# Mindanao State University
# General Santos City
# Introduction to R base commands
# Submitted by: Alwyn E. Felisilda, 1-BSMATH
# Mat108
# Processing of continuous data
# Using random number generators
# Exer1: generate data with mean 2 and standard deviation 1.5 using rnorm() command

data <- rnorm(1000,2,1.5) # 1 thousand values
length(data) # count number of elements
## [1] 1000
## [1] 1000
data[1:20] # display first 20 elements
##  [1]  0.6781120  2.5138930  3.9604991  1.6103351  4.3909095  0.2930962
##  [7]  0.4642984  2.1723121  1.2946821  3.2213339  0.7091569  2.9656701
## [13]  0.5775825  1.7277426 -0.9565346  3.3649135  1.7063234  0.7798355
## [19]  0.9238820  1.1740129
data[1:300] # display the first 300 elements
##   [1]  0.678112012  2.513892982  3.960499108  1.610335071  4.390909463
##   [6]  0.293096244  0.464298373  2.172312060  1.294682105  3.221333935
##  [11]  0.709156895  2.965670146  0.577582507  1.727742578 -0.956534567
##  [16]  3.364913451  1.706323385  0.779835499  0.923881972  1.174012921
##  [21]  1.212050118  0.293148121  0.843460784  3.599159830  2.902508179
##  [26] -0.128992302  1.707960870 -0.431523112  1.253609682  1.217058947
##  [31]  2.398917149 -0.747207144  1.778752236  2.176957575 -0.677309447
##  [36]  2.558235146  2.735652496  2.693249430  1.444297301  4.092404208
##  [41] -0.921759254  3.318024612  5.775454581  2.282798696 -0.183733656
##  [46]  0.296229941  1.044486497  0.814371571  2.456859155  0.471381120
##  [51]  0.490645220 -0.174984008  1.012785220  4.703106848  0.640425849
##  [56]  0.183377234  3.187759752  3.692744890  2.709077888  0.602257934
##  [61]  3.674851398 -1.250143446  0.222546135  0.745851600  1.227460030
##  [66]  2.053737247  2.156114110 -0.934778127  1.705964759  3.660209030
##  [71]  1.419931653  2.223792372  1.930426861  0.707512754  3.019685345
##  [76] -0.183853504  2.729955343  1.573681014  1.439188807  0.687766552
##  [81]  4.288092215  1.725378131  3.198149928  1.977345486  2.118981058
##  [86]  1.239986875  0.599361740 -0.314066976  3.643784644  4.874097111
##  [91]  0.581868155  0.528016258 -0.688929763 -0.683418972  0.663143013
##  [96]  1.778558906  2.801814750 -0.473530767  2.571177663  2.292423817
## [101] -1.129026247  4.873076047  1.316825062  0.974327330  0.132635073
## [106] -0.135644855  3.345574556  1.213089168  2.460360203  4.007624787
## [111]  2.969091344  1.796573589  1.973765885  3.261384168  1.985033685
## [116]  1.067933356  3.630477619  3.537218823  1.385902390  2.396754586
## [121]  1.410863737  4.139070636 -0.994761847  2.159102594  2.756272115
## [126]  0.078539113  0.007287832  2.525159602  3.249116777  1.300845549
## [131] -0.189282446  1.709633710  2.709446118  4.119722215  1.597077424
## [136]  2.068992011  0.623805748  0.982377309 -0.538436035  1.903869461
## [141]  0.303430568 -2.214305895  0.429030984  2.888102495  5.913998062
## [146]  2.086209197  1.551743594  1.180913029  1.859621549  1.012724203
## [151]  3.326030920  3.915083121  3.588057478  1.682804079  1.318517753
## [156]  2.577142089  3.815010335  2.702072292  2.166086553  1.381318554
## [161]  2.167939848  3.724747310 -0.420213984  1.904430434  1.657606657
## [166]  3.891024168  0.608589055  1.701965496  1.734765836  1.142649101
## [171] -1.122111156  0.920545728 -0.721168615  0.793628689 -1.243063704
## [176]  1.763375854  4.632389969  2.285234429  2.130805349  0.590052369
## [181]  5.224712879  2.806827946  1.625613130  5.362811477  0.043497903
## [186]  2.659406656  1.650993493  1.638600777  0.230084418 -0.905621391
## [191]  1.991226775  1.160052556  3.159493610  3.801725755  0.796304232
## [196]  1.546337522  3.017258684  3.453886494  0.272861451  2.258112614
## [201]  2.050745143  1.605391670  4.516423221  4.141073343 -0.215419013
## [206]  3.772035368  1.065550209 -0.746229083  2.529759688  2.959824933
## [211]  2.586163933  1.623648989  3.182693342  3.861104148  0.024512881
## [216]  0.446574029  1.364733882  1.675997227  1.053577753  0.379518664
## [221]  0.776792878  2.796683646  1.959464959  2.584734364  0.490614857
## [226]  3.817339745  2.296605188  3.393059640  2.458983016  1.501344473
## [231]  4.274613681  0.039403500  0.889577812  4.151910347  2.280595875
## [236]  0.736496236  4.341509402  2.016303581  3.576373495  2.040942736
## [241]  1.291197804  1.403631040  3.915874695  1.833667393  0.466885878
## [246] -0.532164093  2.472029607  0.185838653  0.462593354  1.137419343
## [251]  2.404006450  2.185896117  0.718687213  1.027696951  3.592135736
## [256]  1.716434354 -1.228304309  2.473656121  0.947649333  2.730487310
## [261] -0.165587784  2.342885374  1.990693365  0.912772282  0.659959915
## [266]  2.612800760  2.259394860  4.862412944  1.888758744  4.187416227
## [271]  4.277371961  0.274118310  4.400960896  2.264518515  1.197034102
## [276]  3.030518022  5.257592425  2.491161357  3.132409630  2.033682147
## [281]  3.966961962  3.888976711  4.371625672  1.703782103  4.780883441
## [286]  3.531219378  0.973936386  0.794462152  1.680628180 -0.624479998
## [291]  2.915807993  2.341219405  1.678609286  1.445302696  3.093960267
## [296]  2.766251178  2.346480452  0.558687667  2.946159622  3.617761353
# Exer2: Draw histogram with one main title and different thickness

