This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

Load Packages

install.packages("remotes")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.2'
## (as 'lib' is unspecified)
remotes::install_github("knapply/homophily")
## Skipping install of 'homophily' from a github remote, the SHA1 (78dc6841) has not changed since last install.
##   Use `force = TRUE` to force installation
library("homophily")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2) 
library(ggraph)
library(igraph)
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:dplyr':
## 
##     as_data_frame, groups, union
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(tidygraph)
## 
## Attaching package: 'tidygraph'
## The following object is masked from 'package:igraph':
## 
##     groups
## The following object is masked from 'package:stats':
## 
##     filter
library(readr)
library(tibble)
## 
## Attaching package: 'tibble'
## The following object is masked from 'package:igraph':
## 
##     as_data_frame
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ lubridate::%--%()       masks igraph::%--%()
## ✖ tibble::as_data_frame() masks igraph::as_data_frame(), dplyr::as_data_frame()
## ✖ purrr::compose()        masks igraph::compose()
## ✖ tidyr::crossing()       masks igraph::crossing()
## ✖ tidygraph::filter()     masks dplyr::filter(), stats::filter()
## ✖ dplyr::lag()            masks stats::lag()
## ✖ purrr::simplify()       masks igraph::simplify()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(tidyr)
library(datasets)

Load Dataset

#see this website https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ZZH3UB}
DLT1_Edgelist <- read_csv("DLT1 Edgelist.csv")
## Rows: 2529 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (7): Timestamp, Discussion Title, Discussion Category, Parent Category, ...
## dbl (3): Sender, Receiver, Comment ID
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
DLT1_Nodes <- read_csv("DLT1 Nodes.csv")
## Rows: 445 Columns: 13
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (10): role1, experience2, grades, location, region, country, group, gend...
## dbl  (3): UID, Facilitator, experience
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Isolate variables in Edge List

select(DLT1_Edgelist, Sender, Receiver, Timestamp, `Discussion Category`, `Comment ID`, `Discussion ID`) -> DLT1_Edgelist2

Create df without the discussion groups

?read.csv
DLT1_Edgelist2[!grepl('Group', DLT1_Edgelist2$'Discussion Category'),] -> DLT1_EdgeNoDisc

Create df with only the discussion groups

DLT1_EdgeDisc <- anti_join(DLT1_Edgelist2, DLT1_EdgeNoDisc)
## Joining with `by = join_by(Sender, Receiver, Timestamp, `Discussion Category`,
## `Comment ID`, `Discussion ID`)`

Above df contained a few extra values that I did not want, so I will exclude them.

DLT1_EdgeDisc[!grepl('Self-Assessment', DLT1_EdgeDisc$'Discussion Category'),] -> DLT1_EdgeDisc2

Create Network Objects based on the whole network

dlt1_network_grup <- tbl_graph(edges = DLT1_EdgeDisc2,
                          nodes = DLT1_Nodes,
                          node_key = "uid",
                          directed = TRUE)

DLT1_Network_ungrup <- tbl_graph(edges = DLT1_EdgeNoDisc,
                          nodes = DLT1_Nodes,
                          node_key = "uid",
                          directed = TRUE)

Graph the networks and determine the number of cliques

plot(dlt1_network_grup)

plot(DLT1_Network_ungrup)

autograph(dlt1_network_grup)

autograph(DLT1_Network_ungrup)

?clique_size_counts

clique_num(dlt1_network_grup)
## Warning in clique_num(dlt1_network_grup): At
## core/cliques/maximal_cliques_template.h:268 : Edge directions are ignored for
## maximal clique calculation.
## [1] 6
clique_num(DLT1_Network_ungrup)
## Warning in clique_num(DLT1_Network_ungrup): At
## core/cliques/maximal_cliques_template.h:268 : Edge directions are ignored for
## maximal clique calculation.
## [1] 8
clique_size_counts(dlt1_network_grup)
## Warning in clique_size_hist_impl(graph, min, max, ...): At
## core/cliques/cliquer_wrapper.c:57 : Edge directions are ignored for clique
## calculations.
## [1] 445 943 582 133  16   1
clique_size_counts(DLT1_Network_ungrup)
## Warning in clique_size_hist_impl(graph, min, max, ...): At
## core/cliques/cliquer_wrapper.c:57 : Edge directions are ignored for clique
## calculations.
## [1] 445 877 998 672 244  50   8   1

The cliques are a jumbled mess, isolated around the professors, so I will create new networks and graph them to see how the network changes

DLT1_EdgeDisc2[!grepl('444', DLT1_EdgeDisc2$'Sender'),] -> DLT1_EdgeDisc_no444
DLT1_EdgeDisc_no444[!grepl('445', DLT1_EdgeDisc_no444$'Sender'),] -> DLT1_EdgeDisc_noProf_Send
DLT1_EdgeDisc_noProf_Send[!grepl('444', DLT1_EdgeDisc_noProf_Send$'Receiver'),] -> DLT1_EdgeDisc_Send_no444
DLT1_EdgeDisc_Send_no444[!grepl('445', DLT1_EdgeDisc_Send_no444$'Receiver'),] -> DLT1_EdgeDisc_noProf

DLT1_EdgeNoDisc[!grepl('444', DLT1_EdgeNoDisc$'Sender'),] -> DLT1_EdgeNoDisc_no444
DLT1_EdgeNoDisc_no444[!grepl('445', DLT1_EdgeNoDisc_no444$'Sender'),] -> DLT1_EdgeNoDisc_noProf_Send
DLT1_EdgeNoDisc_noProf_Send[!grepl('444', DLT1_EdgeNoDisc_noProf_Send$'Receiver'),] -> DLT1_EdgeNoDisc_no444_Send
DLT1_EdgeNoDisc_no444_Send[!grepl('445', DLT1_EdgeNoDisc_no444_Send$'Receiver'),] -> DLT1_EdgeNoDisc_noProf


DLT1_Nodes[!grepl('444', DLT1_Nodes$'UID'),] -> DLT1_Nodes_no444
DLT1_Nodes_no444[!grepl('445', DLT1_Nodes_no444$'UID'),] -> DLT1_Nodes_noProf



DLT1_Networknoprof_ungrup <- tbl_graph(edges = DLT1_EdgeNoDisc_noProf,
                          nodes = DLT1_Nodes_noProf,
                          node_key = "uid",
                          directed = TRUE)

DLT1_networknoprof_grup <- tbl_graph(edges = DLT1_EdgeDisc_noProf,
                          nodes = DLT1_Nodes_noProf,
                          node_key = "uid",
                          directed = TRUE)



plot(DLT1_networknoprof_grup)

plot(DLT1_Networknoprof_ungrup)

autograph(DLT1_networknoprof_grup)

autograph(DLT1_Networknoprof_ungrup)

?clique_size_counts

clique_num(DLT1_networknoprof_grup)
## Warning in clique_num(DLT1_networknoprof_grup): At
## core/cliques/maximal_cliques_template.h:268 : Edge directions are ignored for
## maximal clique calculation.
## [1] 5
clique_num(DLT1_Networknoprof_ungrup)
## Warning in clique_num(DLT1_Networknoprof_ungrup): At
## core/cliques/maximal_cliques_template.h:268 : Edge directions are ignored for
## maximal clique calculation.
## [1] 6
clique_size_counts(DLT1_networknoprof_grup)
## Warning in clique_size_hist_impl(graph, min, max, ...): At
## core/cliques/cliquer_wrapper.c:57 : Edge directions are ignored for clique
## calculations.
## [1] 443 574 163  18   2
clique_size_counts(DLT1_Networknoprof_ungrup)
## Warning in clique_size_hist_impl(graph, min, max, ...): At
## core/cliques/cliquer_wrapper.c:57 : Edge directions are ignored for clique
## calculations.
## [1] 443 720 547 204  33   1

The number of unengaged people rises once the professors and interactions with them are removed. Moreover, the grouped chart clusters into five distinct groups. I will try to separate the clusters and establish n-cliques, those cliques separated by at least n ties.

?connect.neighborhood

plot(connect.neighborhood(DLT1_networknoprof_grup, order = 2))

plot(connect.neighborhood(DLT1_Networknoprof_ungrup, order = 2))

autograph(connect.neighborhood(DLT1_networknoprof_grup, order = 2))

autograph(connect.neighborhood(DLT1_Networknoprof_ungrup, order = 2))

clique_num(connect.neighborhood(DLT1_networknoprof_grup, order = 2))
## Warning in clique_num(connect.neighborhood(DLT1_networknoprof_grup, order =
## 2)): At core/cliques/maximal_cliques_template.h:268 : Edge directions are
## ignored for maximal clique calculation.
## [1] 27
clique_num(connect.neighborhood(DLT1_Networknoprof_ungrup, order = 2))
## Warning in clique_num(connect.neighborhood(DLT1_Networknoprof_ungrup, order =
## 2)): At core/cliques/maximal_cliques_template.h:268 : Edge directions are
## ignored for maximal clique calculation.
## [1] 48

That method did not seem to work, instead tightening the clustering. Nonetheless, one can still see that in the original graph, there are distinct clusters. I will graph those later. For now, I will focus on determining the data metrics for each of the four networks created: grouped and ungrouped networks with and without professors. For sake of ease, I placed a “k” before the text, since the resulting table is long. The following section does much the same thing.

