library(funkyheatmap)
library(dplyr, warn.conflicts = FALSE)
library(tibble, warn.conflicts = FALSE)
library(purrr, warn.conflicts = FALSE)
data("mtcars")
data <- mtcars %>%
rownames_to_column("id") %>%
arrange(desc(mpg)) %>%
head(20)
funky_heatmap(data)column_info <- tribble(
~id, ~group, ~name, ~geom, ~palette, ~options,
"id", NA, "", "text", NA, list(hjust = 0, width = 6),
"mpg", "overall", "Miles / gallon", "bar", "palette1", list(width = 4, legend = FALSE),
"cyl", "overall", "Number of cylinders", "bar", "palette2", list(width = 4, legend = FALSE),
"disp", "group1", "Displacement (cu.in.)", "funkyrect", "palette1", lst(),
"hp", "group1", "Gross horsepower", "funkyrect", "palette1", lst(),
"drat", "group1", "Rear axle ratio", "funkyrect", "palette1", lst(),
"wt", "group1", "Weight (1000 lbs)", "funkyrect", "palette1", lst(),
"qsec", "group2", "1/4 mile time", "circle", "palette2", lst(),
"vs", "group2", "Engine", "circle", "palette2", lst(),
"am", "group2", "Transmission", "circle", "palette2", lst(),
"gear", "group2", "# Forward gears", "circle", "palette2", lst(),
"carb", "group2", "# Carburetors", "circle", "palette2", lst()
)
column_groups <- tribble( # tribble_start
~Category, ~group, ~palette,
"Overall", "overall", "overall",
"Group 1", "group1", "palette1",
"Group 2", "group2", "palette2"
) # tribble_end
palettes <- tribble(
~palette, ~colours,
"overall", grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(9, "Greys")[-1]))(101),
"palette1", grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(9, "Blues") %>% c("#011636")))(101),
"palette2", grDevices::colorRampPalette(rev(RColorBrewer::brewer.pal(9, "Reds")[-8:-9]))(101)
)
row_info <- data %>% transmute(id, group = "test")
row_groups <- tibble(Group = "Test", group = "test")
g <- funky_heatmap(
data = data,
column_info = column_info,
column_groups = column_groups,
row_info = row_info,
row_groups = row_groups,
palettes = palettes,
expand = list(xmax = 4)
)
glibrary(funkyheatmap)
library(kableExtra)
data("dynbenchmark_data")
data <- dynbenchmark_data$data
print(data[,1:12])## # A tibble: 51 × 12
## id method_name method_source tool_id method_platform method_url
## <chr> <chr> <chr> <chr> <chr> <chr>
## 1 paga PAGA tool paga Python https://g…
## 2 raceid_stemid RaceID / S… tool raceid… R https://g…
## 3 slicer SLICER tool slicer R https://g…
## 4 slingshot Slingshot tool slings… R https://g…
## 5 paga_tree PAGA Tree tool paga Python https://g…
## 6 projected_sling… Projected … tool slings… R https://g…
## 7 mst MST offtheshelf mst R <NA>
## 8 monocle_ica Monocle ICA tool monocle R https://g…
## 9 monocle_ddrtree Monocle DD… tool monocle R https://g…
## 10 pcreode pCreode tool pcreode Python https://g…
## # ℹ 41 more rows
## # ℹ 6 more variables: method_license <chr>, method_authors <list>,
## # method_description <chr>, wrapper_input_required <list>,
## # wrapper_input_optional <list>, wrapper_type <chr>
preview_cols <- c(
"id",
"method_source",
"method_platform",
"benchmark_overall_norm_correlation",
"benchmark_overall_norm_featureimp_wcor",
"benchmark_overall_norm_F1_branches",
"benchmark_overall_norm_him",
"benchmark_overall_overall"
)
kable(data[,preview_cols])| id | method_source | method_platform | benchmark_overall_norm_correlation | benchmark_overall_norm_featureimp_wcor | benchmark_overall_norm_F1_branches | benchmark_overall_norm_him | benchmark_overall_overall |
|---|---|---|---|---|---|---|---|
| paga | tool | Python | 0.6504941 | 0.7303490 | 0.6087144 | 0.5974547 | 0.6447229 |
| raceid_stemid | tool | R | 0.5393572 | 0.6255247 | 0.2683444 | 0.4539247 | 0.4502455 |
| slicer | tool | R | 0.1387779 | 0.1695031 | 0.2475509 | 0.5536164 | 0.2382829 |
| slingshot | tool | R | 0.7401781 | 0.7243311 | 0.6909130 | 0.6533370 | 0.7013883 |
| paga_tree | tool | Python | 0.6880083 | 0.7364518 | 0.6716161 | 0.6665846 | 0.6901263 |
| projected_slingshot | tool | R | 0.6551315 | 0.6788597 | 0.6828560 | 0.6357031 | 0.6628618 |
