Data 605 - Assignment 12

Hazal Gunduz

The attached who.csv dataset contains real-world data from 2008. The variables included follow.

Country: name of the country

LifeExp: average life expectancy for the country in years

InfantSurvival: proportion of those surviving to one year or more

Under5Survival: proportion of those surviving to five years or more

TBFree: proportion of the population without TB.

PropMD: proportion of the population who are MDs

PropRN: proportion of the population who are RNs

PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate

GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate

TotExp: sum of personal and government expenditures.

1. Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error, and p-values only. Discuss whether the assumptions of simple linear regression met.

Loading the Data

who <- read.csv("~/Downloads/who.csv")
summary(who)
##    Country             LifeExp      InfantSurvival   Under5Survival  
##  Length:190         Min.   :40.00   Min.   :0.8350   Min.   :0.7310  
##  Class :character   1st Qu.:61.25   1st Qu.:0.9433   1st Qu.:0.9253  
##  Mode  :character   Median :70.00   Median :0.9785   Median :0.9745  
##                     Mean   :67.38   Mean   :0.9624   Mean   :0.9459  
##                     3rd Qu.:75.00   3rd Qu.:0.9910   3rd Qu.:0.9900  
##                     Max.   :83.00   Max.   :0.9980   Max.   :0.9970  
##      TBFree           PropMD              PropRN             PersExp       
##  Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883   Min.   :   3.00  
##  1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455   1st Qu.:  36.25  
##  Median :0.9992   Median :0.0010474   Median :0.0027584   Median : 199.50  
##  Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336   Mean   : 742.00  
##  3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164   3rd Qu.: 515.25  
##  Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387   Max.   :6350.00  
##     GovtExp             TotExp      
##  Min.   :    10.0   Min.   :    13  
##  1st Qu.:   559.5   1st Qu.:   584  
##  Median :  5385.0   Median :  5541  
##  Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :476420.0   Max.   :482750
head(who, 10)
##                Country LifeExp InfantSurvival Under5Survival  TBFree
## 1          Afghanistan      42          0.835          0.743 0.99769
## 2              Albania      71          0.985          0.983 0.99974
## 3              Algeria      71          0.967          0.962 0.99944
## 4              Andorra      82          0.997          0.996 0.99983
## 5               Angola      41          0.846          0.740 0.99656
## 6  Antigua and Barbuda      73          0.990          0.989 0.99991
## 7            Argentina      75          0.986          0.983 0.99952
## 8              Armenia      69          0.979          0.976 0.99920
## 9            Australia      82          0.995          0.994 0.99993
## 10             Austria      80          0.996          0.996 0.99990
##         PropMD      PropRN PersExp GovtExp TotExp
## 1  0.000228841 0.000572294      20      92    112
## 2  0.001143127 0.004614439     169    3128   3297
## 3  0.001060478 0.002091362     108    5184   5292
## 4  0.003297297 0.003500000    2589  169725 172314
## 5  0.000070400 0.001146162      36    1620   1656
## 6  0.000142857 0.002773810     503   12543  13046
## 7  0.002780191 0.000741044     484   19170  19654
## 8  0.003698671 0.004918937      88    1856   1944
## 9  0.002331953 0.009149391    3181  187616 190797
## 10 0.003610904 0.006458749    3788  189354 193142

Scatterplot of the LifeExp ~ TotExp and linear regression.

#Simple linear regression of LifeExp ~ TotExp
who_lm <- lm(LifeExp ~ TotExp, data = who)
summary(who_lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14

R-squared of 0.2577 shows that 25.77% of the model data variation. We see that assumptions of simple linear regression aren’t met. The variable that we used shows for 25.77% of the variance.

#Scatterplot of the LifeExp ~ TotExp
plot(LifeExp ~ TotExp, data = who, 
     main = "Life Expectancy vs Total Expenditures",
     xlab = "Total Expenditures", ylab = "Life Expectancy")
abline(who_lm, col = "blue")

plot(who_lm$fitted.values, who_lm$residuals, 
     main = "Residuals Plot",
     xlab = "Fitted Values", ylab = "Residuals")
abline(h = 0, col = "green")

2. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

#Life Expectancy ^ 4.6
who_LifeExp <- who$LifeExp ^ (4.6)

#Total Expenditures ^ 0.06
who_TotExp <- who$TotExp ^ (0.06)
#Scatterplot transformed variables
plot(who_TotExp ~ who_LifeExp, 
     main = "Total Expenditure vs Life Expectancy", 
     xlab = "TotalExpenditure", ylab = "LifeExpentancy")

#Simple regression LifeExp ~ TotExp
who_lm2 <- lm(who_LifeExp ~ who_TotExp, data = who)
summary(who_lm2)
## 
## Call:
## lm(formula = who_LifeExp ~ who_TotExp, data = who)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## who_TotExp   620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16

This model is better. The plot is more linear than first linear. R-squared value has increased.

3. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.

new_data <- data.frame(who_TotExp = 1.5)
predict_LifeExp <- predict(who_lm2, newdata = new_data) ^ (1/4.6)
predict_LifeExp
##        1 
## 63.31153
new_data2 <- data.frame(who_TotExp = 2.5)
predict_LifeExp2 <- predict(who_lm2, newdata = new_data2) ^ (1/4.6)
predict_LifeExp2
##        1 
## 86.50645

The model predicts a life expectancy of ~63 and ~87.

4. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model? LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

#multiple regression model
who_lm3 <- lm(LifeExp ~ PropMD + TotExp + (PropMD * TotExp), data = who)
summary(who_lm3)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + (PropMD * TotExp), data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16

F-statistic: 34.49 on 3 and 186 DF.The 34.49 F statistic means that the model is significant at the 0.01 level, as the corresponding p-value (2.2e-16) is less than 0.01.

R-squared: 0.3471. This means that 34.71% of the change in life expectancy is explained by the sum of total expenditures in the model.

Standard error: 8.765 on 186 degrees of freedom. The standard error of 8.765 means that the average difference between the predicted and actual values of the dependent variable is 8.765.

P-values: 2.2e-16, PropMD:2.32e-07, TotExp:9.39e-14, PropMD:TotExp:6.35e-05. These p values for the total expenditure variable are significant at the 0.01. This means that the total expenditure, Proportion of MD are all associated with life expectancy variable in the model.

5. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

predict(who_lm3, data.frame(PropMD = 0.03, TotExp = 14))
##       1 
## 107.696

The forecast doesn’t seem very realistic as humans don’t live that long.