7.2

library(mlbench)
set.seed(34)
trainingData <- mlbench.friedman1(200, sd = 1)

trainingData$x
##               [,1]         [,2]        [,3]       [,4]         [,5]
##   [1,] 0.444768541 0.0491703867 0.368916968 0.09420248 0.9574439991
##   [2,] 0.998540404 0.7377619252 0.342259319 0.90469829 0.0902387861
##   [3,] 0.884893993 0.3621865171 0.204417247 0.15297192 0.6138568367
##   [4,] 0.238425959 0.9007802284 0.138549710 0.38504523 0.8973691536
##   [5,] 0.227313807 0.6280596920 0.881220208 0.51938871 0.4614294693
##   [6,] 0.847769418 0.0789131550 0.153981640 0.72946379 0.5377695030
##   [7,] 0.282561733 0.8352296567 0.030182170 0.61709185 0.5845064647
##   [8,] 0.717608585 0.0007378496 0.871266484 0.65195225 0.0030892033
##   [9,] 0.396051199 0.2195744149 0.815551894 0.40538081 0.5927632796
##  [10,] 0.574659499 0.8168590870 0.791370922 0.43878356 0.4325678525
##  [11,] 0.324377608 0.9417869952 0.395270071 0.87039433 0.4458680137
##  [12,] 0.439419711 0.2315778644 0.440494188 0.34865757 0.6852223438
##  [13,] 0.748768697 0.0644139852 0.700183252 0.99500739 0.5209169432
##  [14,] 0.046812724 0.1256532029 0.513418385 0.38181832 0.4461647172
##  [15,] 0.197936578 0.4618988184 0.448223552 0.50821137 0.2313842780
##  [16,] 0.811761832 0.9715669921 0.932230789 0.85840135 0.6838182241
##  [17,] 0.856969941 0.9831968301 0.911715439 0.76371968 0.4088150410
##  [18,] 0.015575713 0.9240180948 0.386420507 0.11657560 0.5894136932
##  [19,] 0.497023704 0.9498920620 0.512469367 0.61062973 0.9484871416
##  [20,] 0.493202718 0.9081235141 0.317971562 0.39507446 0.7964035347
##  [21,] 0.343518213 0.6365828402 0.606231719 0.04710814 0.3049227316
##  [22,] 0.885414216 0.8040895669 0.896320121 0.32830102 0.4683117913
##  [23,] 0.763962795 0.6458910676 0.601845442 0.10770140 0.2152711444
##  [24,] 0.223158354 0.1260052160 0.521635279 0.77432076 0.0110986503
##  [25,] 0.428553257 0.0126592580 0.229430367 0.98228303 0.7261406907
##  [26,] 0.962311991 0.9641884365 0.730220835 0.20339069 0.9138799908
##  [27,] 0.852263517 0.6305754054 0.269333133 0.38438750 0.6587024487
##  [28,] 0.725295438 0.7225274001 0.223627059 0.48684929 0.7913433237
##  [29,] 0.655883775 0.4519846092 0.228891338 0.70200926 0.1294506867
##  [30,] 0.538854275 0.5118083574 0.799164373 0.22703794 0.2028152633
##  [31,] 0.912512446 0.7497878931 0.884252719 0.22787423 0.4062946066
##  [32,] 0.854506270 0.9948555343 0.341544044 0.50874327 0.2879803006
##  [33,] 0.507669847 0.8450220823 0.012610905 0.70538338 0.4425005966
##  [34,] 0.417403751 0.3715221158 0.741862779 0.06189380 0.5203055860
##  [35,] 0.319385502 0.5183500256 0.209970027 0.19381778 0.9803088338
##  [36,] 0.050905606 0.4532380477 0.998373389 0.32080408 0.1997841180
##  [37,] 0.032689196 0.3586525710 0.146905211 0.73042228 0.6740772719
##  [38,] 0.543507183 0.9193158848 0.821558192 0.88503577 0.3337999356
##  [39,] 0.389838133 0.3780508987 0.100127387 0.48458875 0.2343060367
##  [40,] 0.597955467 0.9223278852 0.799427686 0.26862640 0.8049633363
##  [41,] 0.062913177 0.4104067110 0.743223988 0.48279231 0.2537052869
##  [42,] 0.051205630 0.3404404137 0.679158788 0.93524023 0.4218629759
##  [43,] 0.994554141 0.7824692673 0.970845583 0.10933371 0.3353833051
##  [44,] 0.665415152 0.8889030213 0.053967729 0.41526196 0.3671296954
##  [45,] 0.139641646 0.9570748035 0.891521180 0.21892298 0.8216980875
##  [46,] 0.676683487 0.6963766955 0.945666182 0.41500226 0.2678030753
##  [47,] 0.077136747 0.8721398283 0.050521298 0.86125750 0.5854289632
##  [48,] 0.971863421 0.0488422054 0.620843122 0.38353413 0.7737276729
##  [49,] 0.663357329 0.1133197579 0.325368669 0.45994958 0.2000149002
##  [50,] 0.901817372 0.6957448327 0.917921318 0.07167142 0.2474781023
##  [51,] 0.782706988 0.3046227591 0.832583969 0.49118711 0.5576036857
##  [52,] 0.315006143 0.0264379731 0.342809462 0.08257746 0.1281603670
##  [53,] 0.184207101 0.4358237558 0.823976185 0.41370897 0.8460202492
##  [54,] 0.544767941 0.7832784902 0.693698988 0.14805924 0.2115339858
##  [55,] 0.307176637 0.5582088544 0.350257230 0.45919853 0.6840995164
##  [56,] 0.392564248 0.4424935116 0.858782122 0.28315763 0.8281292974
##  [57,] 0.405407821 0.0086052949 0.084069085 0.22397520 0.7180219283
##  [58,] 0.297241808 0.3516091432 0.681246782 0.93091833 0.6196570857
##  [59,] 0.878596609 0.3391918447 0.004850209 0.27491438 0.8340926594
##  [60,] 0.134682704 0.7983221468 0.571066241 0.04093563 0.1759040013
##  [61,] 0.212395017 0.1316446301 0.593240862 0.82753743 0.8089628755
##  [62,] 0.671838924 0.8706680990 0.149602911 0.27793165 0.2466843172
##  [63,] 0.887044479 0.9989109151 0.740051109 0.79067137 0.7774439163
##  [64,] 0.967587590 0.7951548318 0.742139631 0.93636348 0.1139824402
##  [65,] 0.110956672 0.3390305708 0.887193116 0.32945714 0.2341976862
##  [66,] 0.652666080 0.1806266503 0.470756157 0.92242981 0.1285020960
##  [67,] 0.498635186 0.4911098506 0.332094103 0.07590527 0.3382013026
##  [68,] 0.864985135 0.0038336336 0.198297722 0.54925251 0.6465511213
##  [69,] 0.766760023 0.7426390881 0.833291957 0.46037071 0.9621582825
##  [70,] 0.052414103 0.9524270166 0.855815382 0.34961778 0.6145240299
##  [71,] 0.308068041 0.7961057469 0.612479734 0.27839692 0.8219093538
##  [72,] 0.320141932 0.8112413019 0.025949088 0.68061617 0.3727320936
##  [73,] 0.571202859 0.9321366083 0.082974488 0.96122229 0.5668621503
##  [74,] 0.900813500 0.2702452699 0.261115218 0.15666676 0.4113571390
##  [75,] 0.523988310 0.3259943670 0.830752086 0.25165417 0.4929841061
##  [76,] 0.228802189 0.7386499224 0.032324913 0.25156912 0.3693464668
##  [77,] 0.547581981 0.3158599921 0.251300620 0.37244229 0.1813268836
##  [78,] 0.670443604 0.4074007007 0.754071520 0.57308828 0.3209288660
##  [79,] 0.490485659 0.8959853132 0.910069087 0.04176620 0.0002780033
##  [80,] 