DLT1_networknoprof_grup |> centr_degree() |> as_tibble() |> select(centralization) |> unique()
centr_degree(DLT1_networknoprof_grup)
## $res
##   [1]  9  0  4  4  7  5 10  6  3  2 24  5  5  3  9  0  7  4  8  0  2  8  6 16 10
##  [26]  7 10  0 10 14  1  9  7  9  7 11  8  5  7  0  0  0  0 24  0  2  0  0  6  9
##  [51]  7  6  7 16  2  0  8 11 16 23 16  1  8 22  2  5 12 13  7  3  5  3  2  9  4
##  [76]  0  1  1  3  4  7  0  1  0  1  0  6  9  1  3 13 11  1  4  6  5  3  5  2  5
## [101]  6  1  8  8  3  6 12  0  3  0  0  4  9  2  8 27  6  6  5  2  5  3  4  1  1
## [126]  1  1 14 10  1  2  1  5  0  0 10 12  4  2  3  3  7  3  9  2  1  3  2  1  2
## [151]  2  4  3  6  1  2  5  7  4  2  4  4  3  1  6  2 11  2  3  5  4  5  8  2  5
## [176]  6  0  6  3  1  0  0  1  2  7  1  2  2  2  1  0  0 17  0  4  0  2 14  4  2
## [201] 12  5  3  0 13  2  3  6  0  0  0  2  1  1  1  4  7  3 21  0  0  0 11  1  0
## [226] 10  0  0  0  1  0  0  1 36  1  1  1  2  2  1  2  2  1  1  2  0  2  0  3  2
## [251]  4  1  1  2  1  4  1  2  1  1  1  1  1  1  3  5  0  8  3  2  0  2  0  0  0
## [276]  1  0  2  0  1  5  0  1  1  6  2  0  1  0  0  0  1  0  1  3  1  0  0  0  1
## [301] 10  2  5  1  1  0  0  0  1 25  1  1  1  1  2  1  3  1  3  1  0  0  1  3  0
## [326]  0  0  1  3  2  2  1  0  2  0  7  0  1  1  2  7  3  1  1  2  1  3  1  1  5
## [351]  4  0  1  0  1  3  0  1  0  3 18  0  0  0  0  0  0  0  0  1  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [426]  0  0  0  0  0  0 22  0  0  0  0  0  0  0  0  0  0  0
## 
## $centralization
## [1] 0.03719723
## 
## $theoretical_max
## [1] 390728
centr_degree(DLT1_Networknoprof_ungrup)
## $res
##   [1] 36  7  2  8 16 18 35 18  4 15 74 16 28 19 18  3 11 10 56  3  0  5  0 29  0
##  [26] 23 16  1 22 58  0  5 14 28 24 28  3  3  6  1 35 19  8 67  2  8  4  5 29 17
##  [51]  8  9 27 18  0 17  2 18  2 33 24 26 20 20  0  1 15 30  1  0  0  1  0  6  3
##  [76]  4  7  3  1  3  1  5  8  5  4  1  2 14  0  0  3 20  2  0  0  1  1 21  2 20
## [101]  4  1  2 12  1  0  6  4 15  3  1  0  0  7 14  6  0  0  2  0  2  0  1  0  0
## [126]  0  0  8  1  0  1  5  2  1  2  9 14  1  1  0  0  3  0 11  0  0  8  5  0  0
## [151]  0  0  0  0 13  1  1  3  0  0 13  0  6  0  1  1  1  0  0  2  0  0  0  0  0
## [176]  3 12  1  1  0  1 10  9  7  3  0  0  0  0  1  4 17  0  5  5  4  4 17  5  0
## [201]  5  6  7  1  3  0 11  1  2  1  8  5  0  0  2  3  3  1  6  1  9  2 22  1  1
## [226]  1  2  1  1  2  7  1  0  0  0  0  0  0  0  0  0  0  5  0  0  3  3  7  3  0
## [251]  0  1  0  0  0  0  2  0  1  0  0  1  0  0  0  0  1  1  0  0  2  0  4  1  3
## [276]  0  2  1 11  0  1  1  0  0  0  0  4  1  3  1  1  0  2  0  1  0  1  1  1 12
## [301]  0  0  0  0  0  4  3  7  0  2  0  0  0  0  0  0  0  0  0  0  2  4  0  0  1
## [326]  1  1  0  1  0  0  0  1  0  4  3  3  0  0  0  3  0  0  0  0  0  0  0  0  0
## [351]  0  1  1  1  0  0  1  0  1  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  0
## [426]  0  0  0  0  0  0 19  0  2  0  0  2  1  2  0  0  0  0
## 
## $centralization
## [1] 0.07917528
## 
## $theoretical_max
## [1] 390728
centr_degree(dlt1_network_grup)
## $res
##   [1]  12   0   4   6   9   8  17  10   4   2  32   5   5   5  11   0   9   6
##  [19]   9   0   2  12   6  21  12   7  13   0  11  18   1  10   9  10   8  14
##  [37]   8   6  11   0   0   0   0  28   1   2   0   0   8  11   9   6   8  21
##  [55]   4   0   9  16  18  27  19   2  12  24   3   7  13  16   8   3   8   4
##  [73]   2   9   6   0   1   3   3   4   8   1   6   0   3   0  10  11   1   4
##  [91]  14  11   1   7   7  10   4   6   4   8   7   4  10   9   4   6  13   0
## [109]   7   1   0   5  10   2  12  29   6   6   5   3   7   3   4   2   1   3
## [127]   2  16  13   1   4   1   7   1   0  12  14   8   3   3   5   9   5  10
## [145]   2   2   4   2   1   4   2   5   3  10   3   2   8  10   5   3   4   6
## [163]   4   1   7   3  12   2   5   7   7   8   9   2   5   7   0   7   5   1
## [181]   1   0   2   2   8   2   3   4   3   4   0   1  22   1   7   1   3  15
## [199]   4   5  13   6   4   1  13   3   4   6   0   0   1   4   1   2   1   4
## [217]   8   3  23   0   1   0  17   1   0  14   0   0   0   1   0   2   1  37
## [235]   4   3   1   2   3   2   3   4   2   1   3   3   5   1   9   4   5   2
## [253]   3   2   2   5   1   5   2   1   2   1   1   2   4   5   1   8   3   2
## [271]   1   2   0   0   0   5   0   2   1   3   7   0   1   2   6   2   0   1
## [289]   0   0   0   2   0   1   4   1   1   2   1   2  14   5   7   2   2   0
## [307]   3   0   1  27   1   1   1   2   2   1   6   4   4   3   0   1   3   4
## [325]   0   1   0   1   7   3   6   1   1   2   2   8   1   4   2   3   8   4
## [343]   2   2   3   3   5   1   1   6   6   0   1   2   4   5   1   2   0   4
## [361]  18   1   1   1   1   2   1   1   1   1   1   1   1   1   1   3   2   2
## [379]   2   1   1   2   1   1   1   1   1   2   1   1   1   1   1   1   1   1
## [397]   3   1   2   1   1   1   2   1   1   3   1   1   2   3   0   1   2   1
## [415]   2   1   1   1   1   1   1   0   1   1   1   1   1   1   1   1   1  22
## [433]   2   0   0   0   0   0   0   0   0   0   0 416 149
## 
## $centralization
## [1] 0.4631625
## 
## $theoretical_max
## [1] 394272
centr_degree(DLT1_Network_ungrup)
## $res
##   [1]  41   7   2  10  23  22  39  21  10  18  88  18  30  20  20   3  13  12
##  [19]  70   3   0  11   0  33   0  27  18   1  24  72   0   5  14  29  26  33
##  [37]   3   3   7   1  35  19   8  85   2   9   5   6  31  19  10  11  27  20
##  [55]   0  24   2  18   3  38  32  31  24  21   0   1  17  44   1   1   5   2
##  [73]   0   7   4   5  10   3   1   3   1   6   8   5   4   1   2  19   0   0
##  [91]   4  22   2   0   0   2   1  22   2  21   5   2   4  12   1   0   6   4
## [109]  15   3   1   0   0   9  14   6   0   0   2   0   4   0   1   0   0   0
## [127]   0   8   1   0   1   5   2   1   2  13  16   1   1   0   0   5   1  11
## [145]   0   1   9   6   0   0   0   0   0   0  15   1   3   5   0   0  14   1
## [163]   8   0   1   2   2   0   0   2   0   0   0   0   0   7  15   1   1   0
## [181]   2  10  10  10   6   0   0   0   0   1   4  17   0   5   5   4   4  21
## [199]   8   0   6   7   8   1   4   0  12   1   3   2   9   8   0   0   4   3
## [217]   5   2   7   1   9   2  22   1   1   1   2   2   1   2   7   1   0   0
## [235]   0   0   0   0   0   0   0   0   6   0   0   3   3   8   3   0   0   1
## [253]   0   0   0   0   3   0   1   0   0   3   0   0   0   0   1   1   0   0
## [271]   3   0   4   1   5   0   2   3  11   0   1   1   0   0   0   0   4   1
## [289]   3   1   1   0   3   0   1   0   1   1   1  13   0   0   0   0   0   4
## [307]   3   8   0   3   0   0   0   0   0   0   0   0   0   0   2   4   0   0
## [325]   2   2   1   0   2   0   0   0   1   0   4   4   3   0   0   0   3   0
## [343]   0   0   0   0   0   0   0   0   0   1   1   1   0   0   1   0   1   0
## [361]   3   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [379]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [397]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0
## [415]   0   0   0   0   0   0   0   4   0   0   0   0   0   0   0   0   0  19
## [433]   0   3   1   1   2   2   2   1   0   0   0 165 166
## 
## $centralization
## [1] 0.1810425
## 
## $theoretical_max
## [1] 394272
#cetnralization 
centr_degree(DLT1_networknoprof_grup, mode = "out")
## $res
##   [1]  5  0  2  3  3  5  5  5  3  2 16  3  1  2  3  0  5  4  7  0  0  6  0 12  5
##  [26]  4  6  0  6  9  1  4  4  5  4  2  4  0  5  0  0  0  0 15  0  2  0  0  6  4
##  [51]  4  5  3  8  2  0  3  5 10 11  3  0  5  9  1  2  4  8  3  0  4  0  2  5  3
##  [76]  0  1  1  3  4  4  0  0  0  0  0  4  3  1  2  6  8  1  0  2  5  3  1  0  1
## [101]  0  1  3  8  1  4  8  0  3  0  0  1  6  0  4  2  1  5  1  1  4  1  4  1  1
## [126]  1  1  7  4  1  1  1  4  0  0  5  4  2  2  3  2  5  3  5  1  0  3  2  1  0
## [151]  1  1  0  3  1  1  2  3  3  2  4  1  2  1  3  2  1  2  3  4  3  3  5  1  0
## [176]  3  0  3  3  1  0  0  1  2  6  1  0  1  0  1  0  0  7  0  0  0  1  7  1  1
## [201]  6  5  0  0  8  1  0  1  0  0  0  2  1  1  1  1  3  1  9  0  0  0  5  1  0
## [226]  3  0  0  0  1  0  0  1  0  1  1  1  2  1  1  2  2  1  1  2  0  0  0  0  1
## [251]  1  0  0  1  1  2  1  1  1  1  0  1  0  1  0  4  0  1  3  1  0  1  0  0  0
## [276]  1  0  2  0  1  1  0  1  0  4  0  0  1  0  0  0  0  0  1  0  1  0  0  0  0
## [301]  1  1  0  1  0  0  0  0  1  0  1  1  1  1  2  1  2  0  1  1  0  0  1  0  0
## [326]  0  0  1  1  1  1  1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  1  1  0
## [351]  0  0  1  0  1  0  0  0  0  3 17  0  0  0  0  0  0  0  0  1  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [426]  0  0  0  0  0  0 21  0  0  0  0  0  0  0  0  0  0  0
## 
## $centralization
## [1] 0.0439006
## 
## $theoretical_max
## [1] 195806
centr_degree(DLT1_Networknoprof_ungrup, mode = "out")
## $res
##   [1] 21  5  2  7  6  9 13  7  3  8 38 12 12 16 11  1 11 10 20  2  0  1  0 16  0
##  [26]  5  9  1 15 34  0  0  1 17 13 12  0  2  4  1  6  9  7 34  1  6  4  4 13  7
##  [51]  5  6 12 13  0 15  1  9  2 21 10 11 12  8  0  1  2 16  1  0  0  1  0  4  2
##  [76]  3  4  0  1  2  1  4  8  0  4  1  2  4  0  0  3  7  1  0  0  1  1  9  2  3
## [101]  1  1  2  6  1  0  6  4 12  1  1  0  0  3  0  0  0  0  1  0  2  0  1  0  0
## [126]  0  0  5  1  0  1  1  1  1  2  3  2  1  1  0  0  2  0  6  0  0  7  5  0  0
## [151]  0  0  0  0  5  1  1  1  0  0  7  0  5  0  1  1  1  0  0  1  0  0  0  0  0
## [176]  0  3  1  1  0  0  0  6  4  3  0  0  0  0  1  3  1  0  0  2  4  4  7  3  0
## [201]  2  6  1  1  3  0  6  1  0  1  2  1  0  0  2  1  1  1  1  1  1  1  5  1  1
## [226]  1  1  1  1  2  7  1  0  0  0  0  0  0  0  0  0  0  1  0  0  2  3  2  2  0
## [251]  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  1  1  0  0  0  0  0  1  2
## [276]  0  2  1  3  0  1  1  0  0  0  0  1  1  3  1  1  0  0  0  0  0  1  1  1  2
## [301]  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1
## [326]  1  1  0  0  0  0  0  1  0  0  1  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## [351]  0  1  1  1  0  0  1  0  1  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
## [426]  0  0  0  0  0  0 16  0  1  0  0  1  0  1  0  0  0  0
## 
## $centralization
## [1] 0.081259
## 
## $theoretical_max
## [1] 195806
centr_degree(dlt1_network_grup, mode = "out")
## $res
##   [1]  7  0  2  5  4  8 10  8  4  2 22  3  1  3  5  0  7  6  8  0  0  9  0 15  6
##  [26]  4  8  0  6 13  1  4  5  5  5  5  4  0  8  0  0  0  0 18  1  2  0  0  7  6
##  [51]  6  5  4 12  4  0  3  7 11 15  5  1  9 10  2  3  5 10  4  0  7  1  2  5  4
##  [76]  0  1  3  3  4  5  1  5  0  2  0  7  5  1  3  7  8  1  1  3 10  4  2  1  4
## [101]  1  4  5  9  2  4  9  0  6  1  0  2  6  0  6  3  1  5  1  2  6  1  4  2  1
## [126]  3  2  9  7  1  3  1  6  1  0  6  5  5  3  3  3  6  5  6  1  1  4  2  1  2
## [151]  1  2  0  6  3  1  5  6  4  3  4  2  3  1  4  3  2  2  5  6  6  6  6  1  0
## [176]  4  0  4  5  1  1  0  2  2  7  2  0  3  0  3  0  1 11  1  2  1  2  8  1  3
## [201]  7  6  1  1  8  2  0  1  0  0  1  4  1  2  1  1  4  1 11  0  1  0 10  1  0
## [226]  7  0  0  0  1  0  2  1  0  3  3  1  2  2  2  3  4  2  1  3  3  3  1  5  3
## [251]  1  1  1  1  2  2  1  4  2  1  1  1  0  2  1  4  1  1  3  1  1  1  0  0  0
## [276]  4  0  2  1  3  2  0  1  1  4  0  0  1  0  0  0  1  0  1  1  1  1  2  1  1
## [301]  3  4  2  2  1  0  2  0  1  0  1  1  1  2  2  1  5  2  2  3  0  1  2  0  0
## [326]  1  0  1  5  2  4  1  1  0  2  1  1  3  1  2  1  1  1  1  1  2  3  1  1  1
## [351]  1  0  1  2  3  2  1  1  0  4 17  1  1  1  1  2  1  1  1  1  1  1  1  1  1
## [376]  3  2  2  2  1  1  2  1  1  1  1  1  2  1  1  1  1  1  1  1  1  3  1  2  1
## [401]  1  1  2  1  1  3  1  1  2  3  0  1  1  1  2  1  1  1  1  1  1  0  1  1  1
## [426]  1  1  1  1  1  1 21  1  0  0  0  0  0  0  0  0  0  0 55 40
## 
## $centralization
## [1] 0.1175271
## 
## $theoretical_max
## [1] 197580
centr_degree(DLT1_Network_ungrup, mode = "out")
## $res
##   [1] 26  5  2  9 12 13 15 10  8 10 51 14 14 17 13  1 13 12 27  2  0  6  0 19  0
##  [26]  8 10  1 17 45  0  0  1 17 14 16  0  2  5  1  6  9  7 49  1  7  5  4 15  8
##  [51]  7  8 12 15  0 20  1  9  3 25 17 16 16  9  0  1  4 29  1  1  5  2  0  5  3
##  [76]  4  7  0  1  2  1  5  8  0  4  1  2  9  0  0  4  8  1  0  0  2  1 10  2  3
## [101]  2  2  4  6  1  0  6  4 12  1  1  0  0  5  0  0  0  0  1  0  4  0  1  0  0
## [126]  0  0  5  1  0  1  1  1  1  2  7  3  1  1  0  0  3  1  6  0  1  8  6  0  0
## [151]  0  0  0  0  6  1  3  1  0  0  8  1  7  0  1  2  1  0  0  1  0  0  0  0  0
## [176]  4  6  1  1  0  0  0  7  7  6  0  0  0  0  1  3  1  0  0  2  4  4  8  5  0
## [201]  3  7  1  1  4  0  7  1  1  2  3  3  0  0  4  1  2  1  2  1  1  1  5  1  1
## [226]  1  1  2  1  2  7  1  0  0  0  0  0  0  0  0  0  0  1  0  0  2  3  2  2  0
## [251]  0  0  0  0  0  0  0  0  1  0  0  1  0  0  0  0  1  1  0  0  1  0  0  1  4
## [276]  0  2  3  3  0  1  1  0  0  0  0  1  1  3  1  1  0  1  0  0  0  1  1  1  2
## [301]  0  0  0  0  0  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0  1  0  0  0  1
## [326]  2  1  0  1  0  0  0  1  0  0  2  0  0  0  0  1  0  0  0  0  0  0  0  0  0
## [351]  0  1  1  1  0  0  1  0  1  0  3  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  1  0  0  0
## [426]  0  0  0  0  0  0 16  0  2  1  1  1  1  1  1  0  0  0 51 15
## 
## $centralization
## [1] 0.1085636
## 
## $theoretical_max
## [1] 197580
centr_degree(DLT1_networknoprof_grup, mode = "in")
## $res
##   [1]  4  0  2  1  4  0  5  1  0  0  8  2  4  1  6  0  2  0  1  0  2  2  6  4  5
##  [26]  3  4  0  4  5  0  5  3  4  3  9  4  5  2  0  0  0  0  9  0  0  0  0  0  5
##  [51]  3  1  4  8  0  0  5  6  6 12 13  1  3 13  1  3  8  5  4  3  1  3  0  4  1
##  [76]  0  0  0  0  0  3  0  1  0  1  0  2  6  0  1  7  3  0  4  4  0  0  4  2  4
## [101]  6  0  5  0  2  2  4  0  0  0  0  3  3  2  4 25  5  1  4  1  1  2  0  0  0
## [126]  0  0  7  6  0  1  0  1  0  0  5  8  2  0  0  1  2  0  4  1  1  0  0  0  2
## [151]  1  3  3  3  0  1  3  4  1  0  0  3  1  0  3  0 10  0  0  1  1  2  3  1  5
## [176]  3  0  3  0  0  0  0  0  0  1  0  2  1  2  0  0  0 10  0  4  0  1  7  3  1
## [201]  6  0  3  0  5  1  3  5  0  0  0  0  0  0  0  3  4  2 12  0  0  0  6  0  0
## [226]  7  0  0  0  0  0  0  0 36  0  0  0  0  1  0  0  0  0  0  0  0  2  0  3  1
## [251]  3  1  1  1  0  2  0  1  0  0  1  0  1  0  3  1  0  7  0  1  0  1  0  0  0
## [276]  0  0  0  0  0  4  0  0  1  2  2  0  0  0  0  0  1  0  0  3  0  0  0  0  1
## [301]  9  1  5  0  1  0  0  0  0 25  0  0  0  0  0  0  1  1  2  0  0  0  0  3  0
## [326]  0  0  0  2  1  1  0  0  2  0  7  0  1  1  1  7  3  1  1  2  1  2  0  0  5
## [351]  4  0  0  0  0  3  0  1  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [426]  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0
## 
## $centralization
## [1] 0.07783725
## 
## $theoretical_max
## [1] 195806
centr_degree(DLT1_Networknoprof_ungrup, mode = "in")
## $res
##   [1] 15  2  0  1 10  9 22 11  1  7 36  4 16  3  7  2  0  0 36  1  0  4  0 13  0
##  [26] 18  7  0  7 24  0  5 13 11 11 16  3  1  2  0 29 10  1 33  1  2  0  1 16 10
##  [51]  3  3 15  5  0  2  1  9  0 12 14 15  8 12  0  0 13 14  0  0  0  0  0  2  1
##  [76]  1  3  3  0  1  0  1  0  5  0  0  0 10  0  0  0 13  1  0  0  0  0 12  0 17
## [101]  3  0  0  6  0  0  0  0  3  2  0  0  0  4 14  6  0  0  1  0  0  0  0  0  0
## [126]  0  0  3  0  0  0  4  1  0  0  6 12  0  0  0  0  1  0  5  0  0  1  0  0  0
## [151]  0  0  0  0  8  0  0  2  0  0  6  0  1  0  0  0  0  0  0  1  0  0  0  0  0
## [176]  3  9  0  0  0  1 10  3  3  0  0  0  0  0  0  1 16  0  5  3  0  0 10  2  0
## [201]  3  0  6  0  0  0  5  0  2  0  6  4  0  0  0  2  2  0  5  0  8  1 17  0  0
## [226]  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  4  0  0  1  0  5  1  0
## [251]  0  1  0  0  0  0  2  0  0  0  0  1  0  0  0  0  0  0  0  0  2  0  4  0  1
## [276]  0  0  0  8  0  0  0  0  0  0  0  3  0  0  0  0  0  2  0  1  0  0  0  0 10
## [301]  0  0  0  0  0  4  2  7  0  2  0  0  0  0  0  0  0  0  0  0  1  4  0  0  0
## [326]  0  0  0  1  0  0  0  0  0  4  2  3  0  0  0  2  0  0  0  0  0  0  0  0  0
## [351]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [376]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
## [401]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  3  0  0  0
## [426]  0  0  0  0  0  0  3  0  1  0  0  1  1  1  0  0  0  0
## 
## $centralization
## [1] 0.07673411
## 
## $theoretical_max
## [1] 195806
centr_degree(dlt1_network_grup, mode = "in")
## $res
##   [1]   5   0   2   1   5   0   7   2   0   0  10   2   4   2   6   0   2   0
##  [19]   1   0   2   3   6   6   6   3   5   0   5   5   0   6   4   5   3   9
##  [37]   4   6   3   0   0   0   0  10   0   0   0   0   1   5   3   1   4   9
##  [55]   0   0   6   9   7  12  14   1   3  14   1   4   8   6   4   3   1   3
##  [73]   0   4   2   0   0   0   0   0   3   0   1   0   1   0   3   6   0   1
##  [91]   7   3   0   6   4   0   0   4   3   4   6   0   5   0   2   2   4   0
## [109]   1   0   0   3   4   2   6  26   5   1   4   1   1   2   0   0   0   0
## [127]   0   7   6   0   1   0   1   0   0   6   9   3   0   0   2   3   0   4
## [145]   1   1   0   0   0   2   1   3   3   4   0   1   3   4   1   0   0   4
## [163]   1   0   3   0  10   0   0   1   1   2   3   1   5   3   0   3   0   0
## [181]   0   0   0   0   1   0   3   1   3   1   0   0  11   0   5   0   1   7
## [199]   3   2   6   0   3   0   5   1   4   5   0   0   0   0   0   0   0   3
## [217]   4   2  12   0   0   0   7   0   0   7   0   0   0   0   0   0   0  37
## [235]   1   0   0   0   1   0   0   0   0   0   0   0   2   0   4   1   4   1
## [253]   2   1   0   3   0   1   0   0   1   0   1   0   3   1   0   7   0   1
## [271]   0   1   0   0   0   1   0   0   0   0   5   0   0   1   2   2   0   0
## [289]   0   0   0   1   0   0   3   0   0   0   0   1  11   1   5   0   1   0
## [307]   1   0   0  27   0   0   0   0   0   0   1   2   2   0   0   0   1   4
## [325]   0   0   0   0   2   1   2   0   0   2   0   7   0   1   1   1   7   3
## [343]   1   1   2   1   2   0   0   5   5   0   0   0   1   3   0   1   0   0
## [361]   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [379]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [397]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0
## [415]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1
## [433]   1   0   0   0   0   0   0   0   0   0   0 361 109
## 
## $centralization
## [1] 0.8067163
## 
## $theoretical_max
## [1] 197580
centr_degree(DLT1_Network_ungrup, mode = "in")
## $res
##   [1]  15   2   0   1  11   9  24  11   2   8  37   4  16   3   7   2   0   0
##  [19]  43   1   0   5   0  14   0  19   8   0   7  27   0   5  13  12  12  17
##  [37]   3   1   2   0  29  10   1  36   1   2   0   2  16  11   3   3  15   5
##  [55]   0   4   1   9   0  13  15  15   8  12   0   0  13  15   0   0   0   0
##  [73]   0   2   1   1   3   3   0   1   0   1   0   5   0   0   0  10   0   0
##  [91]   0  14   1   0   0   0   0  12   0  18   3   0   0   6   0   0   0   0
## [109]   3   2   0   0   0   4  14   6   0   0   1   0   0   0   0   0   0   0
## [127]   0   3   0   0   0   4   1   0   0   6  13   0   0   0   0   2   0   5
## [145]   0   0   1   0   0   0   0   0   0   0   9   0   0   4   0   0   6   0
## [163]   1   0   0   0   1   0   0   1   0   0   0   0   0   3   9   0   0   0
## [181]   2  10   3   3   0   0   0   0   0   0   1  16   0   5   3   0   0  13
## [199]   3   0   3   0   7   0   0   0   5   0   2   0   6   5   0   0   0   2
## [217]   3   1   5   0   8   1  17   0   0   0   1   0   0   0   0   0   0   0
## [235]   0   0   0   0   0   0   0   0   5   0   0   1   0   6   1   0   0   1
## [253]   0   0   0   0   3   0   0   0   0   2   0   0   0   0   0   0   0   0
## [271]   2   0   4   0   1   0   0   0   8   0   0   0   0   0   0   0   3   0
## [289]   0   0   0   0   2   0   1   0   0   0   0  11   0   0   0   0   0   4
## [307]   2   8   0   2   0   0   0   0   0   0   0   0   0   0   1   4   0   0
## [325]   1   0   0   0   1   0   0   0   0   0   4   2   3   0   0   0   2   0
## [343]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [361]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [379]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [397]   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
## [415]   0   0   0   0   0   0   0   3   0   0   0   0   0   0   0   0   0   3
## [433]   0   1   0   0   1   1   1   0   0   0   0 114 151
## 
## $centralization
## [1] 0.3337888
## 
## $theoretical_max
## [1] 197580
centr_betw(DLT1_networknoprof_grup)