| mst | offtheshelf | R | 0.6098712 | 0.6640261 | 0.5768291 | 0.6288011 | 0.6190788 |
| monocle_ica | tool | R | 0.6290279 | 0.6657493 | 0.5967264 | 0.6048960 | 0.6235326 |
| monocle_ddrtree | tool | R | 0.7310423 | 0.7312963 | 0.4523655 | 0.6616356 | 0.6324644 |
| pcreode | tool | Python | 0.6462532 | 0.7170194 | 0.4573191 | 0.5739903 | 0.5905605 |
| celltree_vem | tool | R | 0.3680771 | 0.4788885 | 0.6841745 | 0.5753976 | 0.5132477 |
| scuba | tool | Python | 0.5446324 | 0.5305276 | 0.5814803 | 0.5435960 | 0.5497379 |
| celltree_maptpx | tool | R | 0.6111870 | 0.6242291 | 0.6331532 | 0.5258015 | 0.5969833 |
| slice | tool | R | 0.6222513 | 0.5796429 | 0.5970229 | 0.5240740 | 0.5795988 |
| sincell | tool | R | 0.5377153 | 0.5503793 | 0.3327244 | 0.5634739 | 0.4853368 |
| cellrouter | tool | R | 0.3137068 | 0.4423247 | 0.2750984 | 0.4864977 | 0.3691548 |
| elpigraph | tool | R | 0.5733797 | 0.6327042 | 0.2200817 | 0.4345891 | 0.4315950 |
| urd | tool | R | 0.3093083 | 0.4060632 | 0.3231054 | 0.4129312 | 0.3597923 |
| celltrails | tool | R | 0.5020187 | 0.5126936 | 0.4591280 | 0.3359874 | 0.4463840 |
| mpath | tool | R | 0.3368190 | 0.5333464 | 0.4657864 | 0.5742558 | 0.4681926 |
| merlot | tool | R | 0.2249512 | 0.2075988 | 0.2426236 | 0.2494673 | 0.2305765 |
| celltree_gibbs | tool | R | 0.2055744 | 0.1753163 | 0.1799559 | 0.1460367 | 0.1754304 |
| calista | tool | R | 0.1758370 | 0.1321052 | 0.1502081 | 0.1560643 | 0.1527590 |
| stemnet | tool | R | 0.6105113 | 0.5097026 | 0.6560640 | 0.6685405 | 0.6078146 |
| fateid | tool | R | 0.6740480 | 0.7005336 | 0.6375255 | 0.6135320 | 0.6555618 |
| mfa | tool | R | 0.4972208 | 0.4796343 | 0.6151766 | 0.5765243 | 0.5392861 |
| grandprix | tool | Python | 0.2988668 | 0.2862216 | 0.3377857 | 0.3828958 | 0.3243213 |
| gpfates | tool | Python | 0.2623099 | 0.2943448 | 0.3925739 | 0.4088326 | 0.3336449 |
| scoup | tool | C++ | 0.1475558 | 0.1078882 | 0.1263542 | 0.1006899 | 0.1192962 |
| projected_dpt | tool | R | 0.4568055 | 0.4998640 | 0.5137955 | 0.6109238 | 0.5174163 |
| wishbone | tool | Python | 0.5277212 | 0.5275330 | 0.4659129 | 0.5385160 | 0.5140903 |
| dpt | tool | R | 0.4743485 | 0.4589767 | 0.4894898 | 0.5367237 | 0.4890414 |
| scorpius | tool | R | 0.7816934 | 0.6585905 | 0.6858362 | 0.5785150 | 0.6722747 |
| comp1 | offtheshelf | R | 0.6274595 | 0.5385159 | 0.6846520 | 0.5770320 | 0.6044544 |
| matcher | tool | Python | 0.6068638 | 0.5537249 | 0.6353805 | 0.5293056 | 0.5798043 |
| embeddr | tool | R | 0.7075335 | 0.5804200 | 0.6421205 | 0.5317872 | 0.6119430 |
| tscan | tool | R | 0.5967668 | 0.7057806 | 0.6593750 | 0.5785164 | 0.6331121 |
| wanderlust | tool | Python | 0.5551993 | 0.5072468 | 0.5789748 | 0.4763553 | 0.5279159 |
| phenopath | tool | R | 0.5828424 | 0.4716004 | 0.6565155 | 0.5501488 | 0.5613227 |
| waterfall | tool | R | 0.6628271 | 0.5681419 | 0.6777215 | 0.5700908 | 0.6176083 |
| elpilinear | tool | R | 0.5498927 | 0.5413164 | 0.6524324 | 0.5498067 | 0.5716348 |
| topslam | tool | Python | 0.5612422 | 0.5206949 | 0.6154048 | 0.5090714 | 0.5500704 |
| forks | tool | Python | 0.2940185 | 0.3239275 | 0.3286755 | 0.3519913 | 0.3239891 |
| ouijaflow | tool | Python | 0.4242776 | 0.4021585 | 0.4824233 | 0.3971562 | 0.4252157 |
| pseudogp | tool | R | 0.2310569 | 0.2186398 | 0.2598661 | 0.1996926 | 0.2262768 |
| ouija | tool | R | 0.1262870 | 0.0932476 | 0.0984331 | 0.0750823 | 0.0965870 |
| scimitar | tool | Python | 0.1262870 | 0.0932476 | 0.0984331 | 0.0750823 | 0.0965870 |
| angle | offtheshelf | R | 0.7267030 | 0.7267977 | 0.6858362 | 0.4363454 | 0.6305294 |
| elpicycle | tool | R | 0.5484363 | 0.6016047 | 0.6524324 | 0.4188026 | 0.5479559 |
| oscope | tool | R | NA | NA | NA | NA | NA |
| recat | tool | R | 0.4613065 | 0.5007224 | 0.4893212 | 0.3113828 | 0.4331305 |
g <- funky_heatmap(data[,preview_cols])
gcolumn_info <- dynbenchmark_data$column_info
g <- funky_heatmap(data, column_info = column_info)
g