0.425974223 0.6567709954 0.238825056 0.71085959 0.9736491914
##  [81,] 0.244999713 0.1872989838 0.330197217 0.94824584 0.2898637550
##  [82,] 0.975494381 0.2871816973 0.020322232 0.09457274 0.2145658007
##  [83,] 0.276083698 0.4675739042 0.263259275 0.90930949 0.6434848479
##  [84,] 0.193209777 0.2697519700 0.661962211 0.21348130 0.2150562122
##  [85,] 0.009662087 0.6180296263 0.351023349 0.13273282 0.9390394876
##  [86,] 0.033046125 0.3926116971 0.697186010 0.18704815 0.5308191765
##  [87,] 0.036393601 0.7335632718 0.715696034 0.54884754 0.3867252860
##  [88,] 0.761883414 0.2870064350 0.295105996 0.61629910 0.4575986047
##  [89,] 0.450880646 0.5854928258 0.157046239 0.49925120 0.1581427869
##  [90,] 0.478382837 0.4932246460 0.451003641 0.73200803 0.5146277505
##  [91,] 0.809401206 0.0843031078 0.887260949 0.10324899 0.0133572216
##  [92,] 0.835698500 0.6542822297 0.058708795 0.05115633 0.4846461245
##  [93,] 0.561387506 0.6125941994 0.257787813 0.58811538 0.7474705824
##  [94,] 0.032109353 0.8580892808 0.786645186 0.82876159 0.4671700210
##  [95,] 0.970210386 0.1111186729 0.565882814 0.63914828 0.5319261521
##  [96,] 0.825061014 0.9052367806 0.406739496 0.32035855 0.8577351610
##  [97,] 0.213852433 0.8766797285 0.021651195 0.79162727 0.4177978658
##  [98,] 0.814000367 0.4356837904 0.821300018 0.75650515 0.2926091992
##  [99,] 0.776467626 0.9364987162 0.630816365 0.35463563 0.2186427990
## [100,] 0.816974296 0.4714190126 0.877292458 0.44610680 0.6842931376
## [101,] 0.854419573 0.4696112052 0.314908787 0.42570522 0.4045962824
## [102,] 0.615831804 0.6425703585 0.214399404 0.39860715 0.2160483550
## [103,] 0.133673755 0.1202452520 0.711679708 0.83234970 0.2950728193
## [104,] 0.481118802 0.1079374114 0.505319767 0.40617261 0.5247520932
## [105,] 0.224811602 0.5589396034 0.495181278 0.34587620 0.8556023829
## [106,] 0.919606563 0.6451381017 0.287114171 0.60516106 0.8542669802
## [107,] 0.466478825 0.9306448875 0.703875294 0.03845745 0.7759074960
## [108,] 0.800379856 0.3520184215 0.267456817 0.48110333 0.8685758680
## [109,] 0.151755133 0.2936923867 0.621256201 0.14185311 0.3776210353
## [110,] 0.287878932 0.1294069889 0.670613538 0.94751308 0.0611062546
## [111,] 0.832147317 0.6827595592 0.538644945 0.87725762 0.0213962093
## [112,] 0.356565348 0.6966314232 0.650606939 0.94441839 0.4798845255
## [113,] 0.152505924 0.2675740977 0.769657922 0.59627194 0.3957366589
## [114,] 0.961865200 0.8681412905 0.417123359 0.39263766 0.5986055222
## [115,] 0.896964582 0.8410316706 0.679399607 0.73320922 0.1398790102
## [116,] 0.204163874 0.4206810493 0.438550440 0.78816967 0.4613876510
## [117,] 0.497343759 0.2990697299 0.386641323 0.09119469 0.1647713403
## [118,] 0.489158380 0.3512176229 0.620177293 0.43710558 0.0575959291
## [119,] 0.891419917 0.0752101669 0.437335404 0.60789275 0.1817525383
## [120,] 0.834367346 0.1640163781 0.017495631 0.36233936 0.5946028228
## [121,] 0.152151143 0.0654842497 0.914706602 0.82691729 0.8866709257
## [122,] 0.077801950 0.0864140247 0.303029720 0.98498263 0.8551978797
## [123,] 0.919698349 0.0244409135 0.842882600 0.21159825 0.4052810655
## [124,] 0.101779516 0.3098834711 0.354098768 0.20239202 0.7454694749
## [125,] 0.095242802 0.6392834603 0.173609184 0.32176229 0.0203380659
## [126,] 0.193841641 0.9907928167 0.260202341 0.07933449 0.9918988976
## [127,] 0.036823593 0.8630254937 0.971392875 0.72657064 0.8669382969
## [128,] 0.561085408 0.5625008566 0.526969026 0.44022622 0.3591023455
## [129,] 0.234392816 0.3565410944 0.417501493 0.68574860 0.4071471419
## [130,] 0.981812039 0.1244116481 0.508118408 0.18056374 0.3507680686
## [131,] 0.619754707 0.7228571586 0.663559444 0.86207013 0.6430875901
## [132,] 0.813506609 0.2743458373 0.917629394 0.99675280 0.4368257870
## [133,] 0.800164898 0.0441239236 0.424362444 0.11662314 0.9388706437
## [134,] 0.899665130 0.7393188539 0.386799271 0.82520710 0.1900425423
## [135,] 0.752030377 0.8582679760 0.225018195 0.21361169 0.0410592030
## [136,] 0.861150882 0.4040625703 0.338629154 0.60826687 0.2062064887
## [137,] 0.748720194 0.7244013348 0.437859140 0.97519620 0.8481824000
## [138,] 0.876728287 0.7754062298 0.718574522 0.82742769 0.7321053317
## [139,] 0.315764737 0.6592402020 0.912133243 0.09921118 0.0867252313
## [140,] 0.334902205 0.8549364691 0.228035676 0.26189231 0.1372012722
## [141,] 0.691769472 0.4665126281 0.342140663 0.10310695 0.6957101361
## [142,] 0.799386723 0.9737342405 0.659086201 0.38998818 0.0284510481
## [143,] 0.211814563 0.2094773888 0.335905776 0.89576178 0.8490476662
## [144,] 0.863388704 0.8051897408 0.698793563 0.39294279 0.6397110389
## [145,] 0.299014319 0.2322728748 0.821760304 0.28795748 0.0173770604
## [146,] 0.030932782 0.1437713674 0.799826668 0.44538699 0.8895165317
## [147,] 0.991173455 0.9414315266 0.880508907 0.68800980 0.1604651851
## [148,] 0.657293510 0.9838931826 0.631385729 0.24886320 0.7518763188
## [149,] 0.336038610 0.9177695345 0.050762983 0.73806679 0.2649184824
## [150,] 0.236501853 0.3803842708 0.309234829 0.45785144 0.0502900621
## [151,] 0.136846762 0.4889345157 0.591108880 0.15379838 0.9748671581
## [152,] 0.979022667 0.5690807805 0.075898709 0.99450185 0.7284732007
## [153,] 0.475691647 0.9337502327 0.227345680 0.43513026 0.5342239176
## [154,] 0.886751693 0.2733569711 0.292474349 0.59335793 0.4918541790
## [155,] 0.063279937 0.4328826687 0.032418815 0.08293577 0.7858178117
## [156,] 0.732777831 0.4274693204 0.254223770 0.14317763 0.2494044087
## [157,] 0.078506095 0.7922170395 0.231370079 0.77365803 0.5228424673
## [158,] 0.605542770 0.8337273479 0.889497988 0.50332062 0.8549551300
## [159,] 0.768770688 0.9165921314 0.455000776 0.06770817 0.5492767242
## [160,] 0.555850352 0.7900542824 0.498564781 0.24806999 0.4670313271
## [161,] 0.649365293 0.9968941640 0.321817087 