Este pipeline es para hacer una reconstrucción ancestral de secuencias y crear un grafo con toda la información de las transiciones.

Obtención de datos

En este pipe voy a utilizar un clado de 6 especies:

File Accesion
Candidatus_Atelocyanobacterium_thalassa_isolate_ALOHA.gbff GCF_000025125.1
Crocosphaera_subtropica_ATCC_51142.gbff GCF_000017845.1
cyanobacterium_endosymbiont_of_Braarudosphaera_bigelowii_CPSB-1.gbff GCF_020885515.1
cyanobacterium_endosymbiont_of_Epithemia_turgida_isolate_EtSB_Lake_Yunoko_ETSB_Lake_Yunoko.gbff GCF_000829235.1
cyanobacterium_endosymbiont_of_Rhopalodia_gibberula_RgSB.gbff GCF_003574135.1
Rippkaea_orientalis_PCC_8801.gbff GCF_000021805.1

Ortólogos

Primero obtengo los ortólogos usando get_homologues:

## /home/biocomp/HIP_2023/PIPELINES_2023/ASR_ORTHOLOGUES/Cyanobacterium_clade/gbff/
get_homologues.pl -d gbff -t 0 -M -n PPN

Obtengo el pangenoma:

compare_clusters.pl -o pangenoma -m -d gbff_homologues/CandidatusAtelocyanobacteriumthalassaisolateALOHA_f0_0taxa_algOMCL_e0_

Obtengo una lista de ortólogos (orthologues.list) la cual contenga solo aquellos en los que dicho ortólogo esta en las 6 especies del clado.

awk -F "," '{if($15==1 && $16==1 && $17==1 && $18==1 && $19==1 && $20==1) {print $1}}' pangenoma/pangenome_matrix_t0.tr.csv | sed 's/.faa/.fna/g' >orthologues.list

Conteo de palindromos

Hago un conteo de palindromos para saber cuales ortólogos contienen los palindromos de interés. Para eso uso orthologues.list y una lista con los palindromos de interes: pals.list.

Para esto uso parte del código del conteo de palindromos.

Pals.list contiene los palindromos a contar. Estos van en un a sola linea y separados por comas. El numero final corresponde al orden del modelo de markov (0-3) sin embargo es irrelevante para este paso ya que solo queremos saber el numero observado de palindromos.

python3 CountPalsInOrthologues.py gbff_homologues/CandidatusAtelocyanobacteriumthalassaisolateALOHA_f0_0taxa_algOMCL_e0_ pals.list orthologues.list 3

Filtrado del conteo

Para empezar escojo la especie con mayor conteo de palindromos segun la filogenia anotada (Rippkaea_orientalis_PCC_8801). Sin embargo tambien me aseguro de que dicha especie sea la que tenga el número de sitios:

Counts <- read.table("Markov_count_GCGATCGC_gbff_homologuesCandidatusAtelocyanobacteriumthalassaisolateALOHA_f0_0taxa_algOMCL_e0__2023-4-19_10hrs45mins_Octanuc_M3_.txt", sep = "\t", header = TRUE)

Spp <- Counts$spp
Spp <- unique(Spp)

i=0
for (n in 1:length(Spp)){ 
  for (m in 1:length(Counts$spp)) {
    if (Spp[n] == Counts[m,2]){
      i=i+Counts[m,5]
    }
  }
  print(paste0(Spp[n]," ",i))
  i=0
}
## [1] "Candidatus_Atelocyanobacterium_thalassa_isolate_ALOHA 30"
## [1] "Crocosphaera_subtropica_ATCC_51142 600"
## [1] "Rippkaea_orientalis_PCC_8801 785"
## [1] "cyanobacterium_endosymbiont_of_Braarudosphaera_bigelowii 14"
## [1] "cyanobacterium_endosymbiont_of_Epithemia_turgida_isolate_EtSB_Lake_Yunoko 63"
## [1] "cyanobacterium_endosymbiont_of_Rhopalodia_gibberula 65"

Aqui podemos ver que efectivamente Rippkaea_orientalis_PCC_8801 es la que tiene mayores sitios (785) seguido de Crocosphaera_subtropica_ATCC_51142 con 600.

Solo quiero aquellos donde Rippkaea_orientalis_PCC_8801 tenga un conteo mayor o igual a 1 ya que en ese sitio es donde voy a reconstruir la secuencia ancestral

awk '{if ($5!=0 && $2=="Rippkaea_orientalis_PCC_8801"){print $1}}' Markov_count_GCGATCGC_gbff_homologuesCandidatusAtelocyanobacteriumthalassaisolateALOHA_f0_0taxa_algOMCL_e0__2023-4-19_10hrs45mins_Octanuc_M3_.txt >Ortologos_GCGATCGC_Rippkaea_orientalis_PCC_8801.txt

Ortologos_GCGATCGC_Rippkaea_orientalis_PCC_8801.txt contiene 490 ortólogos los cuales estan presentes en las 6 especies y tienen por lo menos una ocurrencia del palindromo CGTTAACG

###
7_response_regulator_t...fna
12_1-deoxy-D-xylulose-5...fna
14_asnS.fna
17_phosphoglycerate_kin...fna
19_DEAD-DEAH_box_helica...fna
20_uvrC.fna
21_Mur_ligase_family_pr...fna
23_ribonuclease_J.fna
24_dapA.fna
27_accB.fna
###

Preparación de ortólogos para la alineción

Primero creo una carpeta que contendrá unicamente los ortologos que vamos a usar. Es decir aquellos que estan presentes en todas las especies a analizar y que contienen por lo menos un sitio con palíndromo.

# /home/biocomp/HIP_2023/PIPELINES_2023/ASR_ORTHOLOGUES/Cyanobacterium_clade
mkdir Orthologues_GCGATCGC_Rippkaea_orientalis_PCC_8801  ## Creo Carpeta
cd gbff_homologues/CandidatusAtelocyanobacteriumthalassaisolateALOHA_f0_0taxa_algOMCL_e0_ ## Entro a la carpeta de homólogos
for word in $(cat ../../Ortologos_GCGATCGC_Rippkaea_orientalis_PCC_8801.txt); do cp $word ../../Orthologues_GCGATCGC_Rippkaea_orientalis_PCC_8801; done ## copio los ortólogos de la lista a la carpeta

