# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

1 Import stock prices

symbols <- c("AAPL", "MMM", "MSFT", "AMZN", "TSLA")
prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2022-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    pivot_wider(names_from = asset, values_from = returns) %>%
    column_to_rownames(var = "date")
asset_returns_wide_tbl
##                     AAPL          AMZN           MMM         MSFT         TSLA
## 2013-01-31 -1.555890e-01  0.0566799640  7.966964e-02  0.027328325  0.102078031
## 2013-02-28 -2.561096e-02 -0.0046435329  3.989242e-02  0.020915312 -0.074128613
## 2013-03-28  2.850439e-03  0.0083654117  2.196836e-02  0.028720037  0.084208141
## 2013-04-30  2.710890e-04 -0.0487507638 -1.516467e-02  0.145776924  0.354111527
## 2013-05-31  2.217174e-02  0.0588686422  5.742273e-02  0.059941419  0.593716693
## 2013-06-28 -1.258955e-01  0.0310507858 -8.378334e-03 -0.010368706  0.093672182
## 2013-07-31  1.321020e-01  0.0813355112  7.128868e-02 -0.081394862  0.223739545
## 2013-08-30  8.044268e-02 -0.0695574024 -2.781830e-02  0.054854602  0.229971572
## 2013-09-30 -2.172311e-02  0.1067688764  5.005569e-02 -0.003599296  0.134706682
## 2013-10-31  9.201532e-02  0.1521839130  5.252784e-02  0.062037466 -0.189806650
## 2013-11-29  6.770783e-02  0.0781496951  6.398034e-02  0.081562362 -0.228409431
## 2013-12-31  8.862583e-03  0.0130490358  4.925005e-02 -0.019063475  0.167108548
## 2014-01-31 -1.139494e-01 -0.1059765070 -8.991294e-02  0.011429161  0.187261770
## 2014-02-28  5.591824e-02  0.0094619111  5.630829e-02  0.019814741  0.299722757
## 2014-03-31  1.975637e-02 -0.0737086127  6.879096e-03  0.067617291 -0.160783192
## 2014-04-30  9.476110e-02 -0.1007565625  2.496919e-02 -0.014498367 -0.002690159
## 2014-05-30  7.576538e-02  0.0273092148  3.068765e-02  0.020307595 -0.000577395
## 2014-06-30  2.728594e-02  0.0383835737  4.828692e-03  0.018393740  0.144457218
## 2014-07-31  2.832635e-02 -0.0369767889 -1.654205e-02  0.034412909 -0.072372711
## 2014-08-29  7.465198e-02  0.0799468534  2.777896e-02  0.057484943  0.188794049
## 2014-09-30 -1.722081e-02 -0.0502010221 -1.624293e-02  0.020264250 -0.105566506
## 2014-10-31  6.948875e-02 -0.0540982353  8.188728e-02  0.012646379 -0.004046457
## 2014-11-28  1.007311e-01  0.1031187000  4.563109e-02  0.024438812  0.011599756
## 2014-12-31 -7.460604e-02 -0.0872368443  2.608000e-02 -0.028858429 -0.094774520
## 2015-01-30  5.961131e-02  0.1330922758 -1.236996e-02 -0.139546831 -0.088365243
## 2015-02-27  9.601592e-02  0.0697991955  4.458010e-02  0.089036432 -0.001277805
## 2015-03-31 -3.187409e-02 -0.0214295288 -2.218331e-02 -0.075529620 -0.074350086
## 2015-04-30  5.769513e-03  0.1253212631 -5.328944e-02  0.179201478  0.180226844
## 2015-05-29  4.434117e-02  0.0175090073  2.335812e-02 -0.030804142  0.103899535
## 2015-06-30 -3.793796e-02  0.0112589801 -3.050858e-02 -0.059571228  0.067300966
## 2015-07-31 -3.348104e-02  0.2111621241 -1.936995e-02  0.056151196 -0.007896618
## 2015-08-31 -6.848885e-02 -0.0443525737 -5.578118e-02 -0.063951069 -0.066366266
## 2015-09-30 -2.205791e-02 -0.0019516780 -2.606465e-03  0.016860571 -0.002653542