maintitle <- "Histogram and Density Plot"
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

hist(data, breaks=300,col="gray",main = maintitle)

# Exer3: Draw histogram with one main title and sub title

subtitle <- "Alwyn Graph"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)

hist(data, breaks=40,col="lightblue",main = maintitle)

hist(data, breaks=100,col="gray",main = maintitle)

# Question: What causes the subtitle to be in the second line?

# Exer4: Draw histogram with main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# # Add density curve. We define the range of the density curve
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)

# Exer5: Draw histogram with main title and sub title

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve and the location of the mean value
(x = seq(from=min(data), to=max(data), length.out=100))
##   [1] -2.214305895 -2.122091418 -2.029876940 -1.937662463 -1.845447986
##   [6] -1.753233509 -1.661019032 -1.568804554 -1.476590077 -1.384375600
##  [11] -1.292161123 -1.199946646 -1.107732168 -1.015517691 -0.923303214
##  [16] -0.831088737 -0.738874260 -0.646659782 -0.554445305 -0.462230828
##  [21] -0.370016351 -0.277801874 -0.185587396 -0.093372919 -0.001158442
##  [26]  0.091056035  0.183270512  0.275484990  0.367699467  0.459913944
##  [31]  0.552128421  0.644342898  0.736557376  0.828771853  0.920986330
##  [36]  1.013200807  1.105415284  1.197629762  1.289844239  1.382058716
##  [41]  1.474273193  1.566487670  1.658702148  1.750916625  1.843131102
##  [46]  1.935345579  2.027560056  2.119774534  2.211989011  2.304203488
##  [51]  2.396417965  2.488632442  2.580846919  2.673061397  2.765275874
##  [56]  2.857490351  2.949704828  3.041919305  3.134133783  3.226348260
##  [61]  3.318562737  3.410777214  3.502991691  3.595206169  3.687420646
##  [66]  3.779635123  3.871849600  3.964064077  4.056278555  4.148493032
##  [71]  4.240707509  4.332921986  4.425136463  4.517350941  4.609565418
##  [76]  4.701779895  4.793994372  4.886208849  4.978423327  5.070637804
##  [81]  5.162852281  5.255066758  5.347281235  5.439495713  5.531710190
##  [86]  5.623924667  5.716139144  5.808353621  5.900568099  5.992782576
##  [91]  6.084997053  6.177211530  6.269426007  6.361640485  6.453854962
##  [96]  6.546069439  6.638283916  6.730498393  6.822712871  6.914927348
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend to top right position
7
## [1] 7
legend("topright",
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)