## $res
##   [1]  241.557937    0.000000  662.940476 1003.845915  473.637302    0.000000
##   [7] 3914.583594    4.000000    0.000000    0.000000  291.893318  239.421351
##  [13]    4.000000   42.615709  388.216667    0.000000  801.517856    0.000000
##  [19] 1793.072854    0.000000    0.000000    0.000000    0.000000  890.023810
##  [25] 1122.950192  598.264918  229.033333    0.000000  136.333333  753.975504
##  [31]    0.000000   69.000000  174.633333  186.222222  349.859936  253.712698
##  [37]   28.000000    0.000000  131.166667    0.000000    0.000000    0.000000
##  [43]    0.000000 2134.454851    0.000000    0.000000    0.000000    0.000000
##  [49]    0.000000   52.666667   86.083333   50.026984  591.547158  742.584127
##  [55]    0.000000    0.000000  142.785714  111.119697 4452.906830 1743.848871
##  [61] 1894.213203    0.000000   85.383333 1518.026899    0.000000  149.033333
##  [67] 3957.911905  428.874847  305.788636    0.000000   97.382051    0.000000
##  [73]    0.000000 1653.862393  420.461905    0.000000    0.000000    0.000000
##  [79]    0.000000    0.000000  355.132051    0.000000    0.000000    0.000000
##  [85]    0.000000    0.000000  387.662114  678.486308    0.000000   45.380059
##  [91] 2490.684490  610.318029    0.000000    0.000000    5.000000    0.000000
##  [97]    0.000000  368.924370    0.000000    5.033333    0.000000    0.000000
## [103]  259.666667    0.000000   10.333333  207.684991  759.677545    0.000000
## [109]    0.000000    0.000000    0.000000    4.000000   54.133333    0.000000
## [115]  130.300000    0.000000    9.333333  275.500000   20.600000    1.000000
## [121]  102.031746    1.500000    0.000000    0.000000    0.000000    0.000000
## [127]    0.000000 6800.291498  608.074373    0.000000    1.000000    0.000000
## [133]   70.459524    0.000000    0.000000  289.166667 3141.603391  149.000000
## [139]    0.000000    0.000000    1.000000   32.000000    0.000000  102.150000
## [145]  143.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [151]    1.000000   79.944444    0.000000  258.555556    0.000000   72.500000
## [157]   29.666667  185.202076   87.166667    0.000000    0.000000 3541.959524
## [163]    4.000000    0.000000 1529.623810    0.000000    0.000000    0.000000
## [169]    0.000000    1.000000    2.000000  193.042857   57.666667    2.500000
## [175]    0.000000  172.500000    0.000000  110.000000    0.000000    0.000000
## [181]    0.000000    0.000000    0.000000    0.000000  369.275397    0.000000
## [187]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [193]  679.912301    0.000000    0.000000    0.000000    1.000000 1017.812210
## [199] 1067.309524   21.916667  312.500000    0.000000    0.000000    0.000000
## [205] 2329.811511    1.250000    0.000000   27.766667    0.000000    0.000000
## [211]    0.000000    0.000000    0.000000    0.000000    0.000000  427.000000
## [217]    2.000000   73.000000 5548.973343    0.000000    0.000000    0.000000
## [223]  136.497619    0.000000    0.000000 3868.819361    0.000000    0.000000
## [229]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [235]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [241]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [247]    0.000000    0.000000    0.000000   85.083333    0.000000    0.000000
## [253]    0.000000    0.500000    0.000000  160.394444    0.000000   23.513492
## [259]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [265]    0.000000  277.900000    0.000000 1409.823791    0.000000    0.000000
## [271]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [277]    0.000000    0.000000    0.000000    0.000000 2902.823296    0.000000
## [283]    0.000000    0.000000  186.850000    0.000000    0.000000    0.000000
## [289]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [295]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [301]  130.500000   13.541858    0.000000    0.000000    0.000000    0.000000
## [307]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [313]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [319]  101.333333    0.000000    0.000000    0.000000    0.000000    0.000000
## [325]    0.000000    0.000000    0.000000    0.000000 2043.416667    1.000000
## [331]    3.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [337]    0.000000    0.000000    0.000000  111.000000    0.000000    0.000000
## [343]    0.000000    0.000000    0.000000    0.000000  323.448918    0.000000
## [349]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [355]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [361]  163.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [367]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [373]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [379]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [385]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [391]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [397]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [403]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [409]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [415]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [421]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [427]    0.000000    0.000000    0.000000    0.000000    0.000000 5712.129181
## [433]    0.000000    0.000000    0.000000    0.000000    0.000000    0.000000
## [439]    0.000000    0.000000    0.000000    0.000000    0.000000
## 
## $centralization
## [1] 0.03392868
## 
## $theoretical_max
## [1] 86155524
centr_betw(DLT1_Networknoprof_ungrup)
## $res
##   [1] 2155.4385787   65.2463351    0.0000000   17.4926511  228.1931749
##   [6]  355.4120654 1295.0712933  191.4416023    5.9335124  248.4366422
##  [11] 4111.8080056  148.7266436  654.5271335  249.9244358  566.2110113
##  [16]    5.0099567    0.0000000    0.0000000 5308.6959591   74.8936869
##  [21]    0.0000000   57.4364002    0.0000000 1204.4327025    0.0000000
##  [26]  138.5146452  473.6203038    0.0000000 1050.5896228 3822.9137964
##  [31]    0.0000000    0.0000000    0.0000000  378.5101967 1218.1796605
##  [36] 2409.7165167    0.0000000    0.3357466   78.0426891    0.0000000
##  [41]  824.0980041  942.9008540   40.8871960 5665.5818466    1.6888889
##  [46]   28.7024133    0.0000000  181.2916667  757.6212050  512.2702946
##  [51]   22.0735205   33.9695104 1019.1295087 1054.4210350    0.0000000
##  [56]  189.3721538  183.0000000  359.1522506    0.0000000 2056.2647710
##  [61]  722.5570645  428.7786049  321.4998418  843.8817916    0.0000000
##  [66]    0.0000000  302.3373660  652.6970360    0.0000000    0.0000000
##  [71]    0.0000000    0.0000000    0.0000000   41.6855076    6.0177524
##  [76]   21.7145849  209.4137873    0.0000000    0.0000000   12.2791632
##  [81]    0.0000000  132.0000000    0.0000000    0.0000000    0.0000000
##  [86]    0.0000000    0.0000000  219.7165127    0.0000000    0.0000000
##  [91]    0.0000000  230.2968851    1.0000000    0.0000000    0.0000000
##  [96]    0.0000000    0.0000000  401.9190416    0.0000000  786.7977556
## [101]  128.1000000    0.0000000    0.0000000 1028.3664041    0.0000000
## [106]    0.0000000    0.0000000    0.0000000  794.0677495  133.0000000
## [111]    0.0000000    0.0000000    0.0000000   36.1346763    0.0000000
## [116]    0.0000000    0.0000000    0.0000000   19.3164502    0.0000000
## [121]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [126]    0.0000000    0.0000000  150.5983297    0.0000000    0.0000000
## [131]    0.0000000  255.2530021    1.5434783    0.0000000    0.0000000
## [136]   72.1857582   97.2940564    0.0000000    0.0000000    0.0000000
## [141]    0.0000000    0.0000000    0.0000000   63.6854917    0.0000000
## [146]    0.0000000   32.4098052    0.0000000    0.0000000    0.0000000
## [151]    0.0000000    0.0000000    0.0000000    0.0000000  432.9507235
## [156]    0.0000000    0.0000000    3.6121212    0.0000000    0.0000000
## [161]  703.0378095    0.0000000  183.7045518    0.0000000    0.0000000
## [166]    0.0000000    0.0000000    0.0000000    0.0000000    9.5222222
## [171]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [176]    0.0000000  397.8237501    0.0000000    0.0000000    0.0000000
## [181]    0.0000000    0.0000000  105.4288043   33.6798190    0.0000000
## [186]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [191]  116.2551850  738.4490748    0.0000000    0.0000000   31.4335068
## [196]    0.0000000    0.0000000  123.1589627   43.7424883    0.0000000
## [201]   25.0948814    0.0000000  161.0058161    0.0000000    0.0000000
## [206]    0.0000000  169.9237198    0.0000000    0.0000000    0.0000000
## [211]  324.2960286   37.2242535    0.0000000    0.0000000    0.0000000
## [216]    2.2738095  250.0000000    0.0000000    7.4570195    0.0000000
## [221]  674.7717475    0.0000000  823.2991645    0.0000000    0.0000000
## [226]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [231]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [236]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [241]    0.0000000    0.0000000  382.4661104    0.0000000    0.0000000
## [246]   25.2862745    0.0000000  157.9135195    1.9761905    0.0000000
## [251]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [256]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [261]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [266]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [271]    0.0000000    0.0000000    0.0000000    0.0000000   79.9632353
## [276]    0.0000000    0.0000000    0.0000000  758.0534266    0.0000000
## [281]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [286]    0.0000000    4.5259710    0.0000000    0.0000000    0.0000000
## [291]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [296]    0.0000000    0.0000000    0.0000000    0.0000000  428.3884241
## [301]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [306]    0.0000000    2.0000000    0.0000000    0.0000000    0.0000000
## [311]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [316]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [321]    1.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [326]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [331]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [336]    1.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [341]   14.0314574    0.0000000    0.0000000    0.0000000    0.0000000
## [346]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [351]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [356]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [361]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [366]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [371]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [376]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [381]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [386]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [391]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [396]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [401]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [406]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [411]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [416]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [421]    0.0000000  134.9499856    0.0000000    0.0000000    0.0000000
## [426]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [431]    0.0000000  473.5719609    0.0000000    0.0000000    0.0000000
## [436]    0.0000000    0.0000000    0.0000000    0.0000000    0.0000000
## [441]    0.0000000    0.0000000    0.0000000
## 
## $centralization
## [1] 0.02847706
## 
## $theoretical_max
## [1] 86155524
centr_betw(dlt1_network_grup)
## $res
##   [1] 2.620334e+03 0.000000e+00 3.878709e+00 2.526948e+01 6.641883e+02
##   [6] 0.000000e+00 1.037055e+03 3.868731e+02 0.000000e+00 0.000000e+00
##  [11] 2.929510e+03 8.791941e+00 4.392143e+01 5.571314e+01 9.882039e+02
##  [16] 0.000000e+00 1.788664e+02 0.000000e+00 1.107691e+03 0.000000e+00
##  [21] 0.000000e+00 1.393933e+02 0.000000e+00 5.959195e+02 2.935622e+02
##  [26] 3.711200e+02 7.769728e+02 0.000000e+00 8.398376e+02 8.163246e+02
##  [31] 0.000000e+00 4.587656e+02 1.165318e+03 6.854304e+02 1.297627e+01
##  [36] 8.181974e+02 1.871736e+02 0.000000e+00 3.520789e+02 0.000000e+00
##  [41] 0.000000e+00 0.000000e+00 0.000000e+00 3.963140e+03 0.000000e+00
##  [46] 0.000000e+00 0.000000e+00 0.000000e+00 2.220143e+03 4.258915e+01
##  [51] 2.555771e+01 7.105195e+00 5.417222e+02 1.788216e+03 0.000000e+00
##  [56] 0.000000e+00 5.144108e+01 8.509436e+02 3.097242e+03 1.264761e+03
##  [61] 1.083544e+03 0.000000e+00 1.166453e+02 3.325611e+03 0.000000e+00
##  [66] 9.764598e+01 3.327964e+02 1.102473e+03 2.187149e+02 0.000000e+00
##  [71] 2.550741e+01 1.621020e+02 0.000000e+00 1.157969e+03 2.438139e+03
##  [76] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
##  [81] 4.327334e+02 0.000000e+00 0.000000e+00 0.000000e+00 6.496612e+00
##  [86] 0.000000e+00 6.870028e+02 7.752808e+02 0.000000e+00 3.500000e+00
##  [91] 1.775496e+03 2.616953e+03 0.000000e+00 1.830000e+02 1.875000e+02
##  [96] 0.000000e+00 0.000000e+00 1.042994e+02 6.982722e+02 1.007194e+02
## [101] 1.627788e+02 0.000000e+00 1.952019e+02 0.000000e+00 1.233058e+01
## [106] 3.080914e+02 7.799748e+02 0.000000e+00 2.299616e+03 0.000000e+00
## [111] 0.000000e+00 1.332912e+02 7.028700e+02 0.000000e+00 7.605845e+02
## [116] 1.024280e+03 5.312277e+00 7.174000e+02 5.258766e+00 1.840000e+02
## [121] 2.978426e+02 1.500000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [126] 0.000000e+00 0.000000e+00 3.731028e+03 1.430175e+03 0.000000e+00
## [131] 3.123260e+01 0.000000e+00 2.418522e+01 0.000000e+00 0.000000e+00
## [136] 2.684000e+02 2.503229e+03 3.880298e+02 0.000000e+00 0.000000e+00
## [141] 1.337696e+02 5.360028e+02 0.000000e+00 2.397665e+02 2.846748e+01
## [146] 7.111905e+01 0.000000e+00 0.000000e+00 0.000000e+00 3.680000e+02
## [151] 1.000000e+00 1.782251e+01 0.000000e+00 1.338736e+03 0.000000e+00
## [156] 1.654167e+01 1.534789e+01 1.302612e+02 1.086892e+03 0.000000e+00
## [161] 0.000000e+00 1.012441e+03 8.035714e-01 0.000000e+00 3.659440e+02
## [166] 0.000000e+00 1.820000e+02 0.000000e+00 0.000000e+00 1.000000e+00
## [171] 1.840000e+02 3.607261e+00 9.500884e+02 1.560456e+01 0.000000e+00
## [176] 3.788416e+02 0.000000e+00 3.671793e+02 0.000000e+00 0.000000e+00
## [181] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 6.880897e+01
## [186] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 4.036227e+00
## [191] 0.000000e+00 0.000000e+00 1.630303e+03 0.000000e+00 3.616825e+01
## [196] 0.000000e+00 1.000000e+00 1.643140e+03 5.287722e+00 3.501650e+02
## [201] 6.702007e+02 0.000000e+00 0.000000e+00 0.000000e+00 4.840840e+02
## [206] 9.429252e+00 0.000000e+00 7.156881e+00 0.000000e+00 0.000000e+00
## [211] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [216] 7.440528e+00 1.896040e+02 9.769444e+00 4.958851e+03 0.000000e+00
## [221] 0.000000e+00 0.000000e+00 8.825825e+02 0.000000e+00 0.000000e+00
## [226] 6.568763e+02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [231] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 4.014004e+00
## [236] 0.000000e+00 0.000000e+00 0.000000e+00 9.050000e+01 0.000000e+00
## [241] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [246] 0.000000e+00 2.061837e+02 0.000000e+00 7.174896e+02 6.834957e+00
## [251] 1.159524e+02 0.000000e+00 0.000000e+00 2.129799e+00 0.000000e+00
## [256] 2.180269e+03 0.000000e+00 1.964850e+01 0.000000e+00 0.000000e+00
## [261] 1.840000e+02 0.000000e+00 0.000000e+00 0.000000e+00 2.416240e+01
## [266] 6.341087e+02 0.000000e+00 2.446499e+02 0.000000e+00 0.000000e+00
## [271] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [276] 2.160768e+02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [281] 2.494601e+03 0.000000e+00 0.000000e+00 1.840000e+02 1.833173e+01
## [286] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [291] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1.830000e+02
## [296] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [301] 3.018211e+02 2.995238e+00 7.707078e+01 0.000000e+00 0.000000e+00
## [306] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [311] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [316] 0.000000e+00 4.198429e+01 0.000000e+00 2.152383e+02 0.000000e+00
## [321] 0.000000e+00 0.000000e+00 3.590000e+02 0.000000e+00 0.000000e+00
## [326] 0.000000e+00 0.000000e+00 0.000000e+00 2.990965e+02 7.776626e+01
## [331] 4.390411e+02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [336] 1.217797e+02 0.000000e+00 0.000000e+00 0.000000e+00 3.767570e+02
## [341] 7.625302e+01 1.830000e+02 0.000000e+00 1.840000e+02 0.000000e+00
## [346] 4.832479e+01 2.139286e+02 0.000000e+00 0.000000e+00 4.380041e+01
## [351] 6.279229e+01 0.000000e+00 0.000000e+00 0.000000e+00 1.378355e+02
## [356] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [361] 1.840000e+02 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [366] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [371] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [376] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [381] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [386] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [391] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [396] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [401] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [406] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [411] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [416] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [421] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [426] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [431] 0.000000e+00 2.167043e+03 0.000000e+00 0.000000e+00 0.000000e+00
## [436] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [441] 0.000000e+00 0.000000e+00 0.000000e+00 5.179252e+04 1.581162e+04
## 
## $centralization
## [1] 0.2620236
## 
## $theoretical_max
## [1] 87331248
centr_betw(DLT1_Network_ungrup)
## $res
##   [1] 1.836674e+03 5.295304e+01 0.000000e+00 8.745172e+00 3.006301e+02
##   [6] 3.478272e+02 1.273745e+03 9.987246e+01 1.935938e+00 2.814417e+02
##  [11] 2.788080e+03 5.643970e+01 3.719028e+02 2.413616e+02 2.349229e+02
##  [16] 2.717384e+00 0.000000e+00 0.000000e+00 4.701886e+03 6.859632e+01
##  [21] 0.000000e+00 3.662573e+01 0.000000e+00 1.014463e+03 0.000000e+00
##  [26] 1.174601e+02 5.748576e+02 0.000000e+00 9.125814e+02 3.580352e+03
##  [31] 0.000000e+00 0.000000e+00 0.000000e+00 4.113633e+02 1.366315e+03
##  [36] 2.034641e+03 0.000000e+00 2.577598e-01 6.592337e+01 0.000000e+00
##  [41] 6.813645e+02 3.732940e+02 3.969821e+01 4.707997e+03 1.004382e+00
##  [46] 2.070005e+01 0.000000e+00 2.312432e+02 5.849746e+02 5.209948e+02
##  [51] 6.994953e+00 1.831430e+01 7.542679e+02 3.501220e+02 0.000000e+00
##  [56] 8.025524e+02 2.060000e+02 2.290121e+02 0.000000e+00 1.465714e+03
##  [61] 7.428969e+02 2.285033e+02 1.943786e+02 8.275335e+02 0.000000e+00
##  [66] 0.000000e+00 3.832640e+02 4.232772e+02 0.000000e+00 0.000000e+00
##  [71] 0.000000e+00 0.000000e+00 0.000000e+00 1.800160e+01 1.645644e+01
##  [76] 9.177446e+00 2.265470e+02 0.000000e+00 0.000000e+00 1.131402e+01
##  [81] 0.000000e+00 1.410000e+02 0.000000e+00 0.000000e+00 0.000000e+00
##  [86] 0.000000e+00 0.000000e+00 8.512826e+01 0.000000e+00 0.000000e+00
##  [91] 0.000000e+00 3.342119e+02 1.000000e+00 0.000000e+00 0.000000e+00
##  [96] 0.000000e+00 0.000000e+00 2.535533e+02 0.000000e+00 4.350041e+02
## [101] 1.399283e+02 0.000000e+00 0.000000e+00 8.953589e+02 0.000000e+00
## [106] 0.000000e+00 0.000000e+00 0.000000e+00 8.607135e+02 1.430000e+02
## [111] 0.000000e+00 0.000000e+00 0.000000e+00 2.832261e+01 0.000000e+00
## [116] 0.000000e+00 0.000000e+00 0.000000e+00 2.199077e+01 0.000000e+00
## [121] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [126] 0.000000e+00 0.000000e+00 1.128867e+02 0.000000e+00 0.000000e+00
## [131] 0.000000e+00 2.750929e+02 1.358974e+00 0.000000e+00 0.000000e+00
## [136] 4.214415e+01 7.585438e+01 0.000000e+00 0.000000e+00 0.000000e+00
## [141] 0.000000e+00 0.000000e+00 0.000000e+00 3.797100e+01 0.000000e+00
## [146] 0.000000e+00 1.639308e+01 0.000000e+00 0.000000e+00 0.000000e+00
## [151] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.668287e+02
## [156] 0.000000e+00 0.000000e+00 2.428571e+00 0.000000e+00 0.000000e+00
## [161] 2.527588e+02 0.000000e+00 2.104111e+02 0.000000e+00 0.000000e+00
## [166] 0.000000e+00 4.813771e+01 0.000000e+00 0.000000e+00 2.803580e+00
## [171] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [176] 1.525494e+00 2.600201e+02 0.000000e+00 0.000000e+00 0.000000e+00
## [181] 0.000000e+00 0.000000e+00 9.247417e+01 9.642663e+00 0.000000e+00
## [186] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [191] 4.771027e+01 7.410627e+02 0.000000e+00 0.000000e+00 1.106269e+01
## [196] 0.000000e+00 0.000000e+00 3.554489e+02 1.245336e+02 0.000000e+00
## [201] 1.065805e+01 0.000000e+00 1.496131e+02 0.000000e+00 0.000000e+00
## [206] 0.000000e+00 1.485520e+02 0.000000e+00 4.552109e+00 0.000000e+00
## [211] 1.404356e+02 5.792973e+01 0.000000e+00 0.000000e+00 0.000000e+00
## [216] 1.847629e+00 3.361142e+02 0.000000e+00 1.428407e+01 0.000000e+00
## [221] 5.056472e+02 0.000000e+00 7.706795e+02 0.000000e+00 0.000000e+00
## [226] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [231] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [236] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [241] 0.000000e+00 0.000000e+00 4.204025e+02 0.000000e+00 0.000000e+00
## [246] 1.900078e+01 0.000000e+00 1.631086e+02 2.662638e+00 0.000000e+00
## [251] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [256] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [261] 0.000000e+00 3.240260e-01 0.000000e+00 0.000000e+00 0.000000e+00
## [266] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [271] 2.730000e+02 0.000000e+00 0.000000e+00 0.000000e+00 8.380403e+01
## [276] 0.000000e+00 0.000000e+00 0.000000e+00 7.726328e+02 0.000000e+00
## [281] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [286] 0.000000e+00 4.065774e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [291] 0.000000e+00 0.000000e+00 4.955786e+00 0.000000e+00 0.000000e+00
## [296] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 3.190352e+02
## [301] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [306] 0.000000e+00 2.000000e+00 0.000000e+00 0.000000e+00 1.398232e+01
## [311] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [316] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [321] 1.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 4.830222e+00
## [326] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [331] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [336] 7.885846e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [341] 1.027334e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [346] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [351] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [356] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [361] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [366] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [371] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [376] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [381] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [386] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [391] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [396] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [401] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [406] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [411] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [416] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [421] 0.000000e+00 1.415822e+02 0.000000e+00 0.000000e+00 0.000000e+00
## [426] 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
## [431] 0.000000e+00 4.294483e+02 0.000000e+00 1.823864e+00 0.000000e+00
## [436] 0.000000e+00 0.000000e+00 3.240260e-01 0.000000e+00 0.000000e+00
## [441] 0.000000e+00 0.000000e+00 0.000000e+00 1.000871e+04 4.388902e+03
## 
## $centralization
## [1] 0.05028412
## 
## $theoretical_max
## [1] 87331248
centr_clo(DLT1_networknoprof_grup)