Filtrado de paralogos

voy a crear dos carpetas una que contenga archivos con paralogos y otra que solo tenga ortólogos

mkdir Only_ORTHOLOGUES
mkdir PARALOGUES

Para filtrar aquellos con paralogos uso el siguiente scripty de python:

from Bio import SeqIO
import re
import os
import sys
import shutil

SEQUENCES_PATH = 'Orthologues_GCGATCGC_Rippkaea_orientalis_PCC_8801' ## Path de la carpeta con los ortólogos.
#output_file = 'Orthologues_Palindrome_sites.txt' ## Nombre del archivo de salida
#output = open (output_file, 'w') ## Abrimos el archivo de salida

if SEQUENCES_PATH.endswith("/"): ## Esta parte la pongo por si corro este codigo en la terminal
    SequencesPath = re.sub('/', '', SEQUENCES_PATH) ## De este modo evito errores en el argumento path 
    SequencesDir = str(SEQUENCES_PATH)
else:
    SequencesPath = SEQUENCES_PATH
    SequencesDir = str("".join ([SEQUENCES_PATH,'/']))
Orthologues = [x for x in os.listdir(SequencesDir) if x.endswith(".fna")] ## creo un arreglo con todos los ortólogis de la carpeta

for Orthologue in Orthologues:
    i = 0
    FNA = str("".join ([SequencesDir,Orthologue])) ## creo el path completo con el path de la carpeta de ortólogos y el path del ortólogo
    for record in SeqIO.parse(open(FNA),'fasta'):
        i += 1
    #print ('{}\t{}'.format(Orthologue,i))
    if i == 6:
        shutil.copyfile(FNA,str("".join (['gbff/Only_ORTHOLOGUES/',Orthologue]))) ## si hasy unicamente 6 entradas entonces no hay paralogos
    else:
        shutil.copyfile(FNA,str("".join (['gbff/PARALOGUES/',Orthologue]))) ## Si hay mas de 6 entradas hay parálogos

Esto me dio como resultado 447 archivos sin paralogos y 25 archivos con paralogos los cuals omitiré por ahora.

Ahora edito el archivo fasta para que el encabezado incluya unicamente la especie

# /home/biocomp/HIP_2023/PIPELINES_2023/ASR_ORTHOLOGUES/Cyanobacterium_clade/Only_ORTHOLOGUES
for f in *.fna; do awk -F "|" '{if (NR%2){print ">"$2}else{print $1}}' $f | sed 's/ /_/g' | sed 's/\.//g' | sed 's/\[//g' | sed 's/\]//g' | sed 's/\//-/g' | sed 's/cyanobacterium_endosymbiont_of_//g' | sed 's/Candidatus_Atelocyanobacterium_thalassa_isolate_ALOHA/ALOHA/g' | sed 's/Crocosphaera_subtropica_ATCC_51142/ATCC_51142/g' | sed 's/Rippkaea_orientalis_PCC_8801/PCC_8801/g' | sed 's/Braarudosphaera_bigelowii/bigelowii/g' | sed 's/Epithemia_turgida_isolate_EtSB_Lake_Yunoko/Yunoko/g' | sed 's/Rhopalodia_gibberula/gibberula/g' >$f.awk1;done

Alineación Múltiple

Hago la alineación multiple con MAFFT

for f in *.awk1; do mafft $f >$f.mafft;done

Cambio de fasta a PHYLIP

python3 Fasta2Phylip.py Only_ORTHOLOGUES/

Obtengo las coordenadas del palindromo en la alineación usando el siguiente codigo de python:

from Bio import SeqIO
import re
import os
import sys
SEQUENCES_PATH = 'Only_ORTHOLOGUES/' ## Path de la carpeta con los ortólogos.
output_file = 'Orthologues_Palindrome_sites.txt' ## Nombre del archivo de salida
output = open (output_file, 'w') ## Abrimos el archivo de salida
output.write('FILE\tPAL\tSTART\tEND\n')

if SEQUENCES_PATH.endswith("/"): ## Esta parte la pongo por si corro este codigo en la terminal
    SequencesPath = re.sub('/', '', SEQUENCES_PATH) ## De este modo evito errores en el argumento path 
    SequencesDir = str(SEQUENCES_PATH)
else:
    SequencesPath = SEQUENCES_PATH
    SequencesDir = str("".join ([SEQUENCES_PATH,'/']))
Orthologues = [x for x in os.listdir(SequencesDir) if x.endswith(".phy")] ## creo un arreglo con todos los ortólogis de la carpeta
pattern = '[gG][-]*[cC][-]*[gG][-]*[aA][-]*[tT][-]*[cC][-]*[gG][-]*[cC]'
j=0
k=0
for Orthologue in Orthologues:
    FNA = str("".join ([SequencesDir,Orthologue])) ## creo el path completo con el path de la carpeta de ortólogos y el path del ortólogo
    for record in SeqIO.parse(open(FNA),'phylip'):
        Seq = str(record.seq)
        Spp = record.description
        i = 0
        if Spp == 'PCC_8801':#PCC_6303_PCC_6303 336-3_336-3
            for match in re.finditer(pattern, Seq):
                i += 1
                j += 1
                site = match.group()
                start = match.span()[0]
                end = match.span()[1]
                if len(site)==8:
                    k += 1
                    print ('{}\t{}\t{}\t{}:{}'.format(i,Orthologue,site,start+1,end))
                    phyl = re.sub('.awk2', '.phy', Orthologue)
                    output.write('{}\t{}\t{}\t{}\n'.format(phyl,site,start+1,end))
    print ('_________________________________________________________________________\n')
output.close()
print ("TOTAL: {} sitios".format(k))
python3 AlignmentPalindromeCoords.py Only_ORTHOLOGUES/

El ultimo script tiene como salida el archivo Orthologues_Palindrome_sites.txt el cual contiene 4 columnas. Estas contienen el nombre del archivo del ortólogo, el palindromo en cuestion y el intervalo de sitios en donde se encuentra el palindromo:

###
FILE    PAL START   END
322_plsY.fna.awk1.mafft.phy gcgatcgc    166 173
322_plsY.fna.awk1.mafft.phy gcgatcgc    478 485
1074_cysteine_synthase_A.fna.awk1.mafft.phy gcgatcgc    844 851
1109_glycosyltransferase.fna.awk1.mafft.phy gcgatcgc    598 605
413_hypothetical_protein.fna.awk1.mafft.phy gcgatcgc    146 153
413_hypothetical_protein.fna.awk1.mafft.phy gcgatcgc    446 453
861_peptide_chain_releas...fna.awk1.mafft.phy   gcgatcgc    536 543
861_peptide_chain_releas...fna.awk1.mafft.phy   gcgatcgc    944 951
540_glycosyltransferase_...fna.awk1.mafft.phy   gcgatcgc    337 344
... etc
###

GRAFO

primero cargo las librerias necesarias

library(ggplot2)
library(ggtree)
library(ape)
library(tidyverse)
library(tidytree)
library(phangorn)
library(dplyr)

Preparacion de datos para el grafo

Primero cargo Orthologues_Palindrome_sites.txt del paso anterior.

## /home/lalibelulalo/PIPELINES_2023/ASR_ORTHOLOGUES/Cyanobacterum_clade/
Sites <- read.table("Orthologues_Palindrome_sites.txt", sep = "\t", header = TRUE)

Creo la matriz que va a contener unicamente las transiciones

DF <- matrix(0,
             nrow = 0,
             ncol = 2)
colnames(DF) <- c("from","to")

Creo una matriz adicional que tendra las transiciones y una columna extra con la direccion de la transición

{LINKS <- matrix(0,
             nrow = 0,
             ncol = 3)
colnames(LINKS) <- c("from","to","direction")}

Cargo el modelo de evolucion, el metodo de reconstrucción (bayesiano), la filogenia (previamente calculada con orthofinder) la cual enraizo en PCC_8801.