# Compute Quartile values Q1,Q2 and Q3
# These quantities divide the data into 4 equal parts
hist(data, breaks=20,col="lightblue",main = maintitle)
Quantiles = quantile(data)
Quantiles
##        0%       25%       50%       75%      100% 
## -2.214306  0.953355  1.986445  2.947643  6.914927
## 0% 25% 50% 75% 100%
## -2.883844 1.132859 2.123404 3.033119 7.493839
# locate the quartiles Q1, Q2, Q3
abline(v = Quantiles[2], col="black", lwd=3, lty=3)
abline(v = Quantiles[3], col="red", lwd=3, lty=3)
abline(v = Quantiles[4], col="blue", lwd=3, lty=3)

# Exer6: Locate the lowest 5% and the highest 5% of the distribution
data
##    [1]  0.678112012  2.513892982  3.960499108  1.610335071  4.390909463
##    [6]  0.293096244  0.464298373  2.172312060  1.294682105  3.221333935
##   [11]  0.709156895  2.965670146  0.577582507  1.727742578 -0.956534567
##   [16]  3.364913451  1.706323385  0.779835499  0.923881972  1.174012921
##   [21]  1.212050118  0.293148121  0.843460784  3.599159830  2.902508179
##   [26] -0.128992302  1.707960870 -0.431523112  1.253609682  1.217058947
##   [31]  2.398917149 -0.747207144  1.778752236  2.176957575 -0.677309447
##   [36]  2.558235146  2.735652496  2.693249430  1.444297301  4.092404208
##   [41] -0.921759254  3.318024612  5.775454581  2.282798696 -0.183733656
##   [46]  0.296229941  1.044486497  0.814371571  2.456859155  0.471381120
##   [51]  0.490645220 -0.174984008  1.012785220  4.703106848  0.640425849
##   [56]  0.183377234  3.187759752  3.692744890  2.709077888  0.602257934
##   [61]  3.674851398 -1.250143446  0.222546135  0.745851600  1.227460030
##   [66]  2.053737247  2.156114110 -0.934778127  1.705964759  3.660209030
##   [71]  1.419931653  2.223792372  1.930426861  0.707512754  3.019685345
##   [76] -0.183853504  2.729955343  1.573681014  1.439188807  0.687766552
##   [81]  4.288092215  1.725378131  3.198149928  1.977345486  2.118981058
##   [86]  1.239986875  0.599361740 -0.314066976  3.643784644  4.874097111
##   [91]  0.581868155  0.528016258 -0.688929763 -0.683418972  0.663143013
##   [96]  1.778558906  2.801814750 -0.473530767  2.571177663  2.292423817
##  [101] -1.129026247  4.873076047  1.316825062  0.974327330  0.132635073
##  [106] -0.135644855  3.345574556  1.213089168  2.460360203  4.007624787
##  [111]  2.969091344  1.796573589  1.973765885  3.261384168  1.985033685
##  [116]  1.067933356  3.630477619  3.537218823  1.385902390  2.396754586
##  [121]  1.410863737  4.139070636 -0.994761847  2.159102594  2.756272115
##  [126]  0.078539113  0.007287832  2.525159602  3.249116777  1.300845549
##  [131] -0.189282446  1.709633710  2.709446118  4.119722215  1.597077424
##  [136]  2.068992011  0.623805748  0.982377309 -0.538436035  1.903869461
##  [141]  0.303430568 -2.214305895  0.429030984  2.888102495  5.913998062
##  [146]  2.086209197  1.551743594  1.180913029  1.859621549  1.012724203
##  [151]  3.326030920  3.915083121  3.588057478  1.682804079  1.318517753
##  [156]  2.577142089  3.815010335  2.702072292  2.166086553  1.381318554
##  [161]  2.167939848  3.724747310 -0.420213984  1.904430434  1.657606657
##  [166]  3.891024168  0.608589055  1.701965496  1.734765836  1.142649101
##  [171] -1.122111156  0.920545728 -0.721168615  0.793628689 -1.243063704
##  [176]  1.763375854  4.632389969  2.285234429  2.130805349  0.590052369
##  [181]  5.224712879  2.806827946  1.625613130  5.362811477  0.043497903
##  [186]  2.659406656  1.650993493  1.638600777  0.230084418 -0.905621391
##  [191]  1.991226775  1.160052556  3.159493610  3.801725755  0.796304232
##  [196]  1.546337522  3.017258684  3.453886494  0.272861451  2.258112614
##  [201]  2.050745143  1.605391670  4.516423221  4.141073343 -0.215419013
##  [206]  3.772035368  1.065550209 -0.746229083  2.529759688  2.959824933
##  [211]  2.586163933  1.623648989  3.182693342  3.861104148  0.024512881
##  [216]  0.446574029  1.364733882  1.675997227  1.053577753  0.379518664
##  [221]  0.776792878  2.796683646  