## 2015-10-30  8.011268e-02  0.2010808557  1.033767e-01  0.173395261 -0.182659742
## 2015-11-30 -5.821392e-03  0.0602956898  2.533380e-03  0.038685904  0.106828579
## 2015-12-31 -1.167902e-01  0.0165439780 -3.867423e-02  0.020578017  0.041471546
## 2016-01-29 -7.822373e-02 -0.1410054619  2.386944e-03 -0.007054279 -0.227360646
## 2016-02-29 -1.288217e-03 -0.0605352242  4.533664e-02 -0.072344369  0.003810669
## 2016-03-31  1.197462e-01  0.0717834457  6.035869e-02  0.082036588  0.179948112
## 2016-04-29 -1.507312e-01  0.1053453885  4.490580e-03 -0.102086783  0.046721799
## 2016-05-31  6.931408e-02  0.0915002937  1.223707e-02  0.067842343 -0.075597977
## 2016-06-30 -4.359620e-02 -0.0099694796  3.960428e-02 -0.035138500 -0.050296472
## 2016-07-29  8.623522e-02  0.0586021200  1.833246e-02  0.102267968  0.100785361
## 2016-08-31  2.337665e-02  0.0135476463  1.113352e-02  0.019881054 -0.102058076
## 2016-09-30  6.344796e-02  0.0848953859 -1.693573e-02  0.002433625 -0.038366402
## 2016-10-31  4.324992e-03 -0.0583892995 -6.402805e-02  0.039487747 -0.031364578
## 2016-11-30 -2.183760e-02 -0.0509721788  4.461062e-02  0.012390911 -0.043041257
## 2016-12-30  4.684083e-02 -0.0009330597  3.899894e-02  0.030721416  0.120665160
## 2017-01-31  4.664165e-02  0.0936394046 -2.122354e-02  0.039598250  0.164624944
## 2017-02-28  1.255552e-01  0.0258446771  7.036077e-02 -0.004373343 -0.007730394
## 2017-03-31  4.754171e-02  0.0479423059  2.637319e-02  0.028960773  0.107278734
## 2017-04-28 -6.984302e-05  0.0424566809  2.324727e-02  0.038718091  0.120916240
## 2017-05-31  6.560732e-02  0.0725778079  4.912913e-02  0.025672934  0.082295867
## 2017-06-30 -5.891581e-02 -0.0271286060  1.802967e-02 -0.013115395  0.058654469
## 2017-07-31  3.218019e-02  0.0202278723 -3.430083e-02  0.053250049 -0.111459838
## 2017-08-31  1.016533e-01 -0.0072953921  2.127236e-02  0.033389089  0.095543417
## 2017-09-29 -6.213504e-02 -0.0198260414  2.694387e-02 -0.003752233 -0.042474117
## 2017-10-31  9.240386e-02  0.1395154081  9.227389e-02  0.110342313 -0.028457431
## 2017-11-30  2.007541e-02  0.0626577388  5.976449e-02  0.016841122 -0.070862536
## 2017-12-29 -1.536329e-02 -0.0062057977 -3.247853e-02  0.016145640  0.008061927
## 2018-01-31 -1.069370e-02  0.2156265512  6.230005e-02  0.104997966  0.129254601
## 2018-02-28  6.596104e-02  0.0415536373 -5.582635e-02 -0.008450622 -0.032266877
## 2018-03-29 -5.980371e-02 -0.0440034786 -7.030986e-02 -0.027022993 -0.253920406
## 2018-04-30 -1.513383e-02  0.0788802990 -1.215769e-01  0.024353128  0.099254538
## 2018-05-31  1.267418e-01  0.0397392491  2.132014e-02  0.059652055 -0.031698143
## 2018-06-29 -9.462591e-03  0.0421636779 -2.589330e-03 -0.002329705  0.186043287
## 2018-07-31  2.759906e-02  0.0446635758  7.631330e-02  0.073020979 -0.140021525
## 2018-08-31  1.826730e-01  0.1243079035  6.450937e-05  0.061088346  0.011737398
## 2018-09-28 -8.337664e-03 -0.0048359762 -9.959471e-04  0.017997770 -0.130439016
## 2018-10-31 -3.095160e-02 -0.2258870091 -1.020912e-01 -0.068387157  0.242170573
## 2018-11-30 -1.999125e-01  0.0560700362  9.556761e-02  0.041797846  0.038271593
## 2018-12-31 -1.240885e-01 -0.1180514840 -8.729117e-02 -0.087790572 -0.051761993
## 2019-01-31  5.368660e-02  0.1348080379  4.995407e-02  0.027769034 -0.080628787
## 2019-02-28  4.380316e-02 -0.0469930675  4.167471e-02  0.074511243  0.041033018
## 2019-03-29  9.260262e-02  0.0824420113  1.878857e-03  0.051409226 -0.133656450
## 2019-04-30  5.490094e-02  0.0786806236 -9.203814e-02  0.101963460 -0.159123800
## 2019-05-31 -1.326324e-01 -0.0818753437 -1.623119e-01 -0.050747040 -0.253945344
## 2019-06-28  1.226769e-01  0.0646557723  8.164481e-02  0.079843588  0.188012089
## 2019-07-31  7.361708e-02 -0.0142806642  7.929657e-03  0.017097001  0.078092368
## 2019-08-30 -1.659814e-02 -0.0496880811 -6.820927e-02  0.014924932 -0.068516906
## 2019-09-30  7.042265e-02 -0.0229951136  1.643595e-02  0.008451202  0.065449564
## 2019-10-31  1.049766e-01  0.0232034025  3.582378e-03  0.030738739  0.268061223
## 2019-11-29  7.469374e-02  0.0134958246  3.718012e-02  0.057761681  0.046592166
## 2019-12-31  9.420395e-02  0.0257863460  3.842269e-02  0.040901179  0.237359751
## 2020-01-31  5.260174e-02  0.0834803057 -1.061039e-01  0.076455997  0.441578346
## 2020-02-28 -1.218302e-01 -0.0642332025 -5.219288e-02 -0.046764868  0.026424249
## 2020-03-31 -7.231445e-02  0.0344213016 -8.915796e-02 -0.026900097 -0.242781463
## 2020-04-30  1.444240e-01  0.2381504772  1.069562e-01  0.127800391  0.400209547
## 2020-05-29  8.166673e-02 -0.0128673704  3.918810e-02  0.025074353  0.065730498
## 2020-06-30  1.374867e-01  0.1218341292 -2.880672e-03  0.104863712  0.257108653
## 2020-07-31  1.528339e-01  0.1372488981 -3.602822e-02  0.007343591  0.281420680
## 2020-08-31  1.960350e-01  0.0866005697  8.917032e-02  0.097808848  0.554719315
## 2020-09-30 -1.081715e-01 -0.0916533239 -1.757491e-02 -0.069775492 -0.149762308
## 2020-10-30 -6.188830e-02 -0.0364089200 -1.374264e-03 -0.038085982 -0.100371771
## 2020-11-30  9.120473e-02  0.0425228235  8.541936e-02  0.058326051  0.380308523
## 2020-12-31  1.084719e-01  0.0276719595  1.185548e-02  0.038264301  0.217730754
## 2021-01-29 -5.516534e-03 -0.0156985927  4.965284e-03  0.041997601  0.117343701
## 2021-02-26 -8.306871e-02 -0.0359675611  4.785130e-03  0.004109520 -0.161038203
## 2021-03-31  7.312761e-03  0.0003717143  9.590186e-02  0.014482715 -0.011269836
## 2021-04-30  7.345281e-02  0.1139202371  2.288347e-02  0.067286365  0.060292565
## 2021-05-28 -5.181659e-02 -0.0730764730  3.682067e-02 -0.007656588 -0.126372344
## 2021-06-30  9.449995e-02  0.0651836186 -2.195916e-02  0.081569662  0.083547956
## 2021-07-30  6.295836e-02 -0.0332696344 -3.479903e-03  0.050423609  0.010973846
## 2021-08-31  4.161137e-02  0.0421339383 -8.693994e-03  0.059768971  0.068224264
## 2021-09-30 -7.046188e-02 -0.0550034402 -1.044823e-01 -0.068406528  0.052632613
## 2021-10-29  5.700140e-02  0.0262547660  1.841341e-02  0.162366493  0.362230204
## 2021-11-30  9.991938e-02  0.0391473427 -4.145772e-02 -0.001283013  0.027237847
## 2021-12-31  7.160291e-02 -0.0505062023  4.366925e-02  0.017184254 -0.079968439
## 2022-01-31 -1.583675e-02 -0.1085098100 -6.759462e-02 -0.078334521 -0.120597477
## 2022-02-28 -5.558243e-02  0.0263230081 -1.008936e-01 -0.037921966 -0.073397011
