# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062306314 -0.002935305  0.0366060875  0.052133264  4.992316e-02
## 2013-02-28  0.0058908035 -0.023105392 -0.0129692147  0.016175400  1.267825e-02
## 2013-03-28  0.0009849638 -0.010235011  0.0129692147  0.040258345  3.726807e-02
## 2013-04-30  0.0096390546  0.012085007  0.0489677868  0.001222188  1.902974e-02
## 2013-05-31 -0.0202137539 -0.049483766 -0.0306555691  0.041976530  2.333530e-02
## 2013-06-28 -0.0157784206 -0.054728110 -0.0271444696 -0.001402535 -1.343398e-02
## 2013-07-31  0.0026876276  0.013159871  0.0518604473  0.063540766  5.038569e-02
## 2013-08-30 -0.0082978704 -0.025705865 -0.0197463047 -0.034743291 -3.045134e-02
## 2013-09-30  0.0111435579  0.069588817  0.0753384249  0.063873968  3.115617e-02
## 2013-10-31  0.0082917436  0.040861379  0.0320817729  0.034233729  4.526656e-02
## 2013-11-29 -0.0025089902 -0.002594078  0.0054494707  0.041661359  2.920696e-02
## 2013-12-31 -0.0055832561 -0.004074306  0.0215281466  0.012891904  2.559591e-02
## 2014-01-31  0.0152910857 -0.090322617 -0.0534132683 -0.035774979 -3.588413e-02
## 2014-02-28  0.0037571143  0.033220545  0.0595049624  0.045257174  4.451030e-02
## 2014-03-31 -0.0014812352  0.038021743 -0.0046025474  0.013315157  8.261304e-03
## 2014-04-30  0.0081823277  0.007772674  0.0165292862 -0.023184373  6.927369e-03
## 2014-05-30  0.0117220843  0.029091075  0.0158285726  0.006205609  2.294136e-02
## 2014-06-30 -0.0005754682  0.023733840  0.0091654311  0.037718886  2.043454e-02
## 2014-07-31 -0.0025125967  0.013555882 -0.0263798667 -0.052009541 -1.352850e-02
## 2014-08-29  0.0114311973  0.027904488  0.0018004570  0.043657585  3.870444e-02
## 2014-09-30 -0.0061674157 -0.080856677 -0.0395983857 -0.061260402 -1.389245e-02
## 2014-10-31  0.0105846017  0.014096336 -0.0026548780  0.068875014  2.327780e-02
## 2014-11-28  0.0065490965 -0.015541103  0.0006250936  0.004773469  2.710165e-02
## 2014-12-31  0.0014747812 -0.040442089 -0.0407465225  0.025295910 -2.539852e-03
## 2015-01-30  0.0203152665 -0.006895986  0.0062264243 -0.054627908 -3.007703e-02
## 2015-02-27 -0.0089883391  0.043136042  0.0614505961  0.056914589  5.468160e-02
## 2015-03-31  0.0037400778 -0.015086012 -0.0143888431  0.010156557 -1.583013e-02
## 2015-04-30 -0.0032328970  0.066281251  0.0358167281 -0.018417838  9.785980e-03
## 2015-05-29 -0.0043837534 -0.041911241  0.0019524660  0.007509950  1.277409e-02
## 2015-06-30 -0.0108256339 -0.029746219 -0.0316786668  0.004171322 -2.052117e-02
## 2015-07-31  0.0085850587 -0.065178232  0.0201146592 -0.027375469  2.233806e-02
## 2015-08-31 -0.0033642812 -0.092512493 -0.0771525831 -0.047268307 -6.288676e-02
## 2015-09-30  0.0080813436 -0.031824745 -0.0451948648 -0.038464771 -2.584729e-02
## 2015-10-30  0.0006857591  0.061808283  0.0640258646  0.063589835  8.163488e-02
## 2015-11-30 -0.0038980409 -0.025560530 -0.0075557159  0.024415263  3.648591e-03
## 2015-12-31 -0.0019189967 -0.038947072 -0.0235951175 -0.052156958 -1.743371e-02
## 2016-01-29  0.0123298047 -0.051636707 -0.0567578987 -0.060307008 -5.106836e-02
## 2016-02-29  0.0088319333 -0.008211740 -0.0339138083  0.020605361 -8.264511e-04
## 2016-03-31  0.0087085582  0.121879089  0.0637455063  0.089910288  6.510018e-02
## 2016-04-29  0.0025466008  0.004079408  0.0219751221  0.021044059  3.933533e-03
## 2016-05-31  0.0001356920 -0.037628640 -0.0008559765  0.004397249  1.686856e-02
## 2016-06-30  0.0191663262  0.044582331 -0.0244915550  0.008292171  3.469886e-03
## 2016-07-29  0.0054299382  0.052442435  0.0390002810  0.049348448  3.582179e-02
## 2016-08-31 -0.0021564351  0.008798294  0.0053268348  0.011261274  1.196798e-03
## 2016-09-30  0.0005158489  0.024872943  0.0132789516  0.008614620  5.797534e-05
## 2016-10-31 -0.0082046963 -0.008312118 -0.0224034935 -0.038134906 -1.748893e-02
## 2016-11-30 -0.0259896420 -0.045161868 -0.0179745171  0.125246410  3.617611e-02