1.959464959  2.584734364  0.490614857
##  [226]  3.817339745  2.296605188  3.393059640  2.458983016  1.501344473
##  [231]  4.274613681  0.039403500  0.889577812  4.151910347  2.280595875
##  [236]  0.736496236  4.341509402  2.016303581  3.576373495  2.040942736
##  [241]  1.291197804  1.403631040  3.915874695  1.833667393  0.466885878
##  [246] -0.532164093  2.472029607  0.185838653  0.462593354  1.137419343
##  [251]  2.404006450  2.185896117  0.718687213  1.027696951  3.592135736
##  [256]  1.716434354 -1.228304309  2.473656121  0.947649333  2.730487310
##  [261] -0.165587784  2.342885374  1.990693365  0.912772282  0.659959915
##  [266]  2.612800760  2.259394860  4.862412944  1.888758744  4.187416227
##  [271]  4.277371961  0.274118310  4.400960896  2.264518515  1.197034102
##  [276]  3.030518022  5.257592425  2.491161357  3.132409630  2.033682147
##  [281]  3.966961962  3.888976711  4.371625672  1.703782103  4.780883441
##  [286]  3.531219378  0.973936386  0.794462152  1.680628180 -0.624479998
##  [291]  2.915807993  2.341219405  1.678609286  1.445302696  3.093960267
##  [296]  2.766251178  2.346480452  0.558687667  2.946159622  3.617761353
##  [301]  2.331636288  1.934581579  2.314265115  2.842066564  1.132814772
##  [306]  2.243141532  3.093940335  0.190637130  0.510084368  1.413515843
##  [311]  3.122769898  2.009242907  2.629062062  0.494219391  2.423120532
##  [316]  3.030663250  2.392733209  4.234651354  1.487096767  1.700770139
##  [321]  2.078532268  0.490907038  4.164228165  2.520885864  3.741646637
##  [326]  3.312265068  2.109432358  1.548725562  0.680261956  2.968846966
##  [331]  0.784371850  3.124568793 -0.589864578  1.297581903  1.532301803
##  [336]  2.573571028  1.412689214  0.527691272  3.017300142  1.756637812
##  [341]  3.900123600  1.930631642  1.183013755  2.763602942  1.823498493
##  [346]  2.729253288  1.990939461  1.206983618  3.821089433 -1.641242339
##  [351]  0.426314229  3.105343084 -0.889619043  2.368591238  2.649005277
##  [356]  2.793546943  3.863495863  1.980647712  1.378486066  2.545616688
##  [361]  2.079885450 -0.237893672  2.089921624  1.765249832  0.524912626
##  [366]  3.468214481  2.635567467  3.170136111  1.801373628  3.945157150
##  [371] -0.930804756  2.168340586  0.964992961  2.588314064  0.597054689
##  [376]  3.871302184  2.006013711  0.172616721  2.134211999  1.649889204
##  [381]  2.165271054  4.030679936  4.325775604  1.847760666  1.569564866
##  [386]  1.146076003  2.393027911  2.477924493  4.244820627  2.279230482
##  [391]  0.921849748  2.204284221  0.940176118  3.867479777  0.001404214
##  [396] -1.489681408  1.514534495  3.117941394  2.012746490 -0.568640510
##  [401]  0.580703637  1.923315047 -0.005520192  0.304981817  0.302586390
##  [406]  2.637314789  1.180684704  4.491284675  0.874550074  1.330511506
##  [411]  2.772997114  2.549098825  0.220766810 -0.110277234  0.135817466
##  [416]  1.149771266 -0.589623927  1.253569000  3.484255306  0.196090391
##  [421]  1.229497863 -1.752507215  2.228252135 -1.503381797  0.405156431
##  [426] -0.171509583  2.572333662  1.867286033  1.222944282  1.459720456
##  [431]  0.793312872 -0.742963884  3.110007505  0.793244816  0.713393201
##  [436]  0.642221773  4.205628115  3.864646454  0.566638053 -0.638633402
##  [441] -0.443724600  2.323324570 -0.232419578  4.538931831  1.780302726
##  [446]  1.191983765  0.991779872  2.654558475  2.200604561  2.470670990
##  [451]  2.612511136  1.720333353  0.791463016  1.237724762  0.190326692
##  [456]  0.209829514  1.511757642  4.045572920  4.473046452  1.383854549
##  [461]  1.458451013 -0.348579177  0.229619436  1.751711593  0.916898004
##  [466]  3.661648493  0.727298370  4.495929918  4.720734439  3.022901869
##  [471]  4.888150990  3.138498221  0.175807360  2.641643927  4.115829202
##  [476]  3.263672583  2.058798547  3.674646296  3.851432954 -0.258123316
##  [481]  0.881712897  3.140566341  2.378096513  1.651664567  2.072181690
##  [486]  