## 2022-03-31  5.588263e-02  0.0596239187  1.546153e-03  0.031364707  0.213504290
## 2022-04-29 -1.021778e-01 -0.2711856809 -3.180081e-02 -0.105212880 -0.213125290
## 2022-05-31 -5.603707e-02 -0.0333130912  4.460586e-02 -0.018242486 -0.138340063
## 2022-06-30 -8.493690e-02 -0.1238178220 -1.429050e-01 -0.056909736 -0.118657123
## 2022-07-29  1.728044e-01  0.2394860603  1.015359e-01  0.089014717  0.280480148
## 2022-08-31 -3.170532e-02 -0.0625299199 -1.312113e-01 -0.068989078 -0.075250273
## 2022-09-30 -1.289443e-01 -0.1149865786 -1.180847e-01 -0.115710390 -0.038313991
## 2022-10-31  1.039558e-01 -0.0981105379  1.295984e-01 -0.003311601 -0.153346761
## 2022-11-30 -3.358521e-02 -0.0593198403  1.307113e-02  0.097329063 -0.155866119
## 2022-12-30 -1.304191e-01 -0.1391406417 -4.921897e-02 -0.061923768 -0.457813197
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)
covariance_matrix
##             AAPL        AMZN         MMM        MSFT        TSLA
## AAPL 0.006606496 0.003512598 0.002071260 0.002547258 0.005598654
## AMZN 0.003512598 0.007533033 0.001988012 0.002838125 0.005205806
## MMM  0.002071260 0.001988012 0.003406897 0.001396060 0.002129166
## MSFT 0.002547258 0.002838125 0.001396060 0.003614410 0.003744153
## TSLA 0.005598654 0.005205806 0.002129166 0.003744153 0.029457675
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.06106988
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##           AAPL      AMZN        MMM        MSFT       TSLA
## [1,] 0.0164293 0.0173867 0.00716663 0.008917179 0.01117007
rowSums(component_contribution)
## [1] 0.06106988
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()
component_percentages
## # A tibble: 1 × 5
##    AAPL  AMZN   MMM  MSFT  TSLA
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.269 0.285 0.117 0.146 0.183
component_percentages %>%
    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AAPL         0.269
## 2 AMZN         0.285
## 3 MMM          0.117
## 4 MSFT         0.146
## 5 TSLA         0.183

6 Plot: Colum Chart of Component Contribution and Weight

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    pivot_wider(names_from = asset, values_from = returns) %>%
    column_to_rownames(var = "date")
# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {
    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##    AAPL  AMZN   MMM  MSFT  TSLA
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.269 0.285 0.117 0.146 0.183
asset_returns_wide_tbl %>%
    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%
    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +
    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset")

Which of the assets in your portfolio the largest contributor to the portfolio volatility? Do you think your portfolio risk is concentrated in any one asset?

In my portfolio the stock with the largest contribution of volatility is AMZN. I would not say the portfolio risk is contributed in any one asset, however most of the risk is in AMZN and AAPL ut they also carry the most weight. We can see that TSLA is the carrying a lot more risk for the portfolio compared to the weight it carries.