EvolModel = "F81"
Method = "bayes"
Tree = read.tree("SpeciesTree_rooted.txt")#"SpeciesTree_rooted.txt"
Root = 'PCC_8801'
Tree <-root(Tree, outgroup = Root, edgelabel = TRUE)

Esta filogenia contiene 10 nodos

ggtree(Tree,branch.length="none",) +
  geom_tiplab(color='firebrick', offset = .14)+
  geom_label(aes(label = node),show.legend = FALSE)

En el archivo Orthologues_Palindrome_sites.txt hay 2593 sitios en total. Cargamos el primer sitio el cual corresponde a:

###
FILE    PAL START   END
322_plsY.fna.awk1.mafft.phy gcgatcgc    166 173

###

El numero ORTH correponde al numero de sitio. Por lo tanto cargamos el PATH del alineamiento del primer sitio (Alignment), así como su inicio (SI) y su termino (EI)

ORTH = 1
Alignment = paste0("Only_ORTHOLOGUES/",Sites[ORTH,1])
SI = Sites[ORTH,3]
EI = Sites[ORTH,4]

Alineación multiple

Cargo la alineación multiple

cyanobacterias <- read.phyDat(Alignment, format = "interleaved")

## Cambio el attributo site.patter a FALSE para poder acceder a todos los indices
cyanobacterias <- subset(cyanobacterias, site.pattern = FALSE) 
#TreeR = pratchet(cyanobacterias, trace = 0)|>acctran(cyanobacterias)
parsimony(Tree, cyanobacterias)
## [1] 658

Filogenia y parametros del modelo

Estimo los parametros para el modelo. en esta parte uso el modelo de evolucion elegido anteriormente (“F81”). Además en esta parte el arbol se desenraiza. Por lo tanto, debo cambiar el arbol al nuevo sin raiz para evitar errores.

fit <- pml(Tree, cyanobacterias)
fit <- optim.pml(fit, model=EvolModel, control = pml.control(trace=0))

Tree2 <- fit[["tree"]]
ggtree(Tree2,branch.length="none",) +
  geom_tiplab(color='firebrick', offset = .14)+
  geom_label(aes(label = node),show.legend = FALSE)

Reconstrucción de Estados Ancestrales

Hago la reconstruccion de estados ancestrales para cada sitio. Para esto hay dos métodos: bayesiano o máxima verosimilitud. Anteriormente habia declarado la variable Method como bayes.

  ## Calculo la probabilidad del árbol filogenético dado el alineamiento y el modelo
  if(Method == "bayes"){
    anc.bayes <- ancestral.pml(fit, type="bayes", return = "prob")
    Reconstruction <- anc.bayes
  }
  if(Method == "ml"){
    anc.ml <- ancestral.pml(fit, "ml")
    Reconstruction <- anc.ml
  }

Armado de palindromos ancestrales

Armo los palindromos ancestrales de acuerdo a los estados ancestrales usando los sitios de inicio y fin de cada sitio palindromico (SI y EI). Posteriormente uso dicho intervalo para buscar lel estado de cada nucleotido del intervalo y guardarlo en el vector (PalindromeNucleotidePositions). Tambien extraigo los nombres de cada nodo de la reconstrucción:

PalInterval = SI:EI ## ESTE ES EL INTERVALO DEL SITIO PALINDROMICO
  
## Obtengo las posiciones para la posicion PalInterval
PalindromeNucleotidePositions <- attributes(cyanobacterias)$index[PalInterval]

## Nombre de los nodos
Nodos <- attributes(Reconstruction)$names

Ahora creo una matriz que contendra 9 columnas, la primera contendrá los Nodos y las 8 restantes contendran los nucleotidos correspondientes a su palindromo.

## Creo una matriz de 8 x length(Nodos) (8 nucleotidos, numero de nodos) para guardar los resultados
ScoresMtx <- matrix(0,
                    nrow = length(Nodos),
                    ncol = 8)
colnames(ScoresMtx) <- c("1","2","3","4","5","6","7","8")
rownames(ScoresMtx) <- Nodos

Y prosigo a rellenar la matriz. Sin embargo, en este paso hay un detalle.

La reconstrucción de estado ancestral para cada sitio arroja una probabilidad para cada uno de los 4 sitios posibles (A, T ,G o C). Si hay equivalencia en la probabilidad en los estados, es decir que el estado ancestral de un nucleotido tenga la misma probabilidad de haber estado en cualesquiera de los 4 posibles estados, entonces dicho estado se omite, de lo contrario se toma aquel estado con la mayor probabilidad

## Relleno la matriz con los scores
  ## Transformo el arbol en data frame para poder agregar los palindromos de cada nodo
  a.1 <- as_tibble(Tree2)
  ## Extraigo el Boostrap por si se ocupa
  NA.NODE = length(cyanobacterias)+1
  for (i in NA.NODE:length(Nodos)){ ## ESTO DEPENDE DE LA ESTRUCTURA DEL ARBOL
    a.1$label[i] <- a.1$node[i] # x$node[i-1]
  }
  ## Agrego los datos de los palindromos al arbol
  b.1 <- tibble::tibble(label = Nodos)
  c.1 <- full_join(a.1, b.1, by = 'label')
  NodeLabels <- c.1$label
  
  TipLabels <- Tree2$tip.label
  NodeLabels2 <- NodeLabels[-c(1:length(TipLabels))]

  ## Creo una matriz de 8 x length(Nodos) (8 nucleotidos, numero de nodos) para guardar los resultados
  ScoresMtx <- matrix(0,
                      nrow = length(Nodos),
                      ncol = 8)
  colnames(ScoresMtx) <- c("1","2","3","4","5","6","7","8")
  rownames(ScoresMtx) <- Nodos
  
  
  ## Relleno la matriz con los scores
  j = 1
  i = 1
  k = 0
  for (Position in PalindromeNucleotidePositions){
    for (Nodo in TipLabels){
      PositionScores <- Reconstruction[[Nodo]][Position,] ## Extraigo los scores para el nodo "NODO" en la posicion "POSITION" de la secuencia
      if (length(unique(PositionScores)) == 1){
        k=k+1
        WinnerNucleotide = "-"
        ScoresMtx[i,j] <- WinnerNucleotide
        i=i+1 ## contador para cada Nodo
      }else{
        PositionWinnerScore <- max(PositionScores) ## Extraigo el valor mas grande. Este es el valor de la probabilidad de que el nucleotido ancestral sea ese
        WinnerNucleotide <- which(PositionScores == PositionWinnerScore, arr.ind = T) ## pregunto a que numero (Nucleótido) corresponde ese valor
        ScoresMtx[i,j] <- WinnerNucleotide ## Guardo dicho valor en la matriz de resultados
        i=i+1 ## contador para cada Nodo
      }
    }
    j=j+1 ## contador para cada posición
    i=1 ## Reiniciamoa el contador de Nodo para la siguiente posicion
  }
  