0.14574780 0.4581518150
## [162,] 0.550964889 0.7695331858 0.251298605 0.22205128 0.5368936798
## [163,] 0.899306411 0.6929694430 0.810302248 0.44825475 0.2729434187
## [164,] 0.585709204 0.6273939707 0.371526687 0.73741117 0.3611565675
## [165,] 0.951978466 0.4604132448 0.391545556 0.30836776 0.5027814964
## [166,] 0.136618037 0.9574343008 0.702811488 0.54891173 0.8238061103
## [167,] 0.628570701 0.3267497604 0.080907904 0.56980389 0.0237474067
## [168,] 0.157044585 0.5545889824 0.486731739 0.59465489 0.5132933659
## [169,] 0.636425205 0.4988269992 0.827594580 0.94759290 0.8925688071
## [170,] 0.480861684 0.5119195797 0.486508619 0.68364140 0.0692791494
## [171,] 0.832144199 0.3094669573 0.444606682 0.24248652 0.5391821628
## [172,] 0.771588660 0.2776848068 0.644553584 0.96615702 0.5994494248
## [173,] 0.324167282 0.4779637468 0.290042932 0.98496498 0.9369633584
## [174,] 0.659356948 0.3893800799 0.878292457 0.27983718 0.3053008642
## [175,] 0.532519924 0.8680363030 0.172444648 0.64148028 0.2684861100
## [176,] 0.204974036 0.8322339493 0.077403517 0.22397140 0.5062699006
## [177,] 0.323129719 0.5497837078 0.983574699 0.18919426 0.4738134169
## [178,] 0.264670789 0.4978049984 0.958653315 0.72888228 0.6640703841
## [179,] 0.678093939 0.1472444662 0.340870938 0.29937942 0.8458849152
## [180,] 0.081928143 0.5700224715 0.945648151 0.26450984 0.2608172679
## [181,] 0.530174532 0.7193907879 0.138842501 0.47844784 0.9947047532
## [182,] 0.874421860 0.0891601404 0.347074623 0.89780599 0.4196873165
## [183,] 0.122928002 0.2104280407 0.096300739 0.70509625 0.2406842108
## [184,] 0.228643302 0.5566141156 0.093478653 0.27288204 0.5062748673
## [185,] 0.740861977 0.9196657415 0.022499489 0.35668120 0.5199868476
## [186,] 0.220109959 0.0451193023 0.244784819 0.35164977 0.5164993696
## [187,] 0.955411533 0.1815741358 0.423669373 0.77230389 0.4722417286
## [188,] 0.926571538 0.5692105074 0.380876869 0.61001785 0.4054445613
## [189,] 0.021300168 0.4407202841 0.881928453 0.25829609 0.7374271080
## [190,] 0.984092961 0.2713171216 0.571687629 0.80697581 0.4740197924
## [191,] 0.742446133 0.9452833366 0.476221022 0.66289733 0.9301175450
## [192,] 0.751733591 0.5562654356 0.232575751 0.19756353 0.3109094498
## [193,] 0.766611766 0.5414471820 0.372332766 0.78676807 0.7206510790
## [194,] 0.157572611 0.4247918581 0.871836315 0.59670492 0.4885888107
## [195,] 0.437478758 0.1763298109 0.573813990 0.89066780 0.9150138672
## [196,] 0.578849450 0.3362799759 0.354771375 0.84511931 0.7281304575
## [197,] 0.526632831 0.4579694362 0.018996936 0.29782793 0.4220163056
## [198,] 0.143641228 0.9007345615 0.894480049 0.09801461 0.7133818276
## [199,] 0.761935409 0.9532042502 0.358156066 0.31161534 0.2381420690
## [200,] 0.812187465 0.0481019330 0.825925712 0.38218165 0.1195313639
##                [,6]       [,7]         [,8]        [,9]        [,10]
##   [1,] 0.6292917978 0.38458588 0.1215394123 0.864269432 0.8520212951
##   [2,] 0.8067407543 0.26742497 0.2821895389 0.429695541 0.3037606850
##   [3,] 0.2455792942 0.41526178 0.1356330144 0.384571484 0.7805942637
##   [4,] 0.1851186294 0.66415989 0.9207540751 0.337606930 0.1004382896
##   [5,] 0.2662024347 0.45752316 0.1528321323 0.891014373 0.5831266025
##   [6,] 0.2484438769 0.90937421 0.6525453520 0.077709112 0.3774153506
##   [7,] 0.1139205289 0.39894414 0.9487702441 0.250756228 0.3364991476
##   [8,] 0.6222261169 0.86562914 0.5987436329 0.639540625 0.1951235996
##   [9,] 0.4307985029 0.71372525 0.1362698006 0.096666414 0.1876214633
##  [10,] 0.2587662986 0.58276392 0.1785566786 0.252152989 0.3784964588
##  [11,] 0.4133484359 0.73007440 0.5512193858 0.852327782 0.3907520983
##  [12,] 0.1249177314 0.13465800 0.6303301824 0.809050875 0.3534236783
##  [13,] 0.4749329579 0.86276763 0.9031925818 0.326213229 0.8705161638
##  [14,] 0.9830588233 0.22569001 0.7847172678 0.713712744 0.9621141220
##  [15,] 0.0152999223 0.42319783 0.3034593344 0.739910517 0.4003052474
##  [16,] 0.0058389865 0.82850201 0.2113810801 0.214451857 0.0462677414
##  [17,] 0.7906984100 0.42119492 0.6612731428 0.476091998 0.2815749862
##  [18,] 0.3897138829 0.40086436 0.8795136325 0.495412341 0.8192956529
##  [19,] 0.3019062057 0.19780485 0.1277885674 0.847265005 0.2406868988
##  [20,] 0.5309960167 0.88392626 0.9083913798 0.509214530 0.5653414675
##  [21,] 0.6056312406 0.65295414 0.7852160940 0.146114688 0.4463825258
##  [22,] 0.2861065315 0.32603377 0.2118697974 0.850583501 0.0993997748
##  [23,] 0.8800012432 0.49433710 0.6651614700 0.284389477 0.5321122233
##  [24,] 0.8994572905 0.75449945 0.1201711993 0.338501038 0.8208115268
##  [25,] 0.2982519220 0.19808121 0.5893972670 0.947489619 0.7931440244
##  [26,] 0.6280854188 0.72620965 0.3209858944 0.264557422 0.3476461943
##  [27,] 0.1705386844 0.44818460 0.2638411776 0.106812025 0.5540756104
##  [28,] 0.9581705360 0.77296929 0.6030892355 0.776811189 0.5965659379
##  [29,] 0.8559326925 0.20416019 0.1970981476 0.776874400 0.2235677531
##  [30,] 0.7429501656 0.60843414 0.1615384098 0.207277806 0.9246709698
##  [31,] 0.8189896953 0.76965347 0.8903108700 0.197305448 0.0820506092
##  [32,] 0.7933381393 0.70006249 0.5651295306 0.341435637 0.3397312078
##  [33,] 0.9938175408 0.11584791 0.0444243609 0.580420954 0.9822044973
##  [34,] 0.2321643862 0.10939190 0.3426901980 0.316033534 0.8644264699
##  [35,] 0.4052331252 0.48931032 0.9510238429 0.470990010 0.8488984788
##  [36,] 0.3944642670 0.25441935 0.5808517726 0.472057863 0.7625171999
##  [37,] 0.3190778764 0.13313291 0.3383714182 0.197918270 0.4207189612
##  [38,] 0.6561929260 0.97607036 0.2197752686 0.790798550 0.2790792978
##  [39,] 0.2763341693 0.60072902 0.2818121715 0.797505846 0.8593643245
##  [40,] 0.9457077389 0.27613346 0.5703233073 0.781235632 0.2139608837
##  [41,] 0.5839659714 0.92888522 