## 2016-12-30  0.0025372119 -0.002529895  0.0267030288  0.031491799  2.006893e-02
## 2017-01-31  0.0021263762  0.064431408  0.0323817065 -0.012143788  1.773665e-02
## 2017-02-28  0.0064381603  0.017257767  0.0118363957  0.013428522  3.853903e-02
## 2017-03-31 -0.0005531218  0.036189001  0.0318058841 -0.006532843  1.249204e-03
## 2017-04-28  0.0090296117  0.016866382  0.0239521715  0.005107638  9.877110e-03
## 2017-05-31  0.0068471626  0.028059772  0.0348101317 -0.022862487  1.401455e-02
## 2017-06-30 -0.0001828178  0.009223718  0.0029559935  0.029151645  6.354431e-03
## 2017-07-31  0.0033347077  0.056594597  0.0261881023  0.007481553  2.034593e-02
## 2017-08-31  0.0093691387  0.023243796 -0.0004484348 -0.027564864  2.913331e-03
## 2017-09-29 -0.0057324398 -0.000446368  0.0233427115  0.082321631  1.994945e-02
## 2017-10-31  0.0009778856  0.032278690  0.0166537760  0.005916319  2.329052e-02
## 2017-11-30 -0.0014837374 -0.003896947  0.0068700030  0.036913080  3.010792e-02
## 2017-12-29  0.0047399778  0.036925502  0.0133982347 -0.003730891  1.205503e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398310e-05 0.0001042111 4.178378e-05 -7.811797e-05 -9.028725e-06
## EEM  1.042111e-04 0.0017547119 1.039017e-03  6.437721e-04  6.795417e-04
## EFA  4.178378e-05 0.0010390167 1.064237e-03  6.490280e-04  6.975393e-04
## IJS -7.811797e-05 0.0006437721 6.490280e-04  1.565448e-03  8.290226e-04
## SPY -9.028725e-06 0.0006795417 6.975393e-04  8.290226e-04  7.408262e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347491
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874227 0.009257147 0.005815631 0.005684462 0.002330247
rowSums(component_contribution)
## [1] 0.02347491
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG          EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062306314 -0.002935305  0.0366060875  0.052133264  4.992316e-02
## 2013-02-28  0.0058908035 -0.023105392 -0.0129692147  0.016175400  1.267825e-02
## 2013-03-28  0.0009849638 -0.010235011  0.0129692147  0.040258345  3.726807e-02
## 2013-04-30  0.0096390546  0.012085007  0.0489677868  0.001222188  1.902974e-02
## 2013-05-31 -0.0202137539 -0.049483766 -0.0306555691  0.041976530  2.333530e-02
## 2013-06-28 -0.0157784206 -0.054728110 -0.0271444696 -0.001402535 -1.343398e-02
## 2013-07-31  0.0026876276  0.013159871  0.0518604473  0.063540766  5.038569e-02
## 2013-08-30 -0.0082978704 -0.025705865 -0.0197463047 -0.034743291 -3.045134e-02
## 2013-09-30  0.0111435579  0.069588817  0.0753384249  0.063873968  3.115617e-02
## 2013-10-31  0.0082917436  0.040861379  0.0320817729  0.034233729  4.526656e-02
## 2013-11-29 -0.0025089902 -0.002594078  0.0054494707  0.041661359  2.920696e-02
## 2013-12-31 -0.0055832561 -0.004074306  0.0215281466  0.012891904  2.559591e-02
## 2014-01-31  0.0152910857 -0.090322617 -0.0534132683 -0.035774979 -3.588413e-02
## 2014-02-28  0.0037571143  0.033220545  0.0595049624  0.045257174  4.451030e-02
## 2014-03-31 -0.0014812352  0.038021743 -0.0046025474  0.013315157  8.261304e-03
## 2014-04-30  0.0081823277  0.007772674  0.0165292862 -0.023184373  6.927369e-03
## 2014-05-30  0.0117220843  0.029091075  0.0158285726  0.006205609  2.294136e-02
## 2014-06-30 -0.0005754682  0.023733840  0.0091654311  0.037718886  2.043454e-02
## 2014-07-31 -0.0025125967  0.013555882 -0.0263798667 -0.052009541 -1.352850e-02
## 2014-08-29  0.0114311973  0.027904488  0.0018004570  0.043657585  3.870444e-02
## 2014-09-30 -0.0061674157 -0.080856677 -0.0395983857 -0.061260402 -1.389245e-02
## 2014-10-31  0.0105846017  0.014096336 -0.0026548780  0.068875014  2.327780e-02
## 2014-11-28  0.0065490965 -0.015541103  0.0006250936  0.004773469  2.710165e-02
## 2014-12-31  0.0014747812 -0.040442089 -0.0407465225  0.025295910 -2.539852e-03
## 2015-01-30  0.0203152665 -0.006895986  0.0062264243 -0.054627908 -3.007703e-02
## 2015-02-27 -0.0089883391  0.043136042  