## $res
##   [1] 0.3972603       NaN 0.1678404 0.1363203 0.1486486 0.1342032 0.1997207
##   [8] 0.3835616 0.1369216 0.1457490 0.1977870 0.1994421 0.2444444 0.1154157
##  [15] 0.2900000       NaN 0.1478800 0.1376060 0.2210201       NaN       NaN
##  [22] 0.1562842       NaN 0.1838046 0.1812421 0.1475748 0.8571429       NaN
##  [29] 0.4230769 0.1651270 0.3066667 0.3142857 0.5116279 0.1442987 0.1421471
##  [36] 1.0000000 0.3142857       NaN 0.1537634       NaN       NaN       NaN
##  [43]       NaN 0.1765432       NaN 0.1230769       NaN       NaN 0.1949934
##  [50] 0.3333333 0.3118280 0.1438561 0.1817027 0.4202899 0.1349578       NaN
##  [57] 0.1557734 0.1425723 0.2045780 0.1658933 0.1391051       NaN 0.2636364
##  [64] 0.1657010 0.1422886 1.0000000 0.1601344 0.1835687 0.1401961       NaN
##  [71] 0.5714286       NaN 0.1704142 0.4285714 0.3428571       NaN 1.0000000
##  [78] 1.0000000 0.1860465 0.2040816 0.3055556       NaN       NaN       NaN
##  [85]       NaN       NaN 0.1460674 0.1914324 0.1616162 0.1812421 0.2227414
##  [92] 0.2025496 1.0000000       NaN 1.0000000 0.8571429 0.1292876 0.1424303
##  [99]       NaN 1.0000000       NaN 0.1674419 0.1152297 0.2133527 0.1229579
## [106] 0.1457696 0.1377649       NaN 0.1530398       NaN       NaN 1.0000000
## [113] 0.4242424       NaN 1.0000000       NaN 1.0000000 0.1778607 1.0000000
## [120] 1.0000000 0.7500000 1.0000000 0.1503532 1.0000000 1.0000000 1.0000000
## [127] 1.0000000 0.2131148 0.1769802 1.0000000 1.0000000 0.1820480 0.1440000
## [134]       NaN       NaN 0.1298819 0.1716687 0.3052632 0.2970297 0.8000000
## [141] 1.0000000 0.2784810 0.1486068 0.3052632 0.1708185       NaN 0.1660900
## [148] 0.6666667 1.0000000       NaN 1.0000000 1.0000000       NaN 0.1870968
## [155] 1.0000000 0.1820480 0.6666667 0.3333333 0.2975207 0.2602740 0.1625282
## [162] 0.1758918 0.1437186 0.1039711 0.1696323 0.1467890 1.0000000 1.0000000
## [169] 1.0000000 1.0000000 1.0000000 1.0000000 0.8333333 0.5000000       NaN
## [176] 0.3131313       NaN 0.1817027 0.6250000 0.6000000       NaN       NaN
## [183] 0.1820480 0.1440000 0.4146341 0.6000000       NaN 0.1512605       NaN
## [190] 1.0000000       NaN       NaN 0.1298819       NaN       NaN       NaN
## [197] 1.0000000 0.3972603 0.1540948 0.1098310 0.1569264 0.3902439       NaN
## [204]       NaN 0.2186544 0.1527778       NaN 0.1227468       NaN       NaN
## [211]       NaN 0.1429990 0.1431412 0.1364486 0.1364486 0.1226415 1.0000000
## [218] 0.2338710 0.2210201       NaN       NaN       NaN 1.0000000 1.0000000
## [225]       NaN 0.1956224       NaN       NaN       NaN 1.0000000       NaN
## [232]       NaN 1.0000000       NaN 1.0000000 1.0000000 1.0000000 1.0000000
## [239] 1.0000000 1.0000000 1.0000000 0.7500000 1.0000000 1.0000000 1.0000000
## [246]       NaN       NaN       NaN       NaN 0.1096626 0.2417582       NaN
## [253]       NaN 1.0000000 0.1550802 0.1822785 0.2363112 0.1429990 0.1099237
## [260] 1.0000000       NaN 0.1437126       NaN 0.2473118       NaN 0.8333333
## [267]       NaN 0.1666667 0.1892247 0.6666667       NaN 0.6666667       NaN
## [274]       NaN       NaN 0.1509434       NaN 0.3125000       NaN 0.1820480
## [281] 0.1812421       NaN 1.0000000       NaN 0.3372093       NaN       NaN
## [288] 1.0000000       NaN       NaN       NaN       NaN       NaN 0.6000000
## [295]       NaN 1.0000000       NaN       NaN       NaN       NaN 1.0000000
## [302] 1.0000000       NaN 1.0000000       NaN       NaN       NaN       NaN
## [309] 0.3030303       NaN 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000
## [316] 1.0000000 1.0000000       NaN 0.1959459 0.2442748       NaN       NaN
## [323] 0.6666667       NaN       NaN       NaN       NaN 1.0000000 0.1798742
## [330] 0.6666667 0.6666667 0.6666667       NaN       NaN       NaN       NaN
## [337]       NaN       NaN       NaN 1.0000000       NaN       NaN       NaN
## [344]       NaN       NaN       NaN 0.1232759 0.1228669 0.1228669       NaN
## [351]       NaN       NaN 0.1104294       NaN 1.0000000       NaN       NaN
## [358]       NaN       NaN 0.1892247 0.3075472       NaN       NaN       NaN
## [365]       NaN       NaN       NaN       NaN       NaN 0.1237113       NaN
## [372]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [379]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [386]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [393]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [400]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [407]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [414]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [421]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [428]       NaN       NaN       NaN       NaN 0.2604736       NaN       NaN
## [435]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [442]       NaN       NaN
## 
## $centralization
## [1] NaN
## 
## $theoretical_max
## [1] 441.0023
centr_clo(DLT1_Networknoprof_ungrup)
## $res
##   [1] 0.4349315 0.3167082 0.2539683 0.3547486 0.3167082 0.3713450 0.3813814
##   [8] 0.3670520 0.3537604 0.3802395 0.4738806 0.3883792 0.4070513 0.4136808
##  [15] 0.3956386 0.2419048 0.3950617 0.3535912 0.4096774 0.2939815       NaN
##  [22] 0.2634855       NaN 0.3956386       NaN 0.3143564 0.3607955 0.2770563
##  [29] 0.4110032 0.4618182       NaN       NaN       NaN 0.4083601 0.4136808
##  [36] 0.3547486       NaN 0.3023810 0.3587571 0.2606925 0.3498623 0.3577465
##  [43] 0.3128079 0.4847328 0.2613169 0.2786177 0.3240506 0.2886364 0.3993711
##  [50] 0.3423181 0.2995283 0.3451087 0.4006309 0.4006309       NaN 0.3714286
##  [57] 1.0000000 0.3860182 0.2869955 0.4618182 0.3802395 0.3931889 0.3735294
##  [64] 0.3290155       NaN 0.2273535 0.2313297 0.4319728 0.2098361       NaN
##  [71]       NaN 0.2406015       NaN 0.2953488 0.2879819 0.3105134 0.3075061
##  [78]       NaN 1.0000000 0.3333333 0.2313043 0.2986425 0.3450135       NaN
##  [85] 0.2990654 1.0000000 1.0000000 0.3143564       NaN       NaN 0.3413333
##  [92] 0.3135802 0.2419660       NaN       NaN 1.0000000 1.0000000 0.3618234
##  [99] 0.3342037 0.2634855 0.2106136 0.2098361 0.2729167 0.3791045 0.2098361
## [106]       NaN 0.2955556 0.3324675 0.3907692 0.2504931 0.2015748       NaN
## [113]       NaN 0.3060241       NaN       NaN       NaN       NaN 0.2273535
## [120]       NaN 0.3200000       NaN 0.2770563       NaN       NaN       NaN
## [127]       NaN 0.3105134 1.0000000       NaN 1.0000000 0.2300725 0.1887073
## [134] 0.1882353 0.2226027 0.3273196 0.3239796 0.2764579 0.2438095       NaN
## [141]       NaN 0.3350923       NaN 0.3489011       NaN       NaN 0.3669468
## [148] 0.3100233       NaN       NaN       NaN       NaN       NaN       NaN
## [155] 0.3469945 0.2776573 1.0000000 0.2179054       NaN       NaN 0.2988235
## [162]       NaN 0.3368700       NaN 0.3282051 1.0000000 0.6666667       NaN
## [169]       NaN 0.2419660       NaN       NaN       NaN       NaN       NaN
## [176]       NaN 0.3075061 0.2365989 0.6666667       NaN       NaN       NaN
## [183] 0.3128079 0.3342105 0.3091787       NaN       NaN       NaN       NaN
## [190] 0.2490272 0.3386667 0.3167082       NaN       NaN 0.2946636 0.3413333
## [197] 0.2828947 0.3649425 0.3231552       NaN 0.3239796 0.3545706 0.3273196
## [204] 0.2480620 1.0000000       NaN 0.3198992 0.2500000       NaN 0.2438095
## [211] 0.3198992 0.2437620       NaN       NaN 0.3160494 0.2912844 0.2912844
## [218] 0.2922374 0.2581301 0.2922374 0.2919540 0.2912844 0.2960373 0.2922374
## [225] 0.2922374 0.2922374 0.2912844 0.2922374 0.2419660 0.2433962 0.3100962
## [232] 0.2419660       NaN       NaN       NaN       NaN       NaN       NaN
## [239]       NaN       NaN       NaN       NaN 0.2764579       NaN       NaN
## [246] 0.2807018 0.2758621 0.2640333 0.2689076       NaN       NaN       NaN
## [253]       NaN       NaN       NaN       NaN       NaN       NaN 0.2490272
## [260]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [267] 0.2776573 0.2825607       NaN       NaN       NaN       NaN       NaN
## [274] 0.3282051 0.3350785       NaN 0.2665289 0.3282051 0.3307292       NaN
## [281] 1.0000000 0.2179054       NaN       NaN       NaN       NaN 1.0000000
## [288] 1.0000000 0.2534653 1.0000000 1.0000000       NaN       NaN       NaN
## [295]       NaN       NaN 1.0000000 0.2298025 0.2273535 0.2280072       NaN
## [302]       NaN       NaN       NaN       NaN       NaN 1.0000000       NaN
## [309]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [316]       NaN       NaN       NaN       NaN       NaN 1.0000000       NaN
## [323]       NaN       NaN 0.1868613 0.1868613 0.1868613       NaN       NaN
## [330]       NaN       NaN       NaN 0.2764579       NaN       NaN 1.0000000
## [337]       NaN       NaN       NaN       NaN 0.2423664       NaN       NaN
## [344]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [351]       NaN 0.1890694 0.3047619 0.1751026       NaN       NaN 0.6666667
## [358]       NaN 0.2101806       NaN 0.3216080       NaN       NaN       NaN
## [365]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [372]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [379]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [386]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [393]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [400]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [407]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [414]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [421]       NaN 0.3167082       NaN       NaN       NaN       NaN       NaN
## [428]       NaN       NaN       NaN       NaN 0.4136808       NaN 0.2360595
## [435]       NaN       NaN 0.2933025       NaN 0.2656904       NaN       NaN
## [442]       NaN       NaN
## 
## $centralization
## [1] NaN
## 
## $theoretical_max
## [1] 441.0023
centr_clo(dlt1_network_grup)
## $res
##   [1] 0.3155172       NaN 0.2584746 0.3138937 0.3177083 0.3345455 0.3452830
##   [8] 0.3321234 0.3078203 0.2517100 0.3485714 0.2731343 0.1833667 0.2802450
##  [15] 0.3376384       NaN 0.3376384 0.2941176 0.3315217       NaN       NaN
##  [22] 0.2951613       NaN 0.3144330 0.3004926 0.2588402 0.2951613       NaN
##  [29] 0.2389034 0.3267857 0.1936842 0.2239902 0.2980456 0.2633094 0.2965964
##  [36] 0.3321234 0.1936508       NaN 0.3155172       NaN       NaN       NaN
##  [43]       NaN 0.3519231 0.2906793 0.2517100       NaN       NaN 0.3188153
##  [50] 0.3395176 0.3388889 0.2500000 0.2965964 0.3452830 0.2822086       NaN
##  [57] 0.2401575 0.3363971 0.3388889 0.3479087 0.3333333 0.2906793 0.3395176
##  [64] 0.3279570 0.2961165 0.2928000 0.2890995 0.3144330 0.3117547       NaN
##  [71] 0.3401487 0.2909380 0.2473118 0.2739521 0.3160622       NaN 1.0000000
##  [78] 0.2916006 0.2734027 0.2566248 0.3193717 0.2906793 0.3291367       NaN
##  [85] 0.3291367       NaN 0.3433396 0.3546512 0.2628571 0.3122867 0.3333333
##  [92] 0.2772727 0.2257669 0.2900158 0.3017945 0.3345324 0.2846271 0.3070470
##  [99] 0.2756024 0.3297297 0.2764350 0.3315315 0.2946860 0.3139932 0.3034826
## [106] 0.2667638 0.3160622       NaN 0.3065327 0.2906793       NaN 0.3014827
## [113] 0.2584746       NaN 0.2918660 0.2904762 0.2259259 0.2614286 0.2259259
## [120] 0.2916006 0.3370166 0.2259259 0.2419562 0.2916006 0.2260442 0.2916006
## [127] 0.2916006 0.3472486 0.3182609 0.2260442 0.3014827 0.2541436 0.3097643
## [134] 0.2906793       NaN 0.2965964 0.3133562 0.3363971 0.3102867 0.2278325
## [141] 0.2914013 0.2932692 0.3036304 0.3070470 0.2541436 0.2758621 0.3036304
## [148] 0.2263223 0.2261614 0.2906793 0.2261614 0.2918660       NaN 0.3321234
## [155] 0.2771084 0.2541667 0.3345521 0.3171577 0.2914013 0.3011457 0.2666667
## [162] 0.3166090 0.2990196 0.2285714 0.3149742 0.2977346 0.2909380 0.2266010
## [169] 0.2920635 0.2920635 0.2920635 0.2928000 0.3044925 0.2343949       NaN
## [176] 0.3166090       NaN 0.3080808 0.3315508 0.2327910 0.2906793       NaN
## [183] 0.3016393 0.2613636 0.3285458 0.2929936       NaN 0.3050000       NaN
## [190] 0.3285458       NaN 0.2906793 0.3345521 0.2906793 0.2904762 0.2906793
## [197] 0.2764350 0.2914013 0.2322335 0.2914013 0.3117547 0.2934609 0.2904762
## [204] 0.2906793 0.2854914 0.3086003       NaN 0.2510288       NaN       NaN
## [211] 0.2758621 0.3357664 0.2591549 0.2962963 0.2386511 0.2510288 0.2909380
## [218] 0.2538141 0.3388889       NaN 0.2906793       NaN 0.3297297 1.0000000
## [225]       NaN 0.3426966       NaN       NaN       NaN 0.2261614       NaN
## [232] 0.3285714 1.0000000       NaN 0.2914013 0.2911392 1.0000000 1.0000000
## [239] 0.2911392 0.2911392 0.2911392 0.2927215 0.2911392 1.0000000 0.2922591
## [246] 0.2906793 0.3291367 0.2906793 0.3279570 0.3297297 0.1623780 0.2906793
## [253] 0.2900158 0.2486413 0.2982172 0.2715134 0.2500000 0.3357664 0.2920635
## [260] 0.2261614 0.2906793 0.2053571       NaN 0.2787879 0.2918660 0.2545202
## [267] 0.2906793 0.2570225 0.2682216 0.2262052 0.2906793 0.2483039       NaN
## [274]       NaN       NaN 0.3315217       NaN 0.2071669 0.2906793 0.3076923
## [281] 0.3009868       NaN 0.2261614 0.2906793 0.2603129       NaN       NaN
## [288] 0.2263223       NaN       NaN       NaN 0.2904762       NaN 0.2269939
## [295] 0.2904762 0.2260442 0.2906793 0.3285714 0.2906793 0.2914013 0.2909380
## [302] 0.3009868 0.3285458 0.3011457 0.2909380       NaN 0.2751880       NaN
## [309] 0.2577031       NaN 1.0000000 1.0000000 1.0000000 0.2911392 0.2266010
## [316] 1.0000000 0.3297297 0.2904762 0.2793893 0.3339383       NaN 0.2906793
## [323] 0.2764350       NaN       NaN 0.2758621       NaN 0.2486486 0.3505747
## [330] 0.2920635 0.2909380 0.2267157 0.2906793       NaN 0.2906793 0.2756024
## [337] 0.2906793 0.2909380 0.2914013 0.2946860 0.2760181 0.2909380 0.2923323
## [344] 0.2906793 0.2909380 0.2918660 0.3315217 0.2510232 0.2510232 0.2904762
## [351] 0.2751880       NaN 0.2500000 0.3285714 0.2909380 0.2904762 0.2906793
## [358] 0.2909380       NaN 0.3333333 0.3315315 0.2906793 0.2906793 0.2906793
## [365] 0.2906793 0.2906793 0.2906793 0.2906793 0.2906793 0.2386511 0.2906793
## [372] 0.2906793 0.2906793 0.2906793 0.2906793 0.3285714 0.3285714 0.3285714
## [379] 0.3285714 0.2906793 0.2906793 0.3285714 0.2906793 0.2906793 0.2906793
## [386] 0.2906793 0.2906793 0.3285714 0.2906793 0.2906793 0.2906793 0.2906793
## [393] 0.2906793 0.2906793 0.2906793 0.2906793 0.3285714 0.2906793 0.3285714
## [400] 0.2906793 0.2906793 0.2906793 0.3285714 0.2906793 0.2906793 0.3285714
## [407] 0.2906793 0.2906793 0.3285714 0.3285714       NaN 0.2906793 0.2900158
## [414] 0.2906793 0.2906793 0.2758621 0.2758621 0.2758621 0.2758621 0.2758621
## [421] 0.2758621       NaN 0.2758621 0.2906793 0.2906793 0.2906793 0.2906793
## [428] 0.2906793 0.2906793 0.2906793 0.2906793 0.3446328 0.2751880       NaN
## [435]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [442]       NaN       NaN 0.4075724 0.3788820
## 
## $centralization
## [1] NaN
## 
## $theoretical_max
## [1] 443.0022
centr_clo(DLT1_Network_ungrup)
## $res
##   [1] 0.4581940 0.3223529 0.2555556 0.3881020 0.3712737 0.4005848 0.4126506
##   [8] 0.3925501 0.3870056 0.4126506 0.4892857 0.3914286 0.4189602 0.4294671
##  [15] 0.4029412 0.2723658 0.3976945 0.3641161 0.4321767 0.3051225       NaN
##  [22] 0.3624339       NaN 0.4254658       NaN 0.3341463 0.3892045 0.2936170
##  [29] 0.4335443 0.4707904       NaN       NaN       NaN 0.4065282 0.4241486
##  [36] 0.3643617       NaN 0.3127854 0.3859155 0.2618596 0.3521851 0.3567708
##  [43] 0.3200935 0.5000000 0.2624521 0.3059867 0.3415842 0.2896406 0.4176829
##  [50] 0.3774105 0.3238771 0.3530928 0.3959538 0.4029412       NaN 0.3816156
##  [57] 0.2565543 0.3870056 0.3584416 0.4691781 0.4114114 0.4189602 0.4041298
##  [64] 0.3774105       NaN 0.2338983 0.3468354 0.4491803 0.2129630 0.3415842
##  [71] 0.3484848 0.3458647       NaN 0.3163972 0.3171296 0.3653333 0.3702703
##  [78]       NaN 1.0000000 0.3374384 0.2469565 0.3256351 0.3502538       NaN
##  [85] 0.2987013 1.0000000 1.0000000 0.3753425       NaN       NaN 0.3538462
##  [92] 0.3341463 0.2442478       NaN       NaN 0.3432099 0.2565056 0.3948127
##  [99] 0.3382353 0.2686275 0.3459596 0.2974138 0.3053097 0.3763736 0.2129630
## [106]       NaN 0.3101124 0.3349515 0.3859155 0.2541744 0.2038405       NaN
## [113]       NaN 0.3231132       NaN       NaN       NaN       NaN 0.2338983
## [120]       NaN 0.3760218       NaN 0.2929936       NaN       NaN       NaN
## [127]       NaN 0.3163972 1.0000000       NaN 1.0000000 0.2362069 0.1926864
## [134] 0.1922006 0.2213376 0.3459596 0.3442211 0.2749004 0.2536765       NaN
## [141]       NaN 0.3486005 0.3415842 0.3494898       NaN 0.3415842 0.3763441
## [148] 0.3381295       NaN       NaN       NaN       NaN       NaN       NaN
## [155] 0.3753425 0.2936170 0.3502538 0.2171157       NaN       NaN 0.3567708
## [162] 0.3415842 0.3494898       NaN 0.3349515 0.2899160 0.6666667       NaN
## [169]       NaN 0.2442478       NaN       NaN       NaN       NaN       NaN
## [176] 0.3494898 0.3261905 0.2473118 0.6666667       NaN       NaN       NaN
## [183] 0.3317191 0.3753425 0.3293556       NaN       NaN       NaN       NaN
## [190] 0.2754491 0.3399504 0.3208431       NaN       NaN 0.3058036 0.3458647
## [197] 0.2989247 0.3743169 0.3732970       NaN 0.3442211 0.3833333 0.3341463
## [204] 0.2518248 0.3450000       NaN 0.3374384 0.2536765 0.2890295 0.2967742
## [211] 0.3643617 0.2965368       NaN       NaN 0.3341404 0.3024283 0.3494898
## [218] 0.3030973 0.3512821 0.3032967 0.3030973 0.3024283 0.3064877 0.3032967
## [225] 0.3032967 0.3032967 0.3024283 0.3143508 0.2442478 0.2455830 0.3210162
## [232] 0.2442478       NaN       NaN       NaN       NaN       NaN       NaN
## [239]       NaN       NaN       NaN       NaN 0.2751004       NaN       NaN
## [246] 0.2851240 0.2799189 0.2691552 0.2890295       NaN       NaN       NaN
## [253]       NaN       NaN       NaN       NaN       NaN       NaN 0.2754491
## [260]       NaN       NaN 0.2878151       NaN       NaN       NaN       NaN
## [267] 0.2936170 0.2799189       NaN       NaN 0.3425000       NaN       NaN
## [274] 0.3349515 0.3484848       NaN 0.2730845 0.3699732 0.3374384       NaN
## [281] 1.0000000 0.2169811       NaN       NaN       NaN       NaN 1.0000000
## [288] 1.0000000 0.2569832 1.0000000 1.0000000       NaN 0.2890295       NaN
## [295]       NaN       NaN 1.0000000 0.2358974 0.2338983 0.2619503       NaN
## [302]       NaN       NaN       NaN       NaN       NaN 1.0000000       NaN
## [309]       NaN 0.3425000       NaN       NaN       NaN       NaN       NaN
## [316]       NaN       NaN       NaN       NaN       NaN 1.0000000       NaN
## [323]       NaN       NaN 0.2085236 0.3441397 0.2087746       NaN 0.3415842
## [330]       NaN       NaN       NaN 0.2749004       NaN       NaN 0.3442211
## [337]       NaN       NaN       NaN       NaN 0.2442068       NaN       NaN
## [344]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [351]       NaN 0.2589118 0.3157895 0.2584270       NaN       NaN 0.6666667
## [358]       NaN 0.2132921       NaN 0.3247059       NaN       NaN       NaN
## [365]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [372]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [379]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [386]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [393]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [400]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [407]       NaN       NaN       NaN       NaN 0.3415842       NaN       NaN
## [414]       NaN       NaN       NaN       NaN       NaN       NaN       NaN
## [421]       NaN 0.3200935       NaN       NaN       NaN       NaN       NaN
## [428]       NaN       NaN       NaN       NaN 0.4065282       NaN 0.2952586
## [435] 0.2887029 0.2887029 0.2984749 0.2896406 0.2807377 0.3415842       NaN
## [442]       NaN       NaN 0.5150376 0.4029412
## 
## $centralization
## [1] NaN
## 
## $theoretical_max
## [1] 443.0022
#density