0.904041652  2.881726760  2.080073269  1.074860877  3.525817126
##  [491]  4.226313096  0.891029713 -0.591481420  1.138914239  2.613512837
##  [496]  2.336606772  2.006756237  3.621605225  4.188193786  4.768563189
##  [501]  4.205694394  2.753536158  0.785021229  0.700945490  0.861054617
##  [506]  2.899259517  4.178083969  0.378771630 -0.004462942  2.174971011
##  [511]  2.126002958  0.817331282  3.345133760  2.553665854  4.807445205
##  [516]  2.746810927  2.548290492  2.207537901  2.987867111  1.141591201
##  [521]  2.812335634  4.477782028  1.128531216  2.924650900  2.370244158
##  [526]  0.955256848  2.351045824  1.091123066  1.019740983  0.747249615
##  [531]  3.382611708  2.913158025  1.001300518  2.492736152 -1.090856175
##  [536]  1.038426262  1.600093480  3.453493058  3.613169152  0.898732241
##  [541]  2.566641938  2.629286404  0.372136175  1.656405365  2.386775213
##  [546]  1.698688188  3.776169622  1.412986145  3.846662442  2.518012595
##  [551]  5.509954769  1.596533046  1.561223531 -0.869800361  3.065730366
##  [556]  1.139928554  3.243532572  2.225286861  1.090504814  0.288994205
##  [561]  1.552277456  3.375639358  1.788122649  0.310361233  1.041906933
##  [566]  2.658463670 -1.303343607  2.044205376  2.315663504  1.444944734
##  [571]  0.803488387  4.827542456  2.243897490  2.376547051 -1.081093439
##  [576]  2.268777107 -0.220547382  3.109299168 -0.337575891  1.692034327
##  [581]  2.589181351  1.987856879  3.769074429  2.694435220  3.375231177
##  [586] -0.388812023  1.594549164  5.361822328  3.041602419  0.351706097
##  [591] -0.308771780 -0.653109349  0.798571793  1.857656301  0.937929124
##  [596]  1.344388939  2.308968423  1.295739277  2.311890309 -0.443451978
##  [601]  1.587444189  4.003490555  2.420362489  4.593865477  3.418258796
##  [606]  1.640814466  4.989796820  0.603775784  3.568405485  0.932442886
##  [611]  0.584997401  0.819134078  1.309494410  0.427119512  0.455019591
##  [616]  5.795096941  1.779739763 -0.262716429  1.616298126  1.232595787
##  [621]  2.519215993  0.966893312  2.989810789  1.125507494  1.094713525
##  [626]  0.798133664  2.713300258  2.800210296  0.517529142  3.166350568
##  [631]  1.089327687  3.302205142  3.024274534  2.797322051  3.160030842
##  [636]  1.617363676  2.496605654  1.125084557  2.688127857  4.608673285
##  [641]  3.256258142  1.930142577  5.530771574  0.453795728  4.607057993
##  [646]  0.351576166  1.207339049  1.581901527  3.559596371  3.343891981
##  [651]  5.066809186  3.731501378  1.186731681  2.179567172 -1.450389459
##  [656] -0.839513442  2.220767091  3.104264375  2.815714910  3.664690583
##  [661]  2.925837455  3.077832033  2.200671592  2.340671321  3.031224935
##  [666]  1.823837700  1.252618935  1.979185829  3.064213843  2.888452970
##  [671] -0.042311070  2.054821112  5.058112300  0.900123499  2.379461762
##  [676]  4.415133661  1.390829313  1.649914210  2.167348362  2.647790882
##  [681]  0.924786482  1.968632967  1.832992306  0.520220378  1.066928935
##  [686]  2.604951516  3.171264604  0.486304885  2.898115775  1.477289937
##  [691]  2.143796303  2.248853478  4.846976490  1.833784370  2.201613961
##  [696]  3.279313587  1.760064140  1.429418605  0.035000295 -0.321071068
##  [701]  0.959470551 -1.171813586  5.149246634  1.526920342  0.985093007
##  [706]  3.451097603  3.167493828  2.728335154  2.401262483  3.215177912
##  [711]  3.281341269  1.382848106  1.391302878  1.626263370  1.763322645
##  [716]  5.366444273  0.276069864  1.905307462  4.840065699  3.733801709
##  [721]  4.438203775  3.185899540  1.878276826  2.637632044  0.176425865
##  [726]  2.841049136  2.044755781  0.877724905  2.591220291  2.640110088
##  [731]  2.910537064  0.855646401  2.522232249  2.969488464  2.087639574
##  [736]  2.226568271  0.399482863  2.239270833  3.187259925  2.523356283
##  [741]  5.451679946  2.922271742  2.526499953 -0.602010200  5.051859546
##  [746]  2.813145488  3.286458570  3.096925084  4.232031411 -1.431535341