0.0614505961  0.056914589  5.468160e-02
## 2015-03-31  0.0037400778 -0.015086012 -0.0143888431  0.010156557 -1.583013e-02
## 2015-04-30 -0.0032328970  0.066281251  0.0358167281 -0.018417838  9.785980e-03
## 2015-05-29 -0.0043837534 -0.041911241  0.0019524660  0.007509950  1.277409e-02
## 2015-06-30 -0.0108256339 -0.029746219 -0.0316786668  0.004171322 -2.052117e-02
## 2015-07-31  0.0085850587 -0.065178232  0.0201146592 -0.027375469  2.233806e-02
## 2015-08-31 -0.0033642812 -0.092512493 -0.0771525831 -0.047268307 -6.288676e-02
## 2015-09-30  0.0080813436 -0.031824745 -0.0451948648 -0.038464771 -2.584729e-02
## 2015-10-30  0.0006857591  0.061808283  0.0640258646  0.063589835  8.163488e-02
## 2015-11-30 -0.0038980409 -0.025560530 -0.0075557159  0.024415263  3.648591e-03
## 2015-12-31 -0.0019189967 -0.038947072 -0.0235951175 -0.052156958 -1.743371e-02
## 2016-01-29  0.0123298047 -0.051636707 -0.0567578987 -0.060307008 -5.106836e-02
## 2016-02-29  0.0088319333 -0.008211740 -0.0339138083  0.020605361 -8.264511e-04
## 2016-03-31  0.0087085582  0.121879089  0.0637455063  0.089910288  6.510018e-02
## 2016-04-29  0.0025466008  0.004079408  0.0219751221  0.021044059  3.933533e-03
## 2016-05-31  0.0001356920 -0.037628640 -0.0008559765  0.004397249  1.686856e-02
## 2016-06-30  0.0191663262  0.044582331 -0.0244915550  0.008292171  3.469886e-03
## 2016-07-29  0.0054299382  0.052442435  0.0390002810  0.049348448  3.582179e-02
## 2016-08-31 -0.0021564351  0.008798294  0.0053268348  0.011261274  1.196798e-03
## 2016-09-30  0.0005158489  0.024872943  0.0132789516  0.008614620  5.797534e-05
## 2016-10-31 -0.0082046963 -0.008312118 -0.0224034935 -0.038134906 -1.748893e-02
## 2016-11-30 -0.0259896420 -0.045161868 -0.0179745171  0.125246410  3.617611e-02
## 2016-12-30  0.0025372119 -0.002529895  0.0267030288  0.031491799  2.006893e-02
## 2017-01-31  0.0021263762  0.064431408  0.0323817065 -0.012143788  1.773665e-02
## 2017-02-28  0.0064381603  0.017257767  0.0118363957  0.013428522  3.853903e-02
## 2017-03-31 -0.0005531218  0.036189001  0.0318058841 -0.006532843  1.249204e-03
## 2017-04-28  0.0090296117  0.016866382  0.0239521715  0.005107638  9.877110e-03
## 2017-05-31  0.0068471626  0.028059772  0.0348101317 -0.022862487  1.401455e-02
## 2017-06-30 -0.0001828178  0.009223718  0.0029559935  0.029151645  6.354431e-03
## 2017-07-31  0.0033347077  0.056594597  0.0261881023  0.007481553  2.034593e-02
## 2017-08-31  0.0093691387  0.023243796 -0.0004484348 -0.027564864  2.913331e-03
## 2017-09-29 -0.0057324398 -0.000446368  0.0233427115  0.082321631  1.994945e-02
## 2017-10-31  0.0009778856  0.032278690  0.0166537760  0.005916319  2.329052e-02
## 2017-11-30 -0.0014837374 -0.003896947  0.0068700030  0.036913080  3.010792e-02
## 2017-12-29  0.0047399778  0.036925502  0.0133982347 -0.003730891  1.205503e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
    
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c (.25, .25, .2, .2, .1 ))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c (.25, .25, .2, .2, .1 )) %>% 
    
    # Transform to Long Form 
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>% 
    
    ggplot(aes(x = Asset, y = Contribution)) + geom_col(fill = "cornflowerblue") + 
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) + 
    theme(plot.title = element_text(hjust = 0.5))

    labs(title = "Percent Contribution to Portfolio Volatility")
## $title
## [1] "Percent Contribution to Portfolio Volatility"
## 
## attr(,"class")
## [1] "labels"

6 Rolling Component Contribution

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%

    #Transform to Long Form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    #Add Weight
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    #Transform to Long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq()+
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
         x = NULL)