library(ggplot2)
library(magrittr)
library(caret)
library(tidyverse)

7.2

Friedman (1991) introduced several benchmark data sets create by simulation. One of these simulations used the following nonlinear equation to create data:

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + N(0, σ2)

where the x values are random variables uniformly distributed between [0, 1] (there are also 5 other non-informative variables also created in the simulation). The package mlbench contains a function called mlbench.friedman1 that simulates these data:

library(mlbench)
 set.seed(200)
 trainingData <- mlbench.friedman1(200, sd = 1)
 
 trainingData$x <- data.frame(trainingData$x)
 
 featurePlot(trainingData$x, trainingData$y)

 testData <- mlbench.friedman1(5000, sd = 1)
 testData$x <- data.frame(testData$x)

Tune several models on these data.

Tracker

tracker <- data.frame(matrix(vector(), 0, 3,
                dimnames=list(c(), c("RMSE","Rsquared","MAE"))),
                stringsAsFactors=F)

KNN Model

knnModel <- train(x = trainingData$x,
y = trainingData$y,
method = "knn",
preProc = c("center", "scale"),
tuneLength = 10)
knnModel
## k-Nearest Neighbors 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Bootstrapped (25 reps) 
## Summary of sample sizes: 200, 200, 200, 200, 200, 200, ... 
## Resampling results across tuning parameters:
## 
##   k   RMSE      Rsquared   MAE     
##    5  3.466085  0.5121775  2.816838
##    7  3.349428  0.5452823  2.727410
##    9  3.264276  0.5785990  2.660026
##   11  3.214216  0.6024244  2.603767
##   13  3.196510  0.6176570  2.591935
##   15  3.184173  0.6305506  2.577482
##   17  3.183130  0.6425367  2.567787
##   19  3.198752  0.6483184  2.592683
##   21  3.188993  0.6611428  2.588787
##   23  3.200458  0.6638353  2.604529
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was k = 17.
knnPred <- predict(knnModel, newdata = testData$x)

tracker <- rbind(tracker, postResample(pred = knnPred, obs = testData$y))

MARS

library(earth)
control <- trainControl(method = "cv")
marsGrid <- expand.grid(.degree = 1:2, .nprune = 2:15)
marsModel <- train(trainingData$x, trainingData$y,
                  method = "earth",
                  tuneGrid = marsGrid,
                  preProcess = c("center", "scale"),
                  tuneLength = 10,
                  trControl = control)
marsModel
## Multivariate Adaptive Regression Spline 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   degree  nprune  RMSE      Rsquared   MAE     
##   1        2      4.462296  0.2176253  3.697979
##   1        3      3.720663  0.4673821  2.949121
##   1        4      2.680039  0.7094916  2.123848
##   1        5      2.333538  0.7781559  1.856629
##   1        6      2.367933  0.7754329  1.901509
##   1        7      1.809983  0.8656526  1.414985
##   1        8      1.692656  0.8838936  1.333678
##   1        9      1.704958  0.8845683  1.339517
##   1       10      1.688559  0.8842495  1.309838
##   1       11      1.669043  0.8886165  1.296522
##   1       12      1.645066  0.8892796  1.271981
##   1       13      1.655570  0.8886896  1.271232
##   1       14      1.666354  0.8879143  1.285545
##   1       15      1.666354  0.8879143  1.285545
##   2        2      4.440854  0.2204755  3.686796
##   2        3      3.697203  0.4714312  2.938566
##   2        4      2.664266  0.7149235  2.119566
##   2        5      2.313371  0.7837374  1.852172
##   2        6      2.335796  0.7875253  1.841919
##   2        7      1.833248  0.8623489  1.461538
##   2        8      1.695822  0.8883658  1.329030
##   2        9      1.555106  0.9028532  1.221365
##   2       10      1.497805  0.9088251  1.158054
##   2       11      1.419280  0.9207646  1.139722
##   2       12      1.326566  0.9315939  1.066200
##   2       13      1.266877  0.9354482  1.002983
##   2       14      1.256694  0.9349307  1.006273
##   2       15      1.311401  0.9316487  1.039213
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were nprune = 14 and degree = 2.
marsPred <- predict(marsModel, newdata = testData$x)
tracker <- rbind(tracker, postResample(pred = marsPred, obs = testData$y))