edge_density(DLT1_networknoprof_grup)
## [1] 0.003610717
edge_density(DLT1_Networknoprof_ungrup)
## [1] 0.004713849
edge_density(dlt1_network_grup)
## [1] 0.006346796
edge_density(DLT1_Network_ungrup)
## [1] 0.006301245
graph.density(DLT1_networknoprof_grup)
## [1] 0.003610717
graph.density(DLT1_Networknoprof_ungrup)
## [1] 0.004713849
graph.density(dlt1_network_grup)
## [1] 0.006346796
graph.density(DLT1_Network_ungrup)
## [1] 0.006301245
#reciprocity
reciprocity(DLT1_networknoprof_grup)
## [1] 0.1490313
reciprocity(DLT1_Networknoprof_ungrup)
## [1] 0.2020202
reciprocity(dlt1_network_grup)
## [1] 0.1574151
reciprocity(DLT1_Network_ungrup)
## [1] 0.2054681
#transitivity
transitivity(DLT1_networknoprof_grup)
## [1] 0.1304
transitivity(DLT1_Networknoprof_ungrup)
## [1] 0.1664638
transitivity(dlt1_network_grup)
## [1] 0.0385422
transitivity(DLT1_Network_ungrup)
## [1] 0.1702297
library(ggraph)
DLT1_networknoprof_grup |> centr_degree() |> as_tibble() |> select(centralization) |> unique()
DLT1_Networknoprof_ungrup |> centr_degree() |> as_tibble() |> select(centralization) |> unique()
dlt1_network_grup |> centr_degree() |> as_tibble() |> select(centralization) |> unique() 
DLT1_Network_ungrup |> centr_degree() |> as_tibble() |> select(centralization) |> unique()
DLT1_networknoprof_grup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique()
DLT1_Networknoprof_ungrup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique()
dlt1_network_grup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique()
DLT1_Network_ungrup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique()
DLT1_networknoprof_grup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique()
DLT1_Networknoprof_ungrup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique()
dlt1_network_grup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique()
DLT1_Network_ungrup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique()
DLT1_networknoprof_grup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_Networknoprof_ungrup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
dlt1_network_grup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_Network_ungrup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_networknoprof_grup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_Networknoprof_ungrup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
dlt1_network_grup |> centr_betw()|> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_Network_ungrup |> centr_betw()|> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique()
DLT1_networknoprof_grup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique()
DLT1_Networknoprof_ungrup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique()
dlt1_network_grup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique()
DLT1_Network_ungrup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique()
DLT1_networknoprof_grup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_Networknoprof_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
dlt1_network_grup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_Network_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_networknoprof_grup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_Networknoprof_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
dlt1_network_grup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_Network_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique()
DLT1_networknoprof_grup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique()
DLT1_Networknoprof_ungrup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique()
dlt1_network_grup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique()
DLT1_Network_ungrup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique()
DLT1_networknoprof_grup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique()
DLT1_Networknoprof_ungrup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique()
dlt1_network_grup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique()
DLT1_Network_ungrup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique()