0.4085799651 0.856452388 0.2977794926
##  [42,] 0.5371840096 0.60122986 0.3277163371 0.839028873 0.5526694821
##  [43,] 0.9342741899 0.06983238 0.5517858458 0.382782364 0.3208722172
##  [44,] 0.7415342911 0.31637070 0.4417527216 0.775551144 0.2935530862
##  [45,] 0.3203892512 0.81034121 0.1281705804 0.007499525 0.5957063211
##  [46,] 0.7310555065 0.27281509 0.1185793274 0.783310859 0.4743276807
##  [47,] 0.2507446394 0.07623093 0.2248757505 0.521334800 0.0457513840
##  [48,] 0.7644736234 0.06835995 0.3871545675 0.037133610 0.8177816232
##  [49,] 0.1499585507 0.35943540 0.3089316825 0.901292979 0.0487910195
##  [50,] 0.1278368144 0.60852671 0.9890616357 0.044676271 0.4115151099
##  [51,] 0.4840969816 0.24382305 0.8892481686 0.394964202 0.2020597518
##  [52,] 0.6010938922 0.76341807 0.1319081993 0.747851586 0.2469093541
##  [53,] 0.0406050123 0.30278637 0.2874643628 0.483065483 0.2264301430
##  [54,] 0.8139282970 0.71914793 0.3203937295 0.863601431 0.1933400186
##  [55,] 0.8225189694 0.28222055 0.5951168248 0.295982166 0.8215486112
##  [56,] 0.1226780200 0.48243126 0.1391413538 0.002799573 0.0009167292
##  [57,] 0.5884957830 0.20631121 0.4117878580 0.204133132 0.1843188568
##  [58,] 0.6131424692 0.57724456 0.9255893512 0.710483129 0.5590017978
##  [59,] 0.8876600771 0.93315959 0.3945814767 0.421603987 0.7708637107
##  [60,] 0.0173959178 0.21897263 0.2951378846 0.600619329 0.2378141689
##  [61,] 0.0001087531 0.13670639 0.1460415956 0.256730017 0.1209285269
##  [62,] 0.2284741248 0.75268374 0.9080629004 0.943129062 0.0775409674
##  [63,] 0.9445946869 0.61585773 0.1353869836 0.799761379 0.0604876340
##  [64,] 0.6698846808 0.02610746 0.9493165135 0.347090631 0.3237658013
##  [65,] 0.0691140748 0.51413923 0.7394067033 0.627828851 0.2191394214
##  [66,] 0.3582457737 0.46968387 0.9766390792 0.781364260 0.2309241635
##  [67,] 0.3900472713 0.53143557 0.1438009043 0.083109800 0.9923764516
##  [68,] 0.4924089559 0.85523019 0.8210457389 0.605907152 0.4268372264
##  [69,] 0.2362820508 0.25945670 0.8207873120 0.489545648 0.2142948690
##  [70,] 0.1655986032 0.19534139 0.1353848879 0.883279711 0.7543655634
##  [71,] 0.8489977010 0.90714720 0.0004494507 0.135185259 0.5535748431
##  [72,] 0.9298924080 0.52684461 0.6057003518 0.269645364 0.7806452233
##  [73,] 0.6323839023 0.67599354 0.4532112607 0.907633202 0.8646424545
##  [74,] 0.4426674470 0.52112814 0.9722401747 0.068698060 0.5461974926
##  [75,] 0.8672543929 0.95864471 0.9285342940 0.326077993 0.2602767814
##  [76,] 0.0981771953 0.27644111 0.6413498351 0.588181271 0.4998908893
##  [77,] 0.5370299404 0.25553320 0.3444347403 0.175188267 0.5974880976
##  [78,] 0.9120113957 0.03912957 0.4787233479 0.370095088 0.4011987778
##  [79,] 0.3656011589 0.24572375 0.3336354871 0.143957757 0.9490070925
##  [80,] 0.5942407069 0.90179290 0.7731464931 0.180479118 0.1894912110
##  [81,] 0.0458112657 0.72364741 0.7408202901 0.808505162 0.4205632056
##  [82,] 0.4076461145 0.74053887 0.4162067166 0.090692795 0.6745304288
##  [83,] 0.5684702920 0.03992078 0.3234011929 0.806153088 0.0186410726
##  [84,] 0.5845715150 0.66204925 0.7005104905 0.296913448 0.7714271788
##  [85,] 0.4803088880 0.57181323 0.9904097477 0.934821429 0.0386857938
##  [86,] 0.9427057062 0.65202006 0.6739595360 0.702518622 0.1633884166
##  [87,] 0.7167628531 0.04682515 0.5113688556 0.387826467 0.2768094314
##  [88,] 0.9727265255 0.02480272 0.4685928104 0.502977556 0.7240222553
##  [89,] 0.4241232842 0.70005983 0.5800409992 0.842819298 0.9613207267
##  [90,] 0.9622193279 0.32408030 0.6369550761 0.024918557 0.4018625957
##  [91,] 0.7789402676 0.08382532 0.3823109691 0.660598623 0.6121315351
##  [92,] 0.0077233068 0.84694345 0.9828596576 0.092243286 0.9376979368
##  [93,] 0.3927995169 0.65142853 0.3314361467 0.931713114 0.0445185276
##  [94,] 0.6202455116 0.47953029 0.2267527971 0.980113736 0.4092375883
##  [95,] 0.2697588850 0.56703962 0.5727488748 0.724345015 0.0971712412
##  [96,] 0.8579049830 0.71129579 0.2273991520 0.379008924 0.6505298188
##  [97,] 0.9105288459 0.67845176 0.1196764805 0.147194198 0.7934118740
##  [98,] 0.5231846510 0.73907259 0.5573922247 0.480131395 0.9515481780
##  [99,] 0.1603342602 0.62244605 0.3415684910 0.925197898 0.3788565577
## [100,] 0.7121645662 0.13004444 0.5372014712 0.404318234 0.1167977806
## [101,] 0.7629839233 0.73690795 0.4928699178 0.373021704 0.5358814374
## [102,] 0.0436173580 0.41739097 0.4754432756 0.631007765 0.0907530447
## [103,] 0.1690742334 0.96602172 0.9376587567 0.235497323 0.9331555758
## [104,] 0.9590265390 0.14411046 0.3392822377 0.123860870 0.3512217533
## [105,] 0.8985128088 0.93272246 0.5179623081 0.613360144 0.6678639553
## [106,] 0.2393613579 0.45002693 0.4175546006 0.182090362 0.7875546489
## [107,] 0.2028899491 0.23551350 0.4567197601 0.878322096 0.7914687973
## [108,] 0.9057147247 0.44899586 0.7900478840 0.520401004 0.3534726845
## [109,] 0.4975222235 0.67995324 0.7130455736 0.138480710 0.8146341147
## [110,] 0.4817214396 0.07030963 0.3071334406 0.400901738 0.7381759854
## [111,] 0.3141533069 0.09432316 0.6544006907 0.932612633 0.6307414989
## [112,] 0.4808175629 0.16937521 0.6129573258 0.744659926 0.9737533082
## [113,] 0.1111585461 0.07468505 0.6018439184 0.295497803 0.1249790599
## [114,] 0.4128927670 0.57599404 0.4855924896 0.327204324 0.5983377167
## [115,] 0.2137827124 0.20419832 0.6311057317 0.073009515 0.6922947068
## [116,] 0.1968133678 0.53183518 0.6608771768 0.203285026 0.9385663311
## [117,] 0.2050535034 0.97051512 0.2776747684 0.266543807 0.9664240617
## [118,] 0.6433614648 0.36087194 0.6963796993 0.918834622 0.3531340752
## [119,] 0.2367572135 0.17272380 0.1525280941 0.158405269 0.4478921206
## [120,] 0.8177070459 0.06781344 0.8534685026 0.882070255 0.8414704329
## [121,] 0.1466877575 0.60666854 0.0483842457 0.926833061 