##  [751]  1.612631479  2.226280871  2.406609858  2.312823402  3.380811987
##  [756]  2.788087938  1.776713767 -0.166583551  3.050179212  2.179958828
##  [761] -1.686752459  1.788674305  2.495131033  1.834726667  3.236889368
##  [766]  3.219386051  1.403455805  0.865602625  2.742065955  2.657597681
##  [771]  1.774616363  1.360933266  4.993363907  2.598899539  2.466343926
##  [776]  1.195005704  0.863993202  1.550097069  1.210122339  3.074478533
##  [781] -0.261988032  2.739478703  3.973940765  0.431756670  1.284861284
##  [786]  2.150268996  2.776496323 -0.314294629  1.233878321  2.222717551
##  [791]  1.301022092  2.949528214  0.796709904  0.806088336  3.399621356
##  [796]  1.026929158  2.956321181  2.031297246  0.713305651  2.347865924
##  [801] -0.331473335  0.735342817  0.035310693  3.750526890  1.747708544
##  [806]  1.631256794  6.914927348  3.598109686  2.299557421 -0.496642627
##  [811]  2.343447865  1.365548460 -2.106430383  0.126337201  0.040461171
##  [816]  4.473814988  4.782141146  0.812040435  1.966031233  3.838423362
##  [821]  2.284023396  1.708435559 -0.212632968  4.451610322  0.866143574
##  [826]  2.758496942  4.731972988  1.524670198  5.430937629  1.019419444
##  [831]  1.243030815  1.350460195  1.380219528  0.353803281 -1.446095453
##  [836]  1.941772431  1.122631205  3.150500791  0.443344396  1.871297897
##  [841]  1.978503192  4.049006589  3.605989484  2.793715627  5.681092223
##  [846]  4.510185804  2.429949985  4.244155882  2.280570289  1.358353560
##  [851]  4.881207885  1.814945731  3.366893812  0.225602349  3.140000826
##  [856]  1.317941789  1.479892142  1.463976034  1.651714398  2.272989580
##  [861]  2.946845167  0.791216048  2.492654546  3.320758236  2.396611207
##  [866] -0.085140835  1.202333447  0.846850515  3.609449938  0.245453702
##  [871]  1.850980288  3.965191909  2.465775635  4.203688144  3.561415436
##  [876]  3.564735110  0.595400465  3.854848397  1.601406320  3.605949532
##  [881]  4.593568608  0.502974489 -1.779577133  2.977156335  3.337122013
##  [886]  1.630899684  2.102328029  2.571945702  3.575070810  2.478694700
##  [891]  1.614230650  0.228259652  1.949447336  1.486693431  2.358827614
##  [896]  2.884023455  2.067428358  1.086513838  1.398820267  0.843654800
##  [901]  3.103522324  2.122580508  2.685890727  1.069691771  2.260541949
##  [906]  2.072993392  3.369336692  5.643493332  5.698388337  1.912541756
##  [911]  0.845295365  1.761777211  1.509597880  1.277120592  0.565607732
##  [916]  0.627463348  3.420679859 -0.373666153  2.685763968  0.387807883
##  [921]  2.198797363  3.021282980  1.478790757  1.186410967  1.646888627
##  [926]  2.689001484  0.375593209  3.137941950 -0.337787271  0.022858611
##  [931]  2.946110945  0.205452380  1.901610549  1.210761213  3.733490465
##  [936]  3.884131720  2.750222811 -0.595883797  1.880742709  2.754384783
##  [941]  2.845859244  2.885235357  3.990890015 -1.030105172  2.679693831
##  [946]  5.919426754  2.186756351  1.608103681  1.466853161  1.113741685
##  [951]  4.738159101  1.877525200  1.396816702  3.265137953  2.309838988
##  [956]  2.627907613  2.154514547  2.316690314  2.947013997  0.551635911
##  [961]  2.526882313  4.368995082  2.606056788  1.808904038  2.233930842
##  [966]  2.160513953  3.924549048  2.656557475  3.330593839  1.107914558
##  [971]  4.352847347  1.157047106 -0.593327050  4.919644119  1.662115382
##  [976]  2.307233912  2.868940868  4.289463983  1.422488003  4.386860576
##  [981]  0.236458050  3.878313527  0.468106020  1.512801967  2.209468588
##  [986] -0.526037502  2.158515102  0.817233758  2.004559813  4.688678737
##  [991]  3.994174947  1.136051951  0.016738077  1.482096967  2.016242849
##  [996]  1.093357960  0.746532273  2.465985147  3.534393461  3.028251130
summary(data)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -2.2143  0.9534  1.9864  1.9793  2.9476  6.9149
## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -2.884 1.133 2.123 2.066 3.033 7.494