All relevant measures from above are merged into the nodelists for the networks.

library(dplyr)
NNPG1 <- DLT1_networknoprof_grup |> activate(nodes) |> mutate(out_degree = centrality_degree(mode = "out"))
NNPG2 <- NNPG1 |> activate(nodes) |> mutate(in_degree = centrality_degree(mode = "in"))
NNPG3 <- NNPG2 |> activate(nodes) |> mutate(centrality = centrality_degree(mode = "total"))
NNPG4 <- NNPG3 |> activate(nodes) |> mutate(betweenness = betweenness(NNPG3))
NNPG5 <- NNPG4 |> activate(nodes) |> mutate(closeness = closeness(NNPG4))
NNPG6 <- NNPG5 |> activate(nodes) |> mutate(edge_density = edge_density(NNPG5))
NNPG7 <- NNPG6 |> activate(nodes) |> mutate(graph_density = graph.density(NNPG6))
NNPG8 <- NNPG7 |> activate(nodes) |> mutate(reciprocity = reciprocity(NNPG7))
DLT1_networknoprof_grup_final <- NNPG8 |> activate(nodes) |> mutate(transitivity = transitivity(NNPG8))
NNPG1 <- DLT1_Networknoprof_ungrup |> activate(nodes) |> mutate(out_degree = centrality_degree(mode = "out"))
NNPG2 <- NNPG1 |> activate(nodes) |> mutate(in_degree = centrality_degree(mode = "in"))
NNPG3 <- NNPG2 |> activate(nodes) |> mutate(centrality = centrality_degree(mode = "total"))
NNPG4 <- NNPG3 |> activate(nodes) |> mutate(betweenness = betweenness(NNPG3))
NNPG5 <- NNPG4 |> activate(nodes) |> mutate(closeness = closeness(NNPG4))
NNPG6 <- NNPG5 |> activate(nodes) |> mutate(edge_density = edge_density(NNPG5))
NNPG7 <- NNPG6 |> activate(nodes) |> mutate(graph_density = graph.density(NNPG6))
NNPG8 <- NNPG7 |> activate(nodes) |> mutate(reciprocity = reciprocity(NNPG7))
DLT1_Networknoprof_ungrup_final <- NNPG8 |> activate(nodes) |> mutate(transitivity = transitivity(NNPG8))
NNPG1 <- dlt1_network_grup |> activate(nodes) |> mutate(out_degree = centrality_degree(mode = "out"))
NNPG2 <- NNPG1 |> activate(nodes) |> mutate(in_degree = centrality_degree(mode = "in"))
NNPG3 <- NNPG2 |> activate(nodes) |> mutate(centrality = centrality_degree(mode = "total"))
NNPG4 <- NNPG3 |> activate(nodes) |> mutate(betweenness = betweenness(NNPG3))
NNPG5 <- NNPG4 |> activate(nodes) |> mutate(closeness = closeness(NNPG4))
NNPG6 <- NNPG5 |> activate(nodes) |> mutate(edge_density = edge_density(NNPG5))
NNPG7 <- NNPG6 |> activate(nodes) |> mutate(graph_density = graph.density(NNPG6))
NNPG8 <- NNPG7 |> activate(nodes) |> mutate(reciprocity = reciprocity(NNPG7))
dlt1_network_grup_final <- NNPG8 |> activate(nodes) |> mutate(transitivity = transitivity(NNPG8))
NNPG1 <- DLT1_Network_ungrup |> activate(nodes) |> mutate(out_degree = centrality_degree(mode = "out"))
NNPG2 <- NNPG1 |> activate(nodes) |> mutate(in_degree = centrality_degree(mode = "in"))
NNPG3 <- NNPG2 |> activate(nodes) |> mutate(centrality = centrality_degree(mode = "total"))
NNPG4 <- NNPG3 |> activate(nodes) |> mutate(betweenness = betweenness(NNPG3))
NNPG5 <- NNPG4 |> activate(nodes) |> mutate(closeness = closeness(NNPG4))
NNPG6 <- NNPG5 |> activate(nodes) |> mutate(edge_density = edge_density(NNPG5))
NNPG7 <- NNPG6 |> activate(nodes) |> mutate(graph_density = graph.density(NNPG6))
NNPG8 <- NNPG7 |> activate(nodes) |> mutate(reciprocity = reciprocity(NNPG7))
DLT1_Network_ungrup_final <- NNPG8 |> activate(nodes) |> mutate(transitivity = transitivity(NNPG8))