0.5968029357
## [122,] 0.4414088081 0.84723903 0.1771546872 0.431100848 0.1715827284
## [123,] 0.4670426873 0.03966405 0.7741287006 0.558894102 0.8676836449
## [124,] 0.0300916485 0.23343833 0.5230083202 0.618525907 0.9605299190
## [125,] 0.0392151230 0.79802973 0.4341217838 0.166037336 0.0593102747
## [126,] 0.9001475428 0.65451824 0.4522303506 0.688689560 0.3675610358
## [127,] 0.8362018380 0.50116233 0.6312501621 0.175361515 0.5925760376
## [128,] 0.8470265758 0.71253790 0.5891603490 0.975419685 0.3652717185
## [129,] 0.2678647079 0.10342315 0.3647346389 0.909009500 0.0297757376
## [130,] 0.9587960506 0.23518291 0.2019062326 0.532241529 0.7157959212
## [131,] 0.4600022698 0.73022207 0.1131236509 0.414374121 0.8094666060
## [132,] 0.5273683004 0.82198578 0.7729429379 0.568545850 0.1092382681
## [133,] 0.0440144374 0.90363424 0.9037799716 0.546293053 0.4159424896
## [134,] 0.4679640853 0.26353922 0.3373544100 0.349183248 0.8141559155
## [135,] 0.1414063205 0.99664356 0.7913745835 0.973997945 0.9028601535
## [136,] 0.5748593335 0.44375008 0.8216883291 0.188460874 0.6510244585
## [137,] 0.6756726061 0.07939840 0.8266744569 0.776164617 0.2154749332
## [138,] 0.9145728964 0.30350018 0.9608915544 0.475865776 0.4963175575
## [139,] 0.0715240112 0.71583105 0.0918946960 0.618039205 0.0715860131
## [140,] 0.8157287198 0.85875703 0.9928176054 0.531584403 0.8486959743
## [141,] 0.6820472272 0.41313318 0.6970799451 0.854936944 0.2782127012
## [142,] 0.3710516170 0.99118045 0.9396346337 0.723519275 0.6330758149
## [143,] 0.2674262021 0.79656099 0.6637258457 0.666746285 0.4912632110
## [144,] 0.2843670391 0.84887307 0.6303967142 0.316690173 0.8878658856
## [145,] 0.7137018254 0.58899192 0.5305541467 0.092495579 0.1832001559
## [146,] 0.9690435503 0.53360575 0.6721252596 0.349298890 0.8426887870
## [147,] 0.6294289615 0.44358872 0.5794394487 0.639810576 0.6580889346
## [148,] 0.5929452933 0.89499783 0.5835341320 0.450882327 0.8946816886
## [149,] 0.4446317928 0.38097749 0.9320464786 0.281816156 0.2838615119
## [150,] 0.3829061901 0.64052555 0.4812416276 0.878896176 0.9525804336
## [151,] 0.5733397978 0.46992891 0.1315456252 0.012754505 0.5067054278
## [152,] 0.4974252419 0.08763451 0.8467942206 0.751026510 0.3103524903
## [153,] 0.6742728173 0.49986488 0.9724769394 0.721768338 0.7699732522
## [154,] 0.6381821784 0.24028844 0.1936245409 0.720172594 0.0117464245
## [155,] 0.6147778442 0.22796039 0.3310023751 0.344389915 0.7022324987
## [156,] 0.4569275004 0.53049110 0.1396596800 0.610393548 0.9031030985
## [157,] 0.9736672535 0.45604827 0.5487407392 0.915319204 0.4894009400
## [158,] 0.2558556222 0.65409965 0.3647755324 0.065318733 0.8854222724
## [159,] 0.1219532513 0.32040507 0.7201853811 0.619322241 0.9727461447
## [160,] 0.8945050284 0.69859390 0.2394242082 0.246419065 0.4188268753
## [161,] 0.6760949122 0.33334220 0.6375201580 0.774997413 0.1318161637
## [162,] 0.8123158223 0.73111692 0.5000773973 0.367119963 0.9501041383
## [163,] 0.9259343066 0.23292368 0.9271361146 0.259555413 0.1426221761
## [164,] 0.9463072179 0.10379342 0.0331551160 0.028804634 0.5290053771
## [165,] 0.0201394730 0.23463693 0.1906394106 0.827841051 0.5603175892
## [166,] 0.6214252820 0.02997492 0.5058142536 0.616176529 0.6468932487
## [167,] 0.8151300617 0.90280720 0.5048924852 0.267728540 0.8466150395
## [168,] 0.0624606325 0.65355830 0.3523419020 0.673359978 0.1142218527
## [169,] 0.5977388639 0.40368400 0.8436545779 0.063083657 0.2129762396
## [170,] 0.7790744281 0.08589249 0.2681266193 0.380194020 0.9251562965
## [171,] 0.2827600357 0.49922343 0.6604047730 0.557247905 0.7277810839
## [172,] 0.5657137039 0.46026435 0.1205760995 0.056712000 0.8423992041
## [173,] 0.0542521959 0.92112180 0.2011775763 0.486514710 0.1401124126
## [174,] 0.0494483374 0.09807712 0.8047545305 0.016581599 0.5022441898
## [175,] 0.8501643089 0.07913134 0.7318138883 0.225057076 0.6948785074
## [176,] 0.6808816905 0.81887291 0.6250573434 0.534719604 0.7040045997
## [177,] 0.2547951911 0.63098973 0.8159708260 0.747319367 0.0589791671
## [178,] 0.9730533052 0.20021229 0.0775967727 0.716420032 0.4387958352
## [179,] 0.3491200847 0.63718297 0.9540340698 0.551741528 0.2457818224
## [180,] 0.7052616698 0.57138244 0.3340067817 0.998767941 0.0806682527
## [181,] 0.6870498080 0.15034549 0.4216069544 0.478697751 0.8349657920
## [182,] 0.9187876759 0.53865909 0.5313924984 0.537569566 0.7393872361
## [183,] 0.2217529775 0.16521848 0.4921393818 0.506609968 0.6385428559
## [184,] 0.2160414790 0.92910816 0.5632665888 0.960346226 0.8556066481
## [185,] 0.1948232700 0.18188819 0.2771232650 0.266835724 0.3000570547
## [186,] 0.8213695439 0.33460671 0.3775252469 0.682309793 0.8787130597
## [187,] 0.1480820312 0.66002950 0.7154957717 0.667719918 0.2787885005
## [188,] 0.7318276525 0.66536613 0.2819111748 0.841020002 0.8908672689
## [189,] 0.7898324579 0.93596142 0.3500172223 0.698694721 0.3091367013
## [190,] 0.1322375010 0.37564695 0.2178489063 0.757056098 0.5178186349
## [191,] 0.5834364993 0.32413921 0.6433858224 0.211357603 0.8302574239
## [192,] 0.5086603377 0.11196433 0.6203710833 0.879960810 0.6639030878
## [193,] 0.0988659069 0.68749795 0.7467523525 0.135246728 0.0620522315
## [194,] 0.8672402804 0.81558484 0.1257193224 0.312839136 0.2386996273
## [195,] 0.7658389821 0.69169510 0.5547427684 0.825970825 0.9783165071
## [196,] 0.2893580073 0.50272244 0.8046899692 0.933460313 0.4707282805
## [197,] 0.6529622299 0.10228810 0.1345007797 0.514091750 0.4843453881
## [198,] 0.9643053063 0.82615345 0.5867460433 0.660320126 0.8545839591
## [199,] 0.8453104680 0.29142220 0.7525011031 0.685744675 0.0941802256
## [200,] 0.1948899792 0.12765845 0.3744734686 0.714494400 0.2144597324
trainingData$x <- data.frame(trainingData$x)
featurePlot(trainingData$x, trainingData$y)