  ## Relleno la matriz con los scores
  j = 1
  i = length(TipLabels)+1
  k = 0
  #(length(TipLabels)+1):length(NodeLabels)
  for (Position in PalindromeNucleotidePositions){
    for (Nodo in NodeLabels2){
      PositionScores <- Reconstruction[[Nodo]][Position,] ## Extraigo los scores para el nodo "NODO" en la posicion "POSITION" de la secuencia
      if (length(unique(PositionScores)) == 1){
        k=k+1
        WinnerNucleotide = "X"
        ScoresMtx[i,j] <- WinnerNucleotide
        i=i+1 ## contador para cada Nodo
      }else{
        PositionWinnerScore <- max(PositionScores) ## Extraigo el valor mas grande. Este es el valor de la probabilidad de que el nucleotido ancestral sea ese
        WinnerNucleotide <- which(PositionScores == PositionWinnerScore, arr.ind = T) ## pregunto a que numero (Nucleótido) corresponde ese valor
        ScoresMtx[i,j] <- WinnerNucleotide ## Guardo dicho valor en la matriz de resultados
        i=i+1 ## contador para cada Nodo
      }
    }
    j=j+1 ## contador para cada posición
    i=length(TipLabels)+1 ## Reiniciamoa el contador de Nodo para la siguiente posicion
  }

Ahora decodificamos el palindromo a nucleotidos para esto creo una nueva matriz que contendra dos columnas: nodos y sus correspondientes palíndromos.

## Creo un matriz de 1x14 para guardar la etiqueta (palindromo) de cada nodo
PalsMtx <- matrix(0,
                  nrow = length(Nodos),
                  ncol = 1)
colnames(PalsMtx) <- c("Palindrome")
rownames(PalsMtx) <- Nodos

## Extraigo cada palindromo, cambio el codigo de numero por el codigo de letras y lo guardo en la matriz 1x14
i=0
j=0
for (Nodo in Nodos){
  j=j+1
  Palindrome <- as.character(ScoresMtx[j,]) # Este es el palindromo
  pal =""
  for (nuc in Palindrome){
    if(nuc== 1){nuc = 'A'}
    if(nuc== 2){nuc = 'C'}
    if(nuc== 3){nuc = 'G'}
    if(nuc== 4){nuc = 'T'}
    pal = paste(pal,nuc,sep = "")
  }
  PalsMtx[j,1] <- pal
}

Guardo los nodos y los palindromos de cada nodo en 2 vectores. Los cuales voy a usar para anotar el arbol filogenetico.

l <- as.list(PalsMtx[,1]) 
Nodes = names(l)
NodePals = as.character(PalsMtx[,1])

Anotacion del arbol filogenético

Para poder hacer esto, primero transformo el arbol filogenetico en una tabla y agrego 2 columnas: (label) que contendra el nombre de cada nodo y (Palindromo) que contendra el palindromo de dicho nodo.

## Transformo el arbol en data frame para poder agregar los palindromos de cada nodo
x <- as_tibble(Tree2)

## Extraigo el Boostrap por si se ocupa
NA.NODE = length(cyanobacterias)+1
BootStrap <- x$label[NA.NODE:length(Nodes)]
for (i in NA.NODE:length(Nodes)){ ## ESTO DEPENDE DE LA ESTRUCTURA DEL ARBOL
  x$label[i] <- x$node[i] # x$node[i-1]
}
## Agrego los datos de los palindromos al arbol
d <- tibble::tibble(label = Nodes,
                    Palindromo = NodePals)
y <- full_join(x, d, by = 'label')

Hasta aqui tenemos una filogenoa anotada con su palindromo ancestral en cada nodo:

ggtree(as.treedata(y),branch.length="none") +
    geom_tiplab(color='firebrick', offset = .14)+
    geom_label(aes(label = Palindromo,color=Palindromo),show.legend = FALSE)+
    aes(color=Palindromo)+
    guides(fill = guide_legend(override.aes = list(color = NA)), 
           color = FALSE, 
           shape = 1)

Matriz de transiciones para el grafo

Ahora necesito crear una matriz que tenga las tranmsiciones entre cada nodo. Para esto extraigo las direcciones de los nodos desde el arbol filogenetico previamente anotado es decir las columnas from y to y las guardo en una nueva matriz:

## Esta es la configuracion del arbol
from<-y$label#c("336-3","7","7","8","8","9","9","10","10")
to<-y$parent#c("7","NIES-3974","8","PCC_6303","9","PCC_7716","10","NIES-4071","NIES-4105")

LinksMtx <- matrix(0,
                   nrow = length(from),
                   ncol = 2)
colnames(LinksMtx) <- c("from","to")

for (i in 1:length(from)){
  LinksMtx[i,1] = from[i]
  LinksMtx[i,2] = to[i]
}

Luego extraigo las columnas label y Palindromo y las guardo en otra matriz. Dicha matriz me servira como diccionario para obtener las transiciones en cada nodo. Posteriormente la convierto a data frame.

## AQUI VOY A CREAR LA MATRIZ QUE ME SERVIRA COMO DICCIONARIO PARA RELLENAR LA MATRIZ DE TRANSICIONES
Mat <- y[,4:5]

Mat2 <- as.data.frame(Mat) ## CONVIERTO A DF
Mat2
##         label Palindromo
## 1       ALOHA   GCCATTGT
## 2    PCC_8801   GCGATCGC
## 3      Yunoko   GCTGTCCT
## 4   gibberula   GCTGTCCT
## 5  ATCC_51142   GCTATTTT
## 6   bigelowii   GCCATTAC
## 7           7   GCTATCGT
## 8           8   GCCATTGT
## 9           9   GCTATTGT
## 10         10   GCTGTCCT

Ahora creo una nueva matriz que va a tener todas las transiciones. Para esto uso las ultimas dos matrices. La matriz LinksMtx que tiene las direcciones entre nodos la paso a palindromos con ayuda de Mat2 la cual me sirve como diccionario y convierto esta ultima matriz (LinksMtx2) a dataframe.