I calculate the mean and median out-degrees for the graphs and turn them into a .csv file.

mean_out1<- DLT1_networknoprof_grup_final |> activate(nodes) |> select(out_degree) |> as_tibble()
mean_out2<- DLT1_Networknoprof_ungrup_final |> activate(nodes) |> select(out_degree) |> as_tibble()
mean_out3<- dlt1_network_grup_final |> activate(nodes) |> select(out_degree) |> as_tibble()
mean_out4<- DLT1_Network_ungrup_final |> activate(nodes) |> select(out_degree) |> as_tibble()
?write_csv

out_degree_averages <- tibble(as_tibble_col(c("noprof_grup", "noprof_nogrup", "prof_grup", "prof_nogrup"), column_name = "dataset"), +
as_tibble_col(c(mean(mean_out1$out_degree), +
mean(mean_out2$out_degree), +
mean(mean_out3$out_degree), +
mean(mean_out4$out_degree)), column_name = "mean"), +
as_tibble_col(c(median(mean_out1$out_degree), +
median(mean_out2$out_degree), +
median(mean_out3$out_degree), +
median(mean_out4$out_degree)), column_name = "median"))
out_degree_averages |> write_csv(file = "outdegreeavg.csv")

read_csv("outdegreeavg.csv")
## Rows: 4 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (1): dataset
## dbl (2): mean, median
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