testData <- mlbench.friedman1(5000, sd = 1)
testData$x <- data.frame(testData$x)


library(caret)
knnModel <- train(x = trainingData$x,y = trainingData$y,method = "knn",preProc = c("center", "scale"),tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.810384  0.4095155  3.061924
##    7  3.735713  0.4407487  3.009587
##    9  3.680638  0.4748781  2.997298
##   11  3.655899  0.4978274  2.958415
##   13  3.646095  0.5150858  2.956582
##   15  3.645606  0.5290493  2.948794
##   17  3.676208  0.5292479  2.964985
##   19  3.693689  0.5373618  2.974160
##   21  3.715470  0.5416312  2.987362
##   23  3.747162  0.5371715  3.016582
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 15.
knnPred <- predict(knnModel, newdata = testData$x)
postResample(pred = knnPred, obs = testData$y)
##      RMSE  Rsquared       MAE 
## 3.3980407 0.6655215 2.7431634
library(earth)
## Loading required package: Formula
## Loading required package: plotmo
## Loading required package: plotrix
## Loading required package: TeachingDemos
library(kernlab)
## 
## Attaching package: 'kernlab'
## The following object is masked from 'package:ggplot2':
## 
##     alpha
set.seed(34)
earthGrid <- expand.grid(.degree = 1:2,.nprune = 2:38)
earthModel <- train(trainingData$x,trainingData$y,method = "earth",tuneGrid = expand.grid(.degree = 1,.nprune = 2:25),trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