Nueral Network

nNetGrid <- expand.grid(.decay = c(0, 0.01, .1), .size = c(1:10), .bag = FALSE)
nNetMaxnwts <- 5 * (ncol(trainingData$x) + 1) + 5 + 1
nNetModel <- train(x = trainingData$x,
                    y = trainingData$y,
                    method = "avNNet",
                    preProcess = c("center", "scale"),
                    tuneGrid = nNetGrid,
                    trControl = control,
                    linout = TRUE,
                    trace = FALSE,
                    MaxNWts = nNetMaxnwts,
                    maxit = 500)
nNetModel
## Model Averaged Neural Network 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  RMSE      Rsquared   MAE     
##   0.00    1    2.409360  0.7626158  1.918956
##   0.00    2    2.495497  0.7466800  1.998154
##   0.00    3    2.042870  0.8276737  1.620556
##   0.00    4    2.218146  0.8058404  1.608860
##   0.00    5    2.290307  0.7791256  1.785130
##   0.00    6         NaN        NaN       NaN
##   0.00    7         NaN        NaN       NaN
##   0.00    8         NaN        NaN       NaN
##   0.00    9         NaN        NaN       NaN
##   0.00   10         NaN        NaN       NaN
##   0.01    1    2.441045  0.7589837  1.927773
##   0.01    2    2.408586  0.7646177  1.924190
##   0.01    3    2.094390  0.8207054  1.639698
##   0.01    4    2.019234  0.8369700  1.608611
##   0.01    5    2.186633  0.8126958  1.765935
##   0.01    6         NaN        NaN       NaN
##   0.01    7         NaN        NaN       NaN
##   0.01    8         NaN        NaN       NaN
##   0.01    9         NaN        NaN       NaN
##   0.01   10         NaN        NaN       NaN
##   0.10    1    2.451052  0.7561366  1.935306
##   0.10    2    2.439995  0.7533865  1.925580
##   0.10    3    2.142421  0.8119015  1.697562
##   0.10    4    2.021443  0.8367619  1.613081
##   0.10    5    2.058645  0.8303731  1.641058
##   0.10    6         NaN        NaN       NaN
##   0.10    7         NaN        NaN       NaN
##   0.10    8         NaN        NaN       NaN
##   0.10    9         NaN        NaN       NaN
##   0.10   10         NaN        NaN       NaN
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 4, decay = 0.01 and bag = FALSE.
nNetPred <- predict(nNetModel, newdata = testData$x)
tracker <- rbind(tracker, postResample(pred = nNetPred, obs = testData$y))

SVM

svmModel <- train(x = trainingData$x,
                   y = trainingData$y,
                   method = "svmRadial",
                   preProcess = c("center", "scale"),
                   tuneLength = 10,
                   trControl = control)
svmModel
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 200 samples
##  10 predictor
## 
## Pre-processing: centered (10), scaled (10) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 180, 180, 180, 180, 180, 180, ... 
## Resampling results across tuning parameters:
## 
##   C       RMSE      Rsquared   MAE     
##     0.25  2.485843  0.8015980  1.997058
##     0.50  2.217552  0.8191439  1.783734
##     1.00  2.038394  0.8395080  1.621050
##     2.00  1.931284  0.8537910  1.510868
##     4.00  1.875643  0.8624807  1.471216
##     8.00  1.873494  0.8639409  1.479643
##    16.00  1.886621  0.8626959  1.496953
##    32.00  1.886621  0.8626959  1.496953
##    64.00  1.886621  0.8626959  1.496953
##   128.00  1.886621  0.8626959  1.496953
## 
## Tuning parameter 'sigma' was held constant at a value of 0.0623323
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were sigma = 0.0623323 and C = 8.
svmPred <- predict(svmModel, newdata = testData$x)
tracker <- rbind(tracker, postResample(pred = svmPred, obs = testData$y))
colnames(tracker) <- c("RMSE","Rsquared","MAE")
tracker$NAME <- c("KNN", "MARS", "Neural Network", "SVM")
tracker <- tracker %>% relocate("NAME") %>% arrange(RMSE)
tracker
##             NAME     RMSE  Rsquared      MAE
## 1           MARS 1.277999 0.9338365 1.014707
## 2            SVM 2.051520 0.8294511 1.556470
## 3 Neural Network 2.061504 0.8305890 1.561138
## 4            KNN 3.204059 0.6819919 2.568346

Which models appear to give the best performance? Does MARS select the informative predictors (those named X1–X5)?

From the table above, we can see that the MARS model gave the best performance.

varImp(marsModel)
## earth variable importance
## 
##    Overall
## X1  100.00
## X4   75.40
## X2   49.00
## X5   15.72
## X3    0.00

The MARS model important variables output shows that the model did select the informative predictors (X1-X5).