It is clear above that the dataset with the most activity was the grouped dataset with the professor, but the grouped dataset without the professor has the least activity, a drop of 1.32. This indicates that the groups were far more dependent on the professor than on the students for interactions, which is to say that most interactions were student-professor rather than student-student. However, the mean interactions in the ungrouped dataset without the professor dropped by only .71. This smaller drop indicates less reliance on the professors. However, the ungrouped dataset without the professor also is the only one with a median number of interactions of 0. Since 0 is the minimum number of interactions, less than half of the students actually engaged. Thus, this dataset is dominated by a few highly active students, not many moderately active ones. Now, let’s get to graphing.

library(ggplot2)
library(ggraph)
DLT1_networknoprof_grup_final
## # A tbl_graph: 443 nodes and 707 edges
## #
## # A directed multigraph with 158 components
## #
## # A tibble: 443 × 22
##     UID Facilitator role1  experience experience2 grades location region country
##   <dbl>       <dbl> <chr>       <dbl> <chr>       <chr>  <chr>    <chr>  <chr>  
## 1     1           0 libme…          1 6 to 10     secon… VA       South  US     
## 2     2           0 class…          1 6 to 10     secon… FL       South  US     
## 3     3           0 distr…          2 11 to 20    gener… PA       North… US     
## 4     4           0 class…          2 11 to 20    middle NC       South  US     
## 5     5           0 other…          3 20+         gener… AL       South  US     
## 6     6           0 class…          1 4 to 5      gener… AL       South  US     
## # ℹ 437 more rows
## # ℹ 13 more variables: group <chr>, gender <chr>, expert <chr>, connect <chr>,
## #   out_degree <dbl>, in_degree <dbl>, centrality <dbl>, betweenness <dbl>,
## #   closeness <dbl>, edge_density <dbl>, graph_density <dbl>,
## #   reciprocity <dbl>, transitivity <dbl>
## #
## # A tibble: 707 × 6
##    from    to Timestamp    `Discussion Category` `Comment ID` `Discussion ID`
##   <int> <int> <chr>        <chr>                        <dbl> <chr>          
## 1   355   356 4/4/13 20:12 Group D-L                       10 3              
## 2    19   310 4/4/13 23:13 Group A-C                       16 9              
## 3    19     4 4/4/13 23:35 Group N                         19 7              
## # ℹ 704 more rows
DLT1_Networknoprof_ungrup_final
## # A tbl_graph: 443 nodes and 923 edges
## #
## # A directed multigraph with 213 components
## #
## # A tibble: 443 × 22
##     UID Facilitator role1  experience experience2 grades location region country
##   <dbl>       <dbl> <chr>       <dbl> <chr>       <chr>  <chr>    <chr>  <chr>  
## 1     1           0 libme…          1 6 to 10     secon… VA       South  US     
## 2     2           0 class…          1 6 to 10     secon… FL       South  US     
## 3     3           0 distr…          2 11 to 20    gener… PA       North… US     
## 4     4           0 class…          2 11 to 20    middle NC       South  US     
## 5     5           0 other…          3 20+         gener… AL       South  US     
## 6     6           0 class…          1 4 to 5      gener… AL       South  US     
## # ℹ 437 more rows
## # ℹ 13 more variables: group <chr>, gender <chr>, expert <chr>, connect <chr>,
## #   out_degree <dbl>, in_degree <dbl>, centrality <dbl>, betweenness <dbl>,
## #   closeness <dbl>, edge_density <dbl>, graph_density <dbl>,
## #   reciprocity <dbl>, transitivity <dbl>
## #
## # A tibble: 923 × 6
##    from    to Timestamp    `Discussion Category` `Comment ID` `Discussion ID`
##   <int> <int> <chr>        <chr>                        <dbl> <chr>          
## 1   216    19 4/4/13 23:21 Unit 1 Expert Panel             17 10             
## 2   217    19 4/5/13 1:11  Unit 1 Expert Panel             24 11             
## 3   218    19 4/5/13 13:26 Unit 1 Expert Panel             30 11             
## # ℹ 920 more rows
dlt1_network_grup_final
## # A tbl_graph: 445 nodes and 1254 edges
## #
## # A directed multigraph with 59 components
## #
## # A tibble: 445 × 22
##     UID Facilitator role1  experience experience2 grades location region country
##   <dbl>       <dbl> <chr>       <dbl> <chr>       <chr>  <chr>    <chr>  <chr>  
## 1     1           0 libme…          1 6 to 10     secon… VA       South  US     
## 2     2           0 class…          1 6 to 10     secon… FL       South  US     
## 3     3           0 distr…          2 11 to 20    gener… PA       North… US     
## 4     4           0 class…          2 11 to 20    middle NC       South  US     
## 5     5           0 other…          3 20+         gener… AL       South  US     
## 6     6           0 class…          1 4 to 5      gener… AL       South  US     
## # ℹ 439 more rows
## # ℹ 13 more variables: group <chr>, gender <chr>, expert <chr>, connect <chr>,
## #   out_degree <dbl>, in_degree <dbl>, centrality <dbl>, betweenness <dbl>,
## #   closeness <dbl>, edge_density <dbl>, graph_density <dbl>,
## #   reciprocity <dbl>, transitivity <dbl>
## #
## # A tibble: 1,254 × 6
##    from    to Timestamp    `Discussion Category` `Comment ID` `Discussion ID`
##   <int> <int> <chr>        <chr>                        <dbl> <chr>          
## 1   360   444 4/4/13 16:32 Group N                          2 2              
## 2   356   444 4/4/13 18:45 Group D-L                        3 1              
## 3   356   444 4/4/13 18:47 Group D-L                        4 3              
## # ℹ 1,251 more rows
DLT1_Network_ungrup_final
## # A tbl_graph: 445 nodes and 1245 edges
## #
## # A directed multigraph with 203 components
## #
## # A tibble: 445 × 22
##     UID Facilitator role1  experience experience2 grades location region country
##   <dbl>       <dbl> <chr>       <dbl> <chr>       <chr>  <chr>    <chr>  <chr>  
## 1     1           0 libme…          1 6 to 10     secon… VA       South  US     
## 2     2           0 class…          1 6 to 10     secon… FL       South  US     
## 3     3           0 distr…          2 11 to 20    gener… PA       North… US     
## 4     4           0 class…          2 11 to 20    middle NC       South  US     
## 5     5           0 other…          3 20+         gener… AL       South  US     
## 6     6           0 class…          1 4 to 5      gener… AL       South  US     
## # ℹ 439 more rows
## # ℹ 13 more variables: group <chr>, gender <chr>, expert <chr>, connect <chr>,
## #   out_degree <dbl>, in_degree <dbl>, centrality <dbl>, betweenness <dbl>,
## #   closeness <dbl>, edge_density <dbl>, graph_density <dbl>,
## #   reciprocity <dbl>, transitivity <dbl>
## #
## # A tibble: 1,245 × 6
##    from    to Timestamp    `Discussion Category` `Comment ID` `Discussion ID`
##   <int> <int> <chr>        <chr>                        <dbl> <chr>          
## 1   310   444 4/4/13 20:34 Unit 1 Expert Panel             13 8              
## 2   216    19 4/4/13 23:21 Unit 1 Expert Panel             17 10             
## 3   217   444 4/5/13 0:58  Unit 1 Expert Panel             22 8              
## # ℹ 1,242 more rows
ggraph(DLT1_networknoprof_grup_final, layout = "fr") +
  geom_edge_link(alpha = .2) +
  geom_node_point(aes(color = group,
                      size = local_size())) +
  theme_graph()
## Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` in the `default_aes` field and elsewhere instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

ggraph(DLT1_Networknoprof_ungrup_final, layout = "fr") +
  geom_edge_link(alpha = .2) +
  geom_node_point(aes(color = group,
                      size = local_size())) +
  theme_graph()

ggraph(dlt1_network_grup_final, layout = "fr") +
  geom_edge_link(alpha = .2) +
  geom_node_point(aes(color = group,
                      size = local_size())) +
  theme_graph()

ggraph(DLT1_Network_ungrup_final, layout = "fr") +
  geom_edge_link(alpha = .2) +
  geom_node_point(aes(color = group,
                      size = local_size())) +
  theme_graph()

In the graphs above, it becomes clear that the grouped datasets show signs of clustering, though when the professor is present, that clustering is difficult to discern. In the grouped professor dataset, groups AC, N, and UZ are easily distinguishable, OT and M are harder to make out, but they are visible. Group DL, however, is really only visible if one knows what they are looking for. Without the professor, only OT is not immediately evident. In the ungrouped datasets, however, no clusters become evident. In both cases, the number of students who made no interactions once the professor was removed from the course grows, though this phenomenon expressed itself more in the grouped dataset. These findings reinforce those with the average mean and median.

DLT1_networknoprof_grup |> centr_degree() |> as_tibble() |> select(centralization) |> unique() -> A1
DLT1_Networknoprof_ungrup |> centr_degree() |> as_tibble() |> select(centralization) |> unique() -> A2
dlt1_network_grup |> centr_degree() |> as_tibble() |> select(centralization) |> unique() -> A3
DLT1_Network_ungrup |> centr_degree() |> as_tibble() |> select(centralization) |> unique() -> A4 

DLT1_networknoprof_grup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique() -> B1
DLT1_Networknoprof_ungrup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique() -> B2
dlt1_network_grup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique() -> B3
DLT1_Network_ungrup |> centr_degree(mode = "out") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'out-degree') |> unique() -> B4

DLT1_networknoprof_grup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique() -> C1
DLT1_Networknoprof_ungrup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique() -> C2
dlt1_network_grup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique() -> C3
DLT1_Network_ungrup |> centr_degree(mode = "in") |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'in-degree') |> unique() -> C4

DLT1_networknoprof_grup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique() -> D1
DLT1_Networknoprof_ungrup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique() -> D2
dlt1_network_grup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique() -> D3
DLT1_Network_ungrup |> centr_betw() |> as_tibble() |> select(centralization) |> rename_at('centralization', ~'betweenness') |> unique() -> D4

DLT1_networknoprof_grup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique() -> F1
DLT1_Networknoprof_ungrup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique() -> F2
dlt1_network_grup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique() -> F3 
DLT1_Network_ungrup |> edge_density() |> as_tibble() |> select(value) |>rename_at('value', ~'edge_density') |> unique() -> F4 

DLT1_networknoprof_grup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique() -> G1
DLT1_Networknoprof_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique() -> G2
dlt1_network_grup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique() -> G3
DLT1_Network_ungrup |> graph.density() |> as_tibble() |> select(value) |>rename_at('value', ~'graph_density') |> unique() -> G4



DLT1_networknoprof_grup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique() -> I1
DLT1_Networknoprof_ungrup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique() -> I2
dlt1_network_grup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique() -> I3
DLT1_Network_ungrup |> reciprocity() |> as_tibble() |> select(value) |>rename_at('value', ~'reciprocity') |> unique() -> I4

DLT1_networknoprof_grup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique() -> J1
DLT1_Networknoprof_ungrup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique() -> J2
dlt1_network_grup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique() -> J3
DLT1_Network_ungrup |> transitivity() |> as_tibble() |> select(value) |>rename_at('value', ~'transitivity') |> unique() -> J4
?as_tibble_col

network_metrics <- tibble(as_tibble_col(c("noprof_grup", "noprof_nogrup", "prof_grup", "prof_nogrup"), column_name = "dataset"), as_tibble_col(c(A1, A2, A3, A4), column_name = "centralization"), as_tibble_col(c(B1, B2, B3, B4), column_name = "out-degree"), as_tibble_col(c(C1, C2, C3, C4), column_name = "in-degree"), as_tibble_col(c(D1, D2, D3, D4), column_name = "betweenness"), as_tibble_col(c(F1, F2, F3, F4), column_name = "edge_density"), as_tibble_col(c(G1, G2, G3, G4),  column_name = "graph_density"), as_tibble_col(c(I1, I2, I3, I4), column_name = "reciprocity"), as_tibble_col(c(J1, J2, J3, J4), column_name = "transitivity")) 
network_metrics |> write_csv(file = "network_metrics.csv")
tibble(as_tibble_col(c("noprof_grup", "noprof_nogrup", "prof_grup", "prof_nogrup"), column_name = "dataset"), as_tibble_col(c(ei_index(DLT1_networknoprof_grup_final, node_attr_name = "group"), ei_index(DLT1_Networknoprof_ungrup_final, node_attr_name = "group"), ei_index(dlt1_network_grup_final , node_attr_name = "group"), ei_index(DLT1_Network_ungrup_final, node_attr_name = "group")), column_name = "homophily"))
## Warning: `g` is multiplex.

## Warning: `g` is multiplex.

## Warning: `g` is multiplex.

## Warning: `g` is multiplex.