set.seed(34)
svmRModel <- train(trainingData$x,trainingData$y,method = "svmRadial",tuneLength = 15,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))


nnetGrid <- expand.grid(size = seq(1, 10),decay = c(0,.01,.1),bag = FALSE)

set.seed(34)
nnetModel <- train(trainingData$x,trainingData$y,method = "avNNet",tuneGrid = nnetGrid,preProc = c("center", "scale"),linout = TRUE,trace = FALSE,maxit = 1000,MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))
earthPred <- predict(earthModel, newdata = testData$x)
svmPred <- predict(svmRModel, newdata = testData$x)
nnetPred <- predict(nnetModel,newdata = testData$x)

model_summary <- rbind("KNN" = postResample(pred = knnPred, obs = testData$y),
                       "MARS" = postResample(pred = earthPred, obs = testData$y),
                       "SVM" = postResample(pred = svmPred, obs = testData$y),
                       "NNET" = postResample(pred = nnetPred, obs = testData$y))
model_summary
##          RMSE  Rsquared      MAE
## KNN  3.398041 0.6655215 2.743163
## MARS 1.856183 0.8621016 1.451647
## SVM  1.980424 0.8435895 1.540738
## NNET 2.111891 0.8245246 1.684878
varImp(knnModel)
## loess r-squared variable importance
## 
##      Overall
## X4  100.0000
## X2   67.0138
## X1   62.3539
## X5   31.1975
## X3   25.2358
## X8    5.2805
## X9    3.2737
## X6    1.5019
## X10   0.7223
## X7    0.0000
varImp(earthModel)
## earth variable importance
## 
##    Overall
## X4  100.00
## X2   69.57
## X1   37.68
## X5   12.28
## X3    0.00
varImp(svmRModel)
## loess r-squared variable importance
## 
##      Overall
## X4  100.0000
## X2   67.0138
## X1   62.3539
## X5   31.1975
## X3   25.2358
## X8    5.2805
## X9    3.2737
## X6    1.5019
## X10   0.7223
## X7    0.0000
varImp(nnetModel)
## loess r-squared variable importance
## 
##      Overall
## X4  100.0000
## X2   67.0138
## X1   62.3539
## X5   31.1975
## X3   25.2358
## X8    5.2805
## X9    3.2737
## X6    1.5019
## X10   0.7223
## X7    0.0000

The MARS Model yielded the best R^2 and RMSE values of the four models, while the Support Vector Machine and Neural Network models were also very productive.

All four models rank the variable importance (top 5) X4,X2,X1,X5,X3.

7.5

data(ChemicalManufacturingProcess)
#summary(ChemicalManufacturingProcess)

gaps <- preProcess(ChemicalManufacturingProcess,method = "bagImpute")

ChemicalManufacturingProcess_cleaned <- predict(gaps,ChemicalManufacturingProcess)

#w3summary(ChemicalManufacturingProcess_cleaned)

cmp_c <- ChemicalManufacturingProcess_cleaned

6.3 Models:

set.seed(34)

train_idx <- sample(c(TRUE,FALSE), nrow(cmp_c), 
                 replace=TRUE, prob=c(0.7,0.3))

train_set <- cmp_c[train_idx,]
test_set <- cmp_c[!train_idx,]

train_yield <- data.frame(cmp_c[train_idx,1])
test_yield <- data.frame(cmp_c[!train_idx,1])

colnames(train_yield) <- c('Yield')
colnames(test_yield) <- c('Yield')


fit <- train(Yield ~.,train_set, method = "pls",tunelength = 25, trControl = trainControl(method = "cv"))

plot(fit)

fit
## Partial Least Squares 
## 
## 115 samples
##  57 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 104, 103, 103, 103, 104, 104, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##   1      1.649621  0.2089658  1.351095
##   2      1.620623  0.2560571  1.313245
##   3      1.643336  0.2316565  1.333116
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 2.
fit2 <- train(Yield ~.,train_set, method = "pls",metric = "Rsquared",tunelength = 25, trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

plot(fit2)

fit2
## Partial Least Squares 
## 
## 115 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 103, 105, 104, 103, 104, 104, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##   1      1.362092  0.4312490  1.119568
##   2      1.268019  0.5272961  1.022282
##   3      1.207426  0.5663559  0.988988
## 
## Rsquared was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 3.

Results from PLS, LARS and Enet Models:

r2_eval <- data.frame(0.305,0.6699,0.6699)
colnames(r2_eval) <- c("PLS","LARS Model","enetTune Model")
r2_train <- data.frame(0.573,0.561,0.578)
colnames(r2_train) <- c("PLS","LARS Model","enetTune Model")
r2_eval <- rbind(r2_eval,r2_train)

colnames(r2_eval) <- c("PLS","LARS Model","enetTune Model")
rownames(r2_eval) <- c("R-Squared: Actual","R-Squared: Trained")

kbl(r2_eval, longtable = T, booktabs = T, caption = "Model Performance Summary") %>%
  kable_styling(latex_options = c("repeat_header"))
Model Performance Summary
PLS LARS Model enetTune Model
R-Squared: Actual 0.305 0.6699 0.6699
R-Squared: Trained 0.573 0.5610 0.5780
set.seed(34)

fit3 <- train(Yield ~.,train_set, method = "lars",metric = "Rsquared",tuneLength = 20, trControl = trainControl(method = "cv"),preProc = c("center","scale"))

#fit3

plot(fit3)

fit3_predict <- predict(fit3,test_set[,-1])

postResample(fit3_predict,test_set[,1])
##      RMSE  Rsquared       MAE 
## 1.2282224 0.6154882 0.9188517
varImp(fit3)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 57)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   69.87
## BiologicalMaterial06     58.29
## ManufacturingProcess17   53.74
## ManufacturingProcess36   53.69
## ManufacturingProcess09   51.94
## BiologicalMaterial03     50.78
## BiologicalMaterial02     43.62
## ManufacturingProcess31   42.24
## ManufacturingProcess27   40.03
## ManufacturingProcess20   39.46
## BiologicalMaterial01     36.25
## BiologicalMaterial12     34.52
## ManufacturingProcess29   33.40
## ManufacturingProcess06   32.82
## ManufacturingProcess33   31.19
## ManufacturingProcess12   28.84
## BiologicalMaterial04     26.79
## ManufacturingProcess02   24.80
## BiologicalMaterial09     22.41
train_set_data <- train_set[,-c(1)]
test_set_data <- test_set[,-c(1)]
knnModel <- train(x = train_set_data,y = train_yield$Yield,method = "knn",preProc = c("center", "scale"),tuneLength = 10)

knnModel
## k-Nearest Neighbors 
## 
## 115 samples
##  57 predictor
## 
## Pre-processing: centered (57), scaled (57) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 115, 115, 115, 115, 115, 115, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  1.438517  0.3342477  1.129490
##    7  1.414401  0.3454644  1.124603
##    9  1.403646  0.3502420  1.128724
##   11  1.415587  0.3372328  1.142322
##   13  1.428026  0.3284130  1.153898
##   15  1.434032  0.3267271  1.163902
##   17  1.438808  0.3231208  1.169967
##   19  1.444505  0.3217963  1.177725
##   21  1.453591  0.3139859  1.184738
##   23  1.468961  0.3019866  1.197597
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 9.
knnPred <- predict(knnModel, newdata = test_set_data)
postResample(pred = knnPred, obs = test_yield$Yield)
##      RMSE  Rsquared       MAE 
## 1.4916810 0.4423442 1.1671512
set.seed(34)
earthGrid <- expand.grid(.degree = 1:2,.nprune = 2:38)
earthModel <- train(x = train_set_data,y = train_yield$Yield,method = "earth",tuneGrid = expand.grid(.degree = 1,.nprune = 2:25),trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

