Import your data

data("mtcars")
mtcars <- as_tibble(mtcars)

myData <- read_excel("../00_data/myData_charts1.xlsx")
myData
## # A tibble: 10,879 × 8
##    team          team_name  year   total   home   away  week weekly_attendance
##    <chr>         <chr>     <dbl>   <dbl>  <dbl>  <dbl> <dbl> <chr>            
##  1 San Francisco 49ers      2000 1057954 541964 515990     1 54626            
##  2 San Francisco 49ers      2000 1057954 541964 515990     2 66879            
##  3 San Francisco 49ers      2000 1057954 541964 515990     3 65945            
##  4 San Francisco 49ers      2000 1057954 541964 515990     4 64127            
##  5 San Francisco 49ers      2000 1057954 541964 515990     5 66985            
##  6 San Francisco 49ers      2000 1057954 541964 515990     6 68344            
##  7 San Francisco 49ers      2000 1057954 541964 515990     7 59870            
##  8 San Francisco 49ers      2000 1057954 541964 515990     8 73169            
##  9 San Francisco 49ers      2000 1057954 541964 515990     9 68109            
## 10 San Francisco 49ers      2000 1057954 541964 515990    10 64900            
## # … with 10,869 more rows

Repeat the same operation over different columns of a data frame

Case of numeric variables

mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x))
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
mtcars %>% map(.f = ~mean(x = .x))
## $mpg
## [1] 20.09062
## 
## $cyl
## [1] 6.1875
## 
## $disp
## [1] 230.7219
## 
## $hp
## [1] 146.6875
## 
## $drat
## [1] 3.596563
## 
## $wt
## [1] 3.21725
## 
## $qsec
## [1] 17.84875
## 
## $vs
## [1] 0.4375
## 
## $am
## [1] 0.40625
## 
## $gear
## [1] 3.6875
## 
## $carb
## [1] 2.8125
mtcars %>% map_dbl(mean)
##        mpg        cyl       disp         hp       drat         wt       qsec 
##  20.090625   6.187500 230.721875 146.687500   3.596563   3.217250  17.848750 
##         vs         am       gear       carb 
##   0.437500   0.406250   3.687500   2.812500
# Adding an argument
mtcars %>% map_dbl(.x = ., .f = ~mean(x = .x, trim = 0.1))
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% map_dbl(mean, trim = 0.1)
##         mpg         cyl        disp          hp        drat          wt 
##  19.6961538   6.2307692 222.5230769 141.1923077   3.5792308   3.1526923 
##        qsec          vs          am        gear        carb 
##  17.8276923   0.4230769   0.3846154   3.6153846   2.6538462
mtcars %>% select(.data = .,mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # … with 22 more rows
mtcars %>% select(mpg)
## # A tibble: 32 × 1
##      mpg
##    <dbl>
##  1  21  
##  2  21  
##  3  22.8
##  4  21.4
##  5  18.7
##  6  18.1
##  7  14.3
##  8  24.4
##  9  22.8
## 10  19.2
## # … with 22 more rows

Create your own function

# Double values in columns
double_by_factor <- function(x, factor) {x * factor}

10 %>% double_by_factor(factor = 2)
## [1] 20
mtcars %>% map_dfr(.x = ., .f = ~double_by_factor(factor = 10, x = .x))
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # … with 22 more rows
mtcars %>% map_dfr(double_by_factor, factor = 10)
## # A tibble: 32 × 11
##      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
##    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
##  1   210    60  1600  1100  39    26.2  165.     0    10    40    40
##  2   210    60  1600  1100  39    28.8  170.     0    10    40    40
##  3   228    40  1080   930  38.5  23.2  186.    10    10    40    10
##  4   214    60  2580  1100  30.8  32.2  194.    10     0    30    10
##  5   187    80  3600  1750  31.5  34.4  170.     0     0    30    20
##  6   181    60  2250  1050  27.6  34.6  202.    10     0    30    10
##  7   143    80  3600  2450  32.1  35.7  158.     0     0    30    40
##  8   244    40  1467   620  36.9  31.9  200     10     0    40    20
##  9   228    40  1408   950  39.2  31.5  229     10     0    40    20
## 10   192    60  1676  1230  39.2  34.4  183     10     0    40    40
## # … with 22 more rows

Repeat the same operation over different elements of a list

When you have a grouping variable (factor)

mtcars %>% lm(formula = mpg ~ wt, data = .)
## 
## Call:
## lm(formula = mpg ~ wt, data = .)
## 
## Coefficients:
## (Intercept)           wt  
##      37.285       -5.344
mtcars %>% distinct(cyl)
## # A tibble: 3 × 1
##     cyl
##   <dbl>
## 1     6
## 2     4
## 3     8
regression_coefficient_tibble <- mtcars %>%
    
    # Split to a list of data frames
    split(.$cyl)%>%

    # Repeat regression over each group
    
    map(~lm(formula = mpg ~ wt, data = .)) %>%
    
    # Extract coefficient from regression results
    map(broom::tidy, conf.int = TRUE) %>%
    
    # Convert to tibble
    bind_rows(.id = "cyl") %>%
    
    # Filter wt coefficients
    filter(term == "wt")
regression_coefficient_tibble%>%
    
    mutate(estimate = -estimate,
           conf.low = -conf.low,
           conf.high = -conf.high) %>%
    
    ggplot(aes(x = estimate,y = cyl)) +
    geom_point() +
    geom_errorbar(aes(xmin = conf.low, xmax = conf.high))

Create your own

Choose either one of the two cases above and apply it to your data

myData %>% map_dbl(mean)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
##              team         team_name              year             total 
##                NA                NA                NA                NA 
##              home              away              week weekly_attendance 
##          540455.3                NA                NA                NA
#Adding an argument
myData %>% map_dbl(mean, trim = 0.1)
## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA

## Warning in mean.default(.x[[i]], ...): argument is not numeric or logical:
## returning NA
##              team         team_name              year             total 
##                NA                NA                NA                NA 
##              home              away              week weekly_attendance 
##          542074.9                NA                NA                NA
myData %>% select(home)
## # A tibble: 10,879 × 1
##      home
##     <dbl>
##  1 541964
##  2 541964
##  3 541964
##  4 541964
##  5 541964
##  6 541964
##  7 541964
##  8 541964
##  9 541964
## 10 541964
## # … with 10,869 more rows
double_by_factor <- function(x, factor) {x * factor}
100 %>% double_by_factor(factor = 50)
## [1] 5000
#myData %>% map_dfr(double_by_factor, factor = 100)