## AQUI CREO LA MATRIZ DE TRANSICIONES.
LinksMtx2 <- matrix(0,
                    nrow = length(from),
                    ncol = 2)
colnames(LinksMtx2) <- c("from","to")

## AQUI RELLENO LA MATRIZ DE TRANSICIONES USANDO COMO DICCIONARIO A LA MATRIZ ANTERIOR (Mat2)
for (i in 1:length(from)) {
  for (j in 1:length(from)){
    if (LinksMtx[i,1]==Mat2[j,1]){
      LinksMtx2[i,1] = Mat2[j,2]
    }
    if (LinksMtx[i,2]==Mat2[j,1]){
      LinksMtx2[i,2] = Mat2[j,2]
    }
  }
}
df <- as.data.frame(LinksMtx2) ## CONVIERTO A DF LA MATRIZ DE TRANSICIONES

Creo una matriz adicional la cual es identica a la anterior salvo que le agrego las direcciones de cada transicion, las cuales podrian ser de utilidad.

directions<-paste(from,to,sep="--") ## ESTE VECTOR CONTIENE LAS DIRECCIONES
Links0 = as.data.frame(LinksMtx2) ## HAGO UNA COPIA DE LA MATRIZ DE TRANSICIONES
Links0$direction<-directions ## AGREGO COMO COLUMNA NUEVA A "directions"

Al final de este paso tendre dos matrices DF y LINKS

DF contiene solo las transiciones

DF <- rbind(DF,df) ## UNO LA MATRIZ ACTUAL DE TRANSICIONES CON LA ANTERIOR PARA CREAR UNA SOLA
DF
##        from       to
## 1  GCCATTGT GCCATTGT
## 2  GCGATCGC GCTATCGT
## 3  GCTGTCCT GCTGTCCT
## 4  GCTGTCCT GCTGTCCT
## 5  GCTATTTT GCTATTGT
## 6  GCCATTAC GCCATTGT
## 7  GCTATCGT GCTATCGT
## 8  GCCATTGT GCTATTGT
## 9  GCTATTGT GCTATCGT
## 10 GCTGTCCT GCTATCGT

y LINKS las transiciones con sus respectivas direcciones.

LINKS<-rbind(LINKS,Links0) ## UNO LA MATRIZ ACTUAL DE TRANSICIONES(CON DIRECCIONES) CON LA ANTERIOR PARA CREAR UNA SOLA
LINKS
##        from       to     direction
## 1  GCCATTGT GCCATTGT      ALOHA--8
## 2  GCGATCGC GCTATCGT   PCC_8801--7
## 3  GCTGTCCT GCTGTCCT    Yunoko--10
## 4  GCTGTCCT GCTGTCCT gibberula--10
## 5  GCTATTTT GCTATTGT ATCC_51142--9
## 6  GCCATTAC GCCATTGT  bigelowii--8
## 7  GCTATCGT GCTATCGT          7--7
## 8  GCCATTGT GCTATTGT          8--9
## 9  GCTATTGT GCTATCGT          9--7
## 10 GCTGTCCT GCTATCGT         10--7

Finalmente repito esto para los sitios palindromicos restantes:

EvolModel = "F81"
Method = "bayes"
Tree = read.tree("SpeciesTree_rooted.txt")#"SpeciesTree_rooted.txt"
Root = 'PCC_8801'
Tree <-root(Tree, outgroup = Root, edgelabel = TRUE)

for (ORTH in 2:1:length(Sites$FILE)){ ## HAY 2593 ortólogos
  Alignment = paste0("Only_ORTHOLOGUES/",Sites[ORTH,1])
  SI = Sites[ORTH,3]
  EI = Sites[ORTH,4]

  ## Cargo la alineación multiple
  cyanobacterias <- read.phyDat(Alignment, format = "interleaved")
  
  ## Cambio el attributo site.patter a FALSE para poder acceder a todos los indices
  cyanobacterias <- subset(cyanobacterias, site.pattern = FALSE) 
  #TreeR = pratchet(cyanobacterias, trace = 0)|>acctran(cyanobacterias)
  parsimony(Tree, cyanobacterias)
  
  ## Estimo los parametros para el modelo
  fit <- pml(Tree, cyanobacterias)
  fit <- optim.pml(fit, model=EvolModel, control = pml.control(trace=0))
  
  Tree2 <- fit[["tree"]]
  
  ## Calculo la probabilidad del árbol filogenético dado el alineamiento y el modelo
  if(Method == "bayes"){
    anc.bayes <- ancestral.pml(fit, type="bayes", return = "prob")
    Reconstruction <- anc.bayes
  }
  if(Method == "ml"){
    anc.ml <- ancestral.pml(fit, "ml")
    Reconstruction <- anc.ml
  }
  
  #plotAnc(Tree2, anc.bayes, 1)
  PalInterval = SI:EI ## ESTE ES EL INTERVALO DEL SITIO PALINDROMICO
  
  ## Obtengo las posiciones para la posicion PalInterval
  PalindromeNucleotidePositions <- attributes(cyanobacterias)$index[PalInterval]
  
  ## Nombre de los nodos
  Nodos <- attributes(Reconstruction)$names
  
    ########################################################################################################
  ## Transformo el arbol en data frame para poder agregar los palindromos de cada nodo
  a.1 <- as_tibble(Tree2)
  ## Extraigo el Boostrap por si se ocupa
  NA.NODE = length(cyanobacterias)+1
  for (i in NA.NODE:length(Nodos)){ ## ESTO DEPENDE DE LA ESTRUCTURA DEL ARBOL
    a.1$label[i] <- a.1$node[i] # x$node[i-1]
  }
  ## Agrego los datos de los palindromos al arbol
  b.1 <- tibble::tibble(label = Nodos)
  c.1 <- full_join(a.1, b.1, by = 'label')
  NodeLabels <- c.1$label
  
  TipLabels <- Tree2$tip.label
  NodeLabels2 <- NodeLabels[-c(1:length(TipLabels))]

  ## Creo una matriz de 8 x length(Nodos) (8 nucleotidos, numero de nodos) para guardar los resultados
  ScoresMtx <- matrix(0,
                      nrow = length(Nodos),
                      ncol = 8)
  colnames(ScoresMtx) <- c("1","2","3","4","5","6","7","8")
  rownames(ScoresMtx) <- Nodos
  
  
  ## Relleno la matriz con los scores
  j = 1
  i = 1
  k = 0
  for (Position in PalindromeNucleotidePositions){
    for (Nodo in TipLabels){
      PositionScores <- Reconstruction[[Nodo]][Position,] ## Extraigo los scores para el nodo "NODO" en la posicion "POSITION" de la secuencia
      if (length(unique(PositionScores)) == 1){
        k=k+1
        WinnerNucleotide = "-"
        ScoresMtx[i,j] <- WinnerNucleotide
        i=i+1 ## contador para cada Nodo
      }else{
        PositionWinnerScore <- max(PositionScores) ## Extraigo el valor mas grande. Este es el valor de la probabilidad de que el nucleotido ancestral sea ese
        WinnerNucleotide <- which(PositionScores == PositionWinnerScore, arr.ind = T) ## pregunto a que numero (Nucleótido) corresponde ese valor
        ScoresMtx[i,j] <- WinnerNucleotide ## Guardo dicho valor en la matriz de resultados
        i=i+1 ## contador para cada Nodo
      }
    }
    j=j+1 ## contador para cada posición
    i=1 ## Reiniciamoa el contador de Nodo para la siguiente posicion
  }
  