set.seed(34)
svmRModel <- train(x = train_set_data,y = train_yield$Yield,method = "svmRadial",tuneLength = 15,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

nnetGrid <- expand.grid(size = seq(1, 10),decay = c(0,.01,.1),bag = FALSE)

set.seed(34)
nnetModel <- train(x = train_set_data,y = train_yield$Yield,method = "avNNet",tuneGrid = nnetGrid,preProc = c("center", "scale"),linout = TRUE,trace = FALSE,maxit = 1000,MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))
earthPred <- predict(earthModel, newdata = test_set_data)
svmPred <- predict(svmRModel, newdata = test_set_data)
nnetPred <- predict(nnetModel,newdata = test_set_data)

model_summary <- rbind("KNN" = postResample(pred = knnPred, obs = test_yield$Yield),
                       "MARS" = postResample(pred = earthPred, obs = test_yield$Yield),
                       "SVM" = postResample(pred = svmPred, obs = test_yield$Yield),
                       "NNET" = postResample(pred = nnetPred, obs = test_yield$Yield))
model_summary
##          RMSE  Rsquared      MAE
## KNN  1.491681 0.4423442 1.167151
## MARS 1.741594 0.3981110 1.126143
## SVM  1.448693 0.4763135 1.072114
## NNET 1.575532 0.4860350 1.207509

Analysis

Similar to the PLS, Enet, and LARS models, the nonlinear regression models were not particularly successful. The best \(R^2\) value was obtained with the SVM model, with an \(R^2\) of 0.470. These models alone could not be recommended. Below, I will reduce the models to only include the top 10 most important variables from the SVM model.

B

The top ten ranking of the variable importance of the SVM model is identical to that of the LARS model from the original linear models. The manufacturing processes dominate the list.

varImp(svmRModel)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 57)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   69.87
## BiologicalMaterial06     58.29
## ManufacturingProcess17   53.74
## ManufacturingProcess36   53.69
## ManufacturingProcess09   51.94
## BiologicalMaterial03     50.78
## BiologicalMaterial02     43.62
## ManufacturingProcess31   42.24
## ManufacturingProcess27   40.03
## ManufacturingProcess20   39.46
## BiologicalMaterial01     36.25
## BiologicalMaterial12     34.52
## ManufacturingProcess29   33.40
## ManufacturingProcess06   32.82
## ManufacturingProcess33   31.19
## ManufacturingProcess12   28.84
## BiologicalMaterial04     26.79
## ManufacturingProcess02   24.80
## BiologicalMaterial09     22.41
train_set_new <- data.frame(cbind(train_set$ManufacturingProcess32,train_set$ManufacturingProcess13,train_set$BiologicalMaterial06,train_set$ManufacturingProcess17,train_set$ManufacturingProcess36,train_set$ManufacturingProcess09,train_set$BiologicalMaterial03,train_set$BiologicalMaterial02,train_set$ManufacturingProcess31,train_set$ManufacturingProcess27))

test_set_new <- data.frame(cbind(test_set$ManufacturingProcess32,test_set$ManufacturingProcess13,test_set$BiologicalMaterial06,test_set$ManufacturingProcess17,test_set$ManufacturingProcess36,test_set$ManufacturingProcess09,test_set$BiologicalMaterial03,test_set$BiologicalMaterial02,test_set$ManufacturingProcess31,test_set$ManufacturingProcess27))

colnames(train_set_new) <- c("ManufacturingProcess32","ManufacturingProcess13","BiologicalMaterial06","ManufacturingProcess17","ManufacturingProcess36","ManufacturingProcess09","BiologicalMaterial03","BiologicalMaterial02","ManufacturingProcess31","ManufacturingProcess27")


colnames(test_set_new) <- c("ManufacturingProcess32","ManufacturingProcess13","BiologicalMaterial06","ManufacturingProcess17","ManufacturingProcess36","ManufacturingProcess09","BiologicalMaterial03","BiologicalMaterial02","ManufacturingProcess31","ManufacturingProcess27")
train_set_data <- train_set_new
test_set_data <- test_set_new
knnModel <- train(x = train_set_data,y = train_yield$Yield,method = "knn",preProc = c("center", "scale"),tuneLength = 10)

#knnModel

knnPred <- predict(knnModel, newdata = test_set_data)

postResample(pred = knnPred, obs = test_yield$Yield)
##     RMSE Rsquared      MAE 
## 1.336530 0.570262 1.053800
set.seed(34)
earthGrid <- expand.grid(.degree = 1:2,.nprune = 2:38)
earthModel <- train(x = train_set_data,y = train_yield$Yield,method = "earth",tuneGrid = expand.grid(.degree = 1,.nprune = 2:25),trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

set.seed(34)
svmRModel <- train(x = train_set_data,y = train_yield$Yield,method = "svmRadial",tuneLength = 15,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))

nnetGrid <- expand.grid(size = seq(1, 10),decay = c(0,.01,.1),bag = FALSE)

set.seed(34)
nnetModel <- train(x = train_set_data,y = train_yield$Yield,method = "avNNet",tuneGrid = nnetGrid,preProc = c("center", "scale"),linout = TRUE,trace = FALSE,maxit = 1000,MaxNWts = 10 * (ncol(trainingData$x) + 1) + 10 + 1,trControl = trainControl(method = "cv"),preProcess = c("center","scale"))
earthPred <- predict(earthModel, newdata = test_set_data)
svmPred <- predict(svmRModel, newdata = test_set_data)
nnetPred <- predict(nnetModel,newdata = test_set_data)

model_summary <- rbind("KNN" = postResample(pred = knnPred, obs = test_yield$Yield),
                       "MARS" = postResample(pred = earthPred, obs = test_yield$Yield),
                       "SVM" = postResample(pred = svmPred, obs = test_yield$Yield),
                       "NNET" = postResample(pred = nnetPred, obs = test_yield$Yield))
model_summary
##          RMSE  Rsquared       MAE
## KNN  1.336530 0.5702620 1.0538003
## MARS 1.157222 0.6776290 0.9666953
## SVM  1.629982 0.3578805 1.1799044
## NNET 1.184638 0.6405817 0.9179897

After only selecting the top 10 most important variables from the SVM model, the performance of the MARS and NNet models improved to produce \(R^2\) values above 0.64.

featurePlot(train_set_data, train_yield$Yield)

C

Most of the relationships between yield and the most important variables follow a linear pattern, whether positive or negative correlation. It seems that biological material is actually more likely to be positively correlated with yield than the various processes.

Some of the manufacturing processes are negatively correlated with yield, but the two most impactful processes are positively correlated with yield.

The nonlinear models provided a slightly poorer fit than the linear models, and none of the four nonlinear models can be recommended over the linear models from assignment 7.