7.5

Exercise 6.3 describes data for a chemical manufacturing process. Use the same data imputation, data splitting, and pre-processing steps as before and train several nonlinear regression models.

library(AppliedPredictiveModeling)
data("ChemicalManufacturingProcess")

preProcess <- preProcess(ChemicalManufacturingProcess, 
                   method = c("BoxCox", "knnImpute", "center", "scale"))
predPreProcess <- predict(preProcess, ChemicalManufacturingProcess)

predPreProcess$Yield = ChemicalManufacturingProcess$Yield


ind <- sample(seq_len(nrow(predPreProcess)), size = floor(0.85 * nrow(predPreProcess)))
train <- predPreProcess[ind, ]
test <- predPreProcess[-ind, ]
## KNN Model
knnModel2 <- train(Yield ~., data = train,
                  method = "knn",
                  preProcess = c("center", "scale"),
                  tuneLength = 10)
knnPred2 <- predict(knnModel2, newdata = test)

## Neural Networks Model
nNetModel2 <- train(Yield ~., data = train,
                  method = "avNNet",
                  tuneGrid = nNetGrid,
                  trControl = control,
                  linout = TRUE,
                  trace = FALSE,
                  MaxNWts = 5 * (ncol(train)) + 5 + 1,
                  maxit = 500
                  )
nNetPred2 <- predict(nNetModel2, newdata = test)

## MARS Model
marsModel2 <- train(Yield ~., data=train,
                   method = "earth",
                   tuneGrid = marsGrid,
                   trControl = control)
marsPred2 <- predict(marsModel2, newdata = test)

## SVM Model
svmModel2 <- train(Yield ~., data=train,
                   method = "svmRadial",
                   tuneLength = 15,
                   trControl = control)
svmPred2 <- predict(svmModel2, newdata = test)

A

Which nonlinear regression model gives the optimal resampling and test set performance?

as.data.frame(rbind(
  "mars" = postResample(pred = marsPred2, obs = test$Yield),
  "svm" = postResample(pred = svmPred2, obs = test$Yield),
  "net" = postResample(pred = nNetPred2, obs = test$Yield),
  "knn" = postResample(pred = knnPred2, obs = test$Yield)
)) %>% arrange(RMSE)
##          RMSE  Rsquared       MAE
## svm  1.014420 0.6276394 0.8039693
## mars 1.134006 0.4894321 0.8214562
## knn  1.340323 0.2917927 1.0227407
## net  1.388866 0.4166196 1.0445468

If we look at the RMSE values from both tables, we can see that the SVM model gives the optimal test performance.

B

Which predictors are most important in the optimal nonlinear regression model? Do either the biological or process variables dominate the list? How do the top ten important predictors compare to the top ten predictors from the optimal linear model?

varImp(svmModel2, 10)
## loess r-squared variable importance
## 
##   only 20 most important variables shown (out of 57)
## 
##                        Overall
## ManufacturingProcess32  100.00
## ManufacturingProcess13   98.51
## BiologicalMaterial06     86.05
## ManufacturingProcess17   79.53
## ManufacturingProcess36   76.05
## ManufacturingProcess09   74.29
## BiologicalMaterial03     73.83
## BiologicalMaterial02     73.69
## BiologicalMaterial12     71.02
## ManufacturingProcess06   66.79
## ManufacturingProcess31   65.61
## BiologicalMaterial11     55.47
## ManufacturingProcess29   53.14
## BiologicalMaterial04     51.72
## BiologicalMaterial08     50.22
## ManufacturingProcess11   48.82
## ManufacturingProcess33   48.56
## BiologicalMaterial01     46.91
## ManufacturingProcess02   46.26
## BiologicalMaterial09     41.69

The SVM model was optimal for nonlinear regression, and the table above shows the most important predictors. There seems to be an equal number of biological and process variables.

The results for 6.3 shows that the optimal linear model was the PLS model. The most important variables list from the PLS model showed that the Manufacturing Process variables were dominating.

C

Explore the relationships between the top predictors and the response for the predictors that are unique to the optimal nonlinear regression model. Do these plots reveal intuition about the biological or process predictors and their relationship with yield?

varI <- varImp(svmModel2)$importance
varI <- cbind(rownames(varI), data.frame(varI, row.names=NULL))
colnames(varI) <- c("Predictor","Overall")
varI <- varI %>% arrange(Overall) %>% tail(10) %>% select(Predictor)
variables <- as.vector(varI$Predictor)
featurePlot(predPreProcess[,variables], predPreProcess$Yield) 

Looking at the relationship of 10 most important variables with the target variable, we see that a majority of them are tightly clustered and have a linear relationship. All biological material variables are clusters, but some manufacturing process variables a unique relationship (variable 6 and variable 10).