  ## Relleno la matriz con los scores
  j = 1
  i = length(TipLabels)+1
  k = 0
  #(length(TipLabels)+1):length(NodeLabels)
  for (Position in PalindromeNucleotidePositions){
    for (Nodo in NodeLabels2){
      PositionScores <- Reconstruction[[Nodo]][Position,] ## Extraigo los scores para el nodo "NODO" en la posicion "POSITION" de la secuencia
      if (length(unique(PositionScores)) == 1){
        k=k+1
        WinnerNucleotide = "X"
        ScoresMtx[i,j] <- WinnerNucleotide
        i=i+1 ## contador para cada Nodo
      }else{
        PositionWinnerScore <- max(PositionScores) ## Extraigo el valor mas grande. Este es el valor de la probabilidad de que el nucleotido ancestral sea ese
        WinnerNucleotide <- which(PositionScores == PositionWinnerScore, arr.ind = T) ## pregunto a que numero (Nucleótido) corresponde ese valor
        ScoresMtx[i,j] <- WinnerNucleotide ## Guardo dicho valor en la matriz de resultados
        i=i+1 ## contador para cada Nodo
      }
    }
    j=j+1 ## contador para cada posición
    i=length(TipLabels)+1 ## Reiniciamoa el contador de Nodo para la siguiente posicion
  }
  ########################################################################################################
  
  ## EN ESTA PARTE ARMAREMOS EL PALINDROMO PARA CADA NODO
  
  ## Creo un matriz de 1x14 para guardar la etiqueta (palindromo) de cada nodo
  PalsMtx <- matrix(0,
                    nrow = length(Nodos),
                    ncol = 1)
  colnames(PalsMtx) <- c("Palindrome")
  rownames(PalsMtx) <- Nodos
  
  ## Extraigo cada palindromo, cambio el codigo de numero por el codigo de letras y lo guardo en la matriz 1x14
  i=0
  j=0
  for (Nodo in Nodos){
    j=j+1
    Palindrome <- as.character(ScoresMtx[j,]) # Este es el palindromo
    pal =""
    for (nuc in Palindrome){
      if(nuc== 1){nuc = 'A'}
      if(nuc== 2){nuc = 'C'}
      if(nuc== 3){nuc = 'G'}
      if(nuc== 4){nuc = 'T'}
      pal = paste(pal,nuc,sep = "")
    }
    PalsMtx[j,1] <- pal
  }
  
  ## ESTA PATRTE ES PARA GUARDAR LOS PALINDROMOS DE CADA NODO
  l <- as.list(PalsMtx[,1]) 
  Nodes = names(l)
  NodePals = as.character(PalsMtx[,1])
  
  ## Transformo el arbol en data frame para poder agregar los palindromos de cada nodo
  x <- as_tibble(Tree2)
  
  ## Extraigo el Boostrap por si se ocupa
  NA.NODE = length(cyanobacterias)+1
  BootStrap <- x$label[NA.NODE:length(Nodes)]
  for (i in NA.NODE:length(Nodes)){ ## ESTO DEPENDE DE LA ESTRUCTURA DEL ARBOL
    x$label[i] <- x$node[i] # x$node[i-1]
  }
  ## Agrego los datos de los palindromos al arbol
  d <- tibble::tibble(label = Nodes,
                      Palindromo = NodePals)
  y <- full_join(x, d, by = 'label')
  
  #------------------------
  
  ## Esta es la configuracion del arbol
  from<-y$label
  to<-y$parent
  
  LinksMtx <- matrix(0,
                     nrow = length(from),
                     ncol = 2)
  colnames(LinksMtx) <- c("from","to")
  
  for (i in 1:length(from)){
    LinksMtx[i,1] = from[i]
    LinksMtx[i,2] = to[i]
  }
  
  ## AQUI VOY A CREAR LA MATRIZ QUE ME SERVIRA COMO DICCIONARIO PARA RELLENAR LA MATRIZ DE TRANSICIONES
  Mat <- y[,4:5]
  #Mat <- Mat %>% ## AQJUI QUITO EL RENGLON 7 QUE NO CONTIENE NADA. ESTE CORRESPONDE A LA RAIZ DEL ARBOL
  #  filter(!is.na(Palindromo))
  Mat
  
  Mat2 <- as.data.frame(Mat) ## CONVIERTO A DF
  Mat2
  
  ## AQUI CREO LA MATRIZ DE TRANSICIONES.
  LinksMtx2 <- matrix(0,
                      nrow = length(from),
                      ncol = 2)
  colnames(LinksMtx2) <- c("from","to")
  
  ## AQUI RELLENO LA MATRIZ DE TRANSICIONES USANDO COMO DICCIONARIO A LA MATRIZ ANTERIOR (Mat2)
  for (i in 1:length(from)) {
    for (j in 1:length(from)){
      if (LinksMtx[i,1]==Mat2[j,1]){
        LinksMtx2[i,1] = Mat2[j,2]
      }
      if (LinksMtx[i,2]==Mat2[j,1]){
        LinksMtx2[i,2] = Mat2[j,2]
      }
    }
  }
  
  directions<-paste(from,to,sep="--") ## ESTE VECTOR CONTIENE LAS DIRECCIONES
  Links0 = as.data.frame(LinksMtx2) ## HAGO UNA COPIA DE LA MATRIZ DE TRANSICIONES
  Links0$direction<-directions ## AGREGO COMO COLUMNA NUEVA A "directions"
  Links0
  LINKS<-rbind(LINKS,Links0) ## UNO LA MATRIZ ACTUAL DE TRANSICIONES(CON DIRECCIONES) CON LA ANTERIOR PARA CREAR UNA SOLA
  
  df <- as.data.frame(LinksMtx2) ## CONVIERTO A DF LA MATRIZ DE TRANSICIONES
  DF <- rbind(DF,df) ## UNO LA MATRIZ ACTUAL DE TRANSICIONES CON LA ANTERIOR PARA CREAR UNA SOLA
  #print(paste0("Archivo ",ORTH, " de ",length(Sites$FILE),"."))
}

Ahora las matrices DF y LINKS contienen todas las transiciones de todos los sitios. En total son 6990 transiciones ya que son 10 transiciones por arbol y tenemos 699 arboles.

length(DF$from)
## [1] 6990
length(LINKS$from)
## [1] 6990

Filtrado de datos para el GRAFO

Primero cuento el numero de veces que se repite cada linea de la matriz de transiciones. El conteo para cada transicion sera el peso de cada vertice. Luego cambio el nombre de la columna counts a weight, paso su contenido a numeros enteros y la convierto a tibble. En total tengo 2536 transiciones:

library(data.table)
RowCts <- setDT(DF)[,list(Count=as.numeric(.N)),names(DF)] ## CUENTO EL NUMERO DE OCURRENCIAS DE CADA TRANSICIÓN #2536
colnames(RowCts) <- c("from","to","weight") 
RowCts = transform(RowCts, weight = as.integer(weight)) ## CONVIERTO A ENTEROS LA COLUMNA "weight"
RowCts <-as_tibble(RowCts) ## CONVIERTO A TIBBLE
RowCts #2536
## # A tibble: 2,514 × 3
##    from     to       weight
##    <chr>    <chr>     <int>
##  1 GCCATTGT GCCATTGT      2
##  2 GCGATCGC GCTATCGT      2
##  3 GCTGTCCT GCTGTCCT      2
##  4 GCTATTTT GCTATTGT      2
##  5 GCCATTAC GCCATTGT      1
##  6 GCTATCGT GCTATCGT      2
##  7 GCCATTGT GCTATTGT      1
##  8 GCTATTGT GCTATCGT      2
##  9 GCTGTCCT GCTATCGT      1
## 10 GTTTTAAT GTTTTAAT      2
## # … with 2,504 more rows

Filtro conteos bajos (<=10) y loops. Al final me quedo con 21 transiciones.

