KNOW_DEEPFAKE <lgl>,
## # KNOW_CREATE_DF <ord>, EXP_CREATE_DF <lgl>, EASE_CREATE_DF <ord>,
## # Plat_YouTube <lgl>, Plat_WhatsApp <lgl>, Plat_TikTok <lgl>,
## # Plat_Snapchat <lgl>, Plat_Reddit <lgl>, `Plat_Microsoft Teams` <lgl>,
## # Plat_LinkedIn <lgl>, Plat_Facebook <lgl>, Plat_Instagram <lgl>,
## # Plat_Messenger <lgl>, Plat_Twitter <lgl>, Plat_Pinterest <lgl>,
## # Plat_Quora <lgl>, Plat_Telegram <lgl>, Plat_WeChat <lgl>, …
Note that the echo = FALSE parameter was added to the
code chunk to prevent printing of the R code that generated the
plot.