set.seed(123)
datos = data.frame(
gen = gl(3,4,12, c('g1','g2','g3')),
rep = gl(4,1,12, c('r1','r2','r3','r4')),
rto = c(3.5, 3.8, 3.6, 3.5,
3.6, 3.9, 4.1, 3.8,
4.2, 3.9, 4.3, 4.3)
)
datos
## gen rep rto
## 1 g1 r1 3.5
## 2 g1 r2 3.8
## 3 g1 r3 3.6
## 4 g1 r4 3.5
## 5 g2 r1 3.6
## 6 g2 r2 3.9
## 7 g2 r3 4.1
## 8 g2 r4 3.8
## 9 g3 r1 4.2
## 10 g3 r2 3.9
## 11 g3 r3 4.3
## 12 g3 r4 4.3
TABLA DE ANALISIS DE VARIANZA (ANOVA)
boxplot(rto ~ gen, data=datos)

boxplot(rto ~ rep, data=datos)

TABLA DE ANALISIS DE VARIANZA
mod = aov(rto ~ gen, datos)
summary(mod)
## Df Sum Sq Mean Sq F value Pr(>F)
## gen 2 0.6650 0.3325 10.06 0.00507 **
## Residuals 9 0.2975 0.0331
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
EJEMPLO 2
datos = data.frame(
fert = gl(5,12,60, c('ctrl', 'D1', 'D2', 'D3', 'D4')),
AF = sort(rnorm(60, 10, 0.8))
)
boxplot(AF ~ fert, data=datos)

mod2 = aov(AF ~ fert, datos)
summary(mod2)
## Df Sum Sq Mean Sq F value Pr(>F)
## fert 4 28.541 7.135 142.5 <2e-16 ***
## Residuals 55 2.754 0.050
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1