subtitle <- "This is my second title"
maintitle <- paste0("Histogram and Density Plot \n",subtitle)
hist(data, breaks=20,col="lightblue",main = maintitle)
# Add density curve (define the range of the density curve)
x = seq(from=min(data), to=max(data), length.out=100)
norm_dist = dnorm(x, mean=mean(data), sd=sd(data)) * (max(data)-min(data))/
  20*length(data)
lines(x, norm_dist, col='violet',lwd=4)
abline(v = mean(data), col="black", lwd=3, lty=2)
# Add legend
legend("topright", # Add legend to plot
       legend = c("Histogram", "density curve", "Average"),
       col = c("lightblue", "violet", "black"),
       lty = 1)
# Locate lowest 5% and highest 5% of the data
quantile(data,prob = 0.05)
##         5% 
## -0.4981124
## 5%
## -0.3792859
abline(v = quantile(data,prob = 0.05), col="red", lwd=3, lty=3)
# Area to the left of the red line is lowest 5% of the data
quantile(data,prob = 0.95)
##      95% 
## 4.491517
## 95%
## 4.454798
abline(v = quantile(data,prob = 0.95), col="blue", lwd=3, lty=3)

# Area to the right of the blue line is top 5% of the data
# Area in between the red line and the blue line is 90%
# of the data
# How to get the values (lowest 5%)
(Cutoff <- quantile(data,prob = 0.05))
##         5% 
## -0.4981124
## 5%
## -0.3792859
# mark those values that is lower than -.42 as true
# and higher than -.42 as false
(Low5Percent <- (data < Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##   [37] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE
##  [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [205] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [289] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [397] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [421] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [553] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [589] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [649] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [745] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [829] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
# count all true values using the sum command
sum(Low5Percent[TRUE]) # there are 50 of them
## [1] 50
## [1] 50