RowCts<-RowCts%>% ##QUITO LOS LOOPS. ES DECIR QUITO AQUELLAS TRANSICIONES QUE VAYAN ASI MISMA
  filter(from!=to)
length(RowCts$from) #1967
## [1] 1939
RowCts<-RowCts%>% ## QUIRO AQUELLAS TRANSICIONES CON UN PESO MENOR A 10
  filter(weight>=10)
length(RowCts$from) #21
## [1] 21

Extraigo todos los nodos posibles y los agrego a una matriz que va a contener los nodos del grafo. Adiconalmente le agrego una columna score que me indicara que tan parecido es el aplindromo a HIP1 (despues la quito porque no creo que sea un buen índice)

GraphNodes <- c(RowCts$from, RowCts$to) ## OBTENGO LOS PALINDROMOS DE CADA NODO
length(GraphNodes) #126
## [1] 42
GNMtx <- matrix(0, ## CREO LA MATRIZ QUE CONTENDRÁ LAS NODOS PARA EL GRAFO
                nrow = length(GraphNodes),
                ncol = 2)
colnames(GNMtx) <- c("pal","score") ## ETIQUETO LAS COLUMNAS DE LA MATRIZ

for (i in 1:length(GraphNodes)){ ## RELLENO LA MATRIZ
  GNMtx[i,1] = GraphNodes[i] ## AGREGO LOS NODOS
  GNMtx[i,2] = RecordLinkage::levenshteinSim(GraphNodes[i], 'GCGATCGC')*1000 ## AGREGO UN SCORE QUE SERÁ EL PORCENTAJE DE IDENTIDAD CON HIP1 MULTIPLICADO POR 1000
}

GNMtx <- as.data.frame(GNMtx) ## CONVIERTO LA MATRIZ DE NODOS A DF
GNMtx <- GNMtx[!duplicated(GNMtx), ] ## ELIMINO LOS NODOS DUPLICADOS

Creo un vector que enumerará los palindromos. Dicha enumeracion correspondera a su ID

palindromes<-GNMtx[,1] #34  ## EXTRAIGO LOS NODOS DE LA MATRIZ DEL GRAFO. ESTO LO HAGO PARA POSTERIAMENTE ENUMERARLAS Y ASOCIAR CADA NUMERO COMO ID

ids<-c() ## CREO UN VECTOR VACIO QUE CONTENDRÁ LOS ID'S
for (k in 1:length(palindromes)){ ## ENUMERO LOS PALINDROMOS. ESTOS NUMEROS SERAN LOS IDS
  ids <-append(ids, k)
}
ids
##  [1]  1  2  3  4  5  6  7  8  9 10 11 12 13
length(ids) #34
## [1] 13
length(GNMtx[,1]) #34
## [1] 13

Creo una matriz nueva que contendrá los nodos del grafo pero con su ID para cada palindromo:

Nodes2 <-cbind(GNMtx,ids) ## CREO UNA MATRIZ NUEVA CON LA MATRIZ DE NODOS Y LOS IDS. ESTA LA VOY A USAR COMO UN DICCIONARIO ID-NODO
length(Nodes2$pal)
## [1] 13
Nodes2<-Nodes2[,c(3,1,2)] ## REORDENO LAS COLUMNAS DE LA MATRIZ
colnames(Nodes2)<-c("id","label","score") ## ETIQUETO LAS COLUMNAS

Creo la matriz de vertices del grafo y tambien sustituyo el nombre de los nodos por sus respectivos ID’S. Adicionalmente cambio los scores que tengan 0 por 1’s ya que hay errores. Sin embargo, la columna score no la uso mas adelante.

GEMtx <- RowCts ## ESTA VA A SER LA MATRIZ DE VERTICES
Edges2 <- as.matrix(RowCts)#RowCts ESTA ES OTRA MATRIZ DE VERTICES DE LA CUAL VOY A SUSTITUIR LOS NODOS POR SUS IDS

for (n in 1:length(Nodes2[,2])){ ##AQUI CAMBIARE LOS PALINDROMOS DE LOS NODOS POR IDS
  Edges2[Edges2==Nodes2[n,2]] <- as.numeric(Nodes2[n,1])
  #print(n)
}

for (n in 1:length(Nodes2[,2])){ ## HANDLE 0's
  Nodes2[Nodes2==0] <- as.numeric(1)
  #print(n)
}

VISUALIZACIÓN DEL GRAFO

Cargo las librerias

library(visNetwork)
library(networkD3)
library(tidygraph)
library(ggraph)

Para empezar cargo los nodos y los vertices. En esta parte quito la columna score de los nodos.

nodes = as_tibble(Nodes2)
nodes = select(nodes, -score)

edges = as_tibble(Edges2)
edges = transform(edges, from = as.integer(from))
edges = transform(edges, to = as.integer(to))
edges = transform(edges, weight = as.integer(weight))
edges = as_tibble(edges)

Creo un grafo dirigido agregando un peso de acuerdo a la columna weight.

routes_tidy <- tbl_graph(nodes = nodes,
                         edges = edges,
                         directed = TRUE)

routes_tidy
## # A tbl_graph: 13 nodes and 21 edges
## #
## # A directed simple graph with 1 component
## #
## # Node Data: 13 × 2 (active)
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGT
## 2     2 GTGATCGC
## 3     3 GCGATCGC
## 4     4 GCGATTGC
## 5     5 GCGATCAC
## 6     6 GCAATCGC
## # … with 7 more rows
## #
## # Edge Data: 21 × 3
##    from    to weight
##   <int> <int>  <int>
## 1     1     2     40
## 2     1     3     36
## 3     2     3     93
## # … with 18 more rows
routes_tidy %>% 
  activate(edges) %>% 
  arrange(desc(weight))
## # A tbl_graph: 13 nodes and 21 edges
## #
## # A directed simple graph with 1 component
## #
## # Edge Data: 21 × 3 (active)
##    from    to weight
##   <int> <int>  <int>
## 1     2     3     93
## 2     4     3     56
## 3     5     3     53
## 4     6     3     47
## 5     1     2     40
## 6     3     2     38
## # … with 15 more rows
## #
## # Node Data: 13 × 2
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGT
## 2     2 GTGATCGC
## 3     3 GCGATCGC
## # … with 10 more rows

Visualizo el grafo:

ggraph(routes_tidy, layout = "graphopt") + 
  geom_node_point() +
  geom_edge_link(aes(width = weight), alpha = 0.8) + 
  scale_edge_width(range = c(0.2, 2)) +
  geom_node_text(aes(label = label), repel = TRUE) +
  labs(edge_width = "Times") +
  theme_graph()

GRAFOS INTERACTIVOS

Este es un grafo sin peso en los vertices.

visNetwork(nodes, edges)

Este es el mismo grafo pero con peso en sus vertices

edges <- mutate(edges, width = weight/5 + 1)
visNetwork(nodes, edges) %>% 
  visIgraphLayout(layout = "layout_with_fr") %>% 
  visEdges(arrows = "middle")

Este es otro grafo de fuerzas con peso en sus vertices y te muestra las conceciones de cada nodo de manera mas visual

nodes_d3 <- mutate(nodes, id = id - 1)
edges_d3 <- mutate(edges, from = from - 1, to = to - 1)

forceNetwork(Links = edges_d3, Nodes = nodes_d3,
             Source = "from", Target = "to", 
             NodeID = "label", Group = "id", Value = "weight", 
             opacity = 1, fontSize = 16, zoom = TRUE)  

Este ultimo grafo muestra el grafo anterior pero de una forma mas analizable.

sankeyNetwork(Links = edges_d3, Nodes = nodes_d3, Source = "from", Target = "to", 
              NodeID = "label", Value = "weight", fontSize = 16, unit = "TIME(s)")

GRAFOS POR DIRECCION

WGHT = 4
ggtree(Tree2) +
  geom_tiplab(color='firebrick', offset = .10, hjust=2.0)+
  geom_label(aes(label = node),show.legend = TRUE)

ALOHA–8

## [1] 3419
## # A tbl_graph: 4 nodes and 2 edges
## #
## # A rooted forest with 2 trees
## #
## # Edge Data: 2 × 4 (active)
##    from    to direction weight
##   <int> <int> <chr>      <int>
## 1     2     4 ALOHA--8       5
## 2     1     3 ALOHA--8       4
## #
## # Node Data: 4 × 2
##      id label   
##   <int> <chr>   
## 1     1 GCTATTGC
## 2     2 GTGATCGT
## 3     3 GCCATTGC
## # … with 1 more row

}

PCC_8801–7

## [1] 3419
## # A tbl_graph: 13 nodes and 12 edges
## #
## # A rooted tree
## #
## # Edge Data: 12 × 4 (active)
##    from    to direction   weight
##   <int> <int> <chr>        <int>
## 1     1     5 PCC_8801--7     36
## 2     1    10 PCC_8801--7     20
## 3     1     6 PCC_8801--7     18
## 4     1     3 PCC_8801--7     13
## 5     1     8 PCC_8801--7     11
## 6     1     2 PCC_8801--7      8
## # … with 6 more rows
## #
## # Node Data: 13 × 2
##      id label   
##   <int> <chr>   
## 1     1 GCGATCGC
## 2     2 GCTATCGC
## 3     3 GCGATCGT
## # … with 10 more rows

}

Yunoko–10

## [1] 3419
## # A tbl_graph: 9 nodes and 8 edges
## #
## # A directed acyclic simple graph with 2 components
## #
## # Edge Data: 8 × 4 (active)
##    from    to direction  weight
##   <int> <int> <chr>       <int>
## 1     4     1 Yunoko--10     13
## 2     2     8 Yunoko--10      7
## 3     3     7 Yunoko--10      6
## 4     3     2 Yunoko--10      6
## 5     7     8 Yunoko--10      6
## 6     1     8 Yunoko--10      5
## # … with 2 more rows
## #
## # Node Data: 9 × 2
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGC
## 2     2 GCAATCGC
## 3     3 GCAATTGC
## # … with 6 more rows

gibberula–10

## [1] 3419
## # A tbl_graph: 9 nodes and 7 edges
## #
## # A rooted forest with 2 trees
## #
## # Edge Data: 7 × 4 (active)
##    from    to direction     weight
##   <int> <int> <chr>          <int>
## 1     1     3 gibberula--10     12
## 2     3     8 gibberula--10     10
## 3     6     8 gibberula--10      8
## 4     2     8 gibberula--10      5
## 5     5     8 gibberula--10      5
## 6     4     2 gibberula--10      4
## # … with 1 more row
## #
## # Node Data: 9 × 2
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGT
## 2     2 GCGATTGC
## 3     3 GTGATCGC
## # … with 6 more rows

ATCC_51142–9

## [1] 3419
## # A tbl_graph: 2 nodes and 1 edges
## #
## # A rooted tree
## #
## # Edge Data: 1 × 4 (active)
##    from    to direction     weight
##   <int> <int> <chr>          <int>
## 1     1     2 ATCC_51142--9      6
## #
## # Node Data: 2 × 2
##      id label   
##   <int> <chr>   
## 1     1 GCCATCGC
## 2     2 GCGATCGC

}

bigelowii–8 WEIGHT = 3

## [1] 3419
## # A tbl_graph: 5 nodes and 3 edges
## #
## # A rooted forest with 2 trees
## #
## # Edge Data: 3 × 4 (active)
##    from    to direction    weight
##   <int> <int> <chr>         <int>
## 1     1     3 bigelowii--8      3
## 2     2     4 bigelowii--8      3
## 3     2     5 bigelowii--8      3
## #
## # Node Data: 5 × 2
##      id label   
##   <int> <chr>   
## 1     1 GCAATTGC
## 2     2 GTGATCGT
## 3     3 GCAATCGC
## # … with 2 more rows

8–9

## [1] 3419
## # A tbl_graph: 13 nodes and 12 edges
## #
## # A rooted tree
## #
## # Edge Data: 12 × 4 (active)
##    from    to direction weight
##   <int> <int> <chr>      <int>
## 1     7    13 8--9          20
## 2     1    13 8--9          16
## 3     5    13 8--9           9
## 4     8    13 8--9           8
## 5     2    13 8--9           7
## 6     6    13 8--9           7
## # … with 6 more rows
## #
## # Node Data: 13 × 2
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGT
## 2     2 GCTATTGC
## 3     3 GAGATCGT
## # … with 10 more rows

9–7

## [1] 3419
## # A tbl_graph: 4 nodes and 3 edges
## #
## # A rooted tree
## #
## # Edge Data: 3 × 4 (active)
##    from    to direction weight
##   <int> <int> <chr>      <int>
## 1     1     4 9--7           9
## 2     2     4 9--7           5
## 3     3     4 9--7           4
## #
## # Node Data: 4 × 2
##      id label   
##   <int> <chr>   
## 1     1 GCGATCGT
## 2     2 ACGATCGC
## 3     3 GCCATCGC
## # … with 1 more row

10–7

## [1] 3419
## # A tbl_graph: 16 nodes and 15 edges
## #
## # A rooted tree
## #
## # Edge Data: 15 × 4 (active)
##    from    to direction weight
##   <int> <int> <chr>      <int>
## 1     1    16 10--7         71
## 2     4    16 10--7         46
## 3     3    16 10--7         28
## 4     5    16 10--7         24
## 5     6    16 10--7         16
## 6    11    16 10--7          9
## # … with 9 more rows
## #
## # Node Data: 16 × 2
##      id label   
##   <int> <chr>   
## 1     1 GTGATCGC
## 2     2 GTGATCAC
## 3     3 GCGATTGC
## # … with 13 more rows