# filter those 50 values that are smaller than the cutoff
data[Low5Percent==TRUE]
##  [1] -0.9565346 -0.7472071 -0.6773094 -0.9217593 -1.2501434 -0.9347781
##  [7] -0.6889298 -0.6834190 -1.1290262 -0.9947618 -0.5384360 -2.2143059
## [13] -1.1221112 -0.7211686 -1.2430637 -0.9056214 -0.7462291 -0.5321641
## [19] -1.2283043 -0.6244800 -0.5898646 -1.6412423 -0.8896190 -0.9308048
## [25] -1.4896814 -0.5686405 -0.5896239 -1.7525072 -1.5033818 -0.7429639
## [31] -0.6386334 -0.5914814 -1.0908562 -0.8698004 -1.3033436 -1.0810934
## [37] -0.6531093 -1.4503895 -0.8395134 -1.1718136 -0.6020102 -1.4315353
## [43] -1.6867525 -2.1064304 -1.4460955 -1.7795771 -0.5958838 -1.0301052
## [49] -0.5933271 -0.5260375
# How to get the top 5%
(Cutoff <- quantile(data,prob = 0.95))
##      95% 
## 4.491517
## 95%
## 4.454798
(Top5Percent <- (data >= Cutoff))
##    [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [37] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##   [49] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##   [85] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##   [97] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [145]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [181]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [265] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [469]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
##  [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
##  [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [601] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [613] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [637] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
##  [649] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [673]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [697] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
##  [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
##  [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
##  [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [769] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [805] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [817]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [841] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
##  [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [877] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
##  [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
##  [949] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [973] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
##  [985] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
##  [997] FALSE FALSE FALSE FALSE
sum(Top5Percent[TRUE]) # counts all the true values
## [1] 50
## [1] 50
data[Top5Percent==TRUE]
##  [1] 5.775455 4.703107 4.874097 4.873076 5.913998 4.632390 5.224713 5.362811
##  [9] 4.516423 4.862413 5.257592 4.780883 4.538932 4.495930 4.720734 4.888151
## [17] 4.768563 4.807445 5.509955 4.827542 5.361822 4.593865 4.989797 5.795097
## [25] 4.608673 5.530772 4.607058 5.066809 5.058112 4.846976 5.149247 5.366444
## [33] 4.840066 5.451680 5.051860 4.993364 6.914927 4.782141 4.731973 5.430938
## [41] 5.681092 4.510186 4.881208 4.593569 5.643493 5.698388 5.919427 4.738159
